
4 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 2 © 2 0 2 2 I E E E

IEEE Software To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement the developers and managers who want to keep up with rapid technology change.

Crossing the
Great Divide of
Software Engineering
Ipek Ozkaya

THE GREAT DIVIDE, the continen-
tal divide of the Americas, is a water
divide extending from the Bering Sea
to the southern tip of South America,
the Strait of Magellan. The Great Di-
vide separates the watersheds that
drain into the Pacific Ocean from
those river systems that drain into the
Atlantic and Arctic Oceans. While
there are many other examples of geo-
logical and geographical divides, the
Great Divide stands out by its mag-
nitude and higher peaks compared to
other divides and its spanning mul-
tiple countries and continents. The
divide does not necessarily define
any different characteristics on either
of its sides; it is simply a water pas-
sage dividing the Americas into two.
To hiking enthusiasts, hiking the
Great Divide is defined by its mag-
nitude, typically easily taking up to
five months. Due to its clear visual-
ization power, the Great Divide has
been a source of inspiration for meta-
phors in movies, albums, books, and

topics when describing any conun-
drum with two sides.

Software engineering has a fair
share of its divides as well. Most of
these divides close in time as every-
one’s level of knowledge increases,
the conflicting technical aspects get
resolved, all involved get trained in new
techniques, and criteria for when to
apply them are clarified. The divides
of agile and architecture;1 waterfall
and iterative processes;2 or formal
(for example, using rigorous model
semantics and expression) and semi-
formal (for example, unified model-
ing language) design techniques3 are
some examples. Yet none of these
divides have been as monumental
and as difficult to navigate as the
one between the “researcher” and
“practitioner” separation that the
software engineering community has
self-imposed.

In sof tware engineering con-
ferences and software research
organizations a top priority con-
cern is how research can impact
and improve the practice of soft-
ware engineering. When we look at

organizations that hire software en-
gineers in masses, their top concern
is to hire those who have the expert
knowledge of the most relevant and
current software engineering tech-
niques to solve the organization’s
most challenging problems. So the
goals on either side of the divide are
not that misaligned—to develop soft-
ware and develop it well—yet ongo-
ing conversations revolve around the
disconnect, in particular the lack of
practical and timely relevance of soft-
ware engineering research.4

In this editorial, I invite you all,
regardless of if you identify as a re-
searcher or practitioner, to gear up
and walk this Great Divide of soft-
ware engineering with me. My goal is
to convince you all that one step to-
ward crossing this divide effectively
and making it less daunting is to be
all reminded that first and foremost,
we all are software engineers regard-
less of our current roles and re-
sponsibilities. We need to collectively
shift our attention to contributing
to a common goal for the profes-
sion of software engineering rather

Digital Object Identifier 10.1109/MS.2022.3161770
Date of current version: 20 June 2022

FROM THE EDITOR
Editor in Chief: Ipek Ozkaya
Carnegie Mellon Software Engineering Institute
ipek.ozkaya@computer.org

FROM THE EDITOR

 JULY/AUGUST 2022 | IEEE SOFTWARE 5

than focusing on the researcher versus
practitioner divide.

Common Goals for
the Profession
Our experience growing up affects
our thinking patterns. I grew up in a
family of medical doctors. Some had
private practices, some worked in
device or pharmaceutical companies,
and some were employed in research
universities raising the next genera-
tion of doctors. Those who had a
private practice or were employed
at device or pharmaceutical compa-
nies definitely had different activities
and financial incentives compared
to those who were employed in re-
search universities. Yet no matter
how different their days and activi-
ties looked, they all converged in one
common goal: how the outcomes of
all their day-to-day activities con-
tributed to improving the health of
individuals and saving lives.

Given how ubiquitous software
has become, a similar analogy to the
medical practice can easily be made
for software engineering. No matter
what the nature of the activities we
all engage in, the common goal is, or
should be, to develop software that
is safe, secure, and meets its resource
and business goals for the domain it
serves. Activities engaged by software
engineering research groups and those
executed by organizations in principle
have this common goal.

The ability to make progress to-
ward a common goal for the profes-
sion, which I defined as developing
safe and secure software that meets
its resource and business goals for
the domain it serves, requires un-
derstanding the success criteria for
the goal. For example, in a survey Lo
et al. conducted with 3,000 software
developers, they found no correlation
between citation counts of research

articles (an essential metric used in
promotion cases) and the surveyed
developers suggesting that the work
is relevant to software engineering
practice.5 Koziolek, in a recent article,
similarly emphasized that the practi-
cal impact of research requires differ-
ent success measurement criteria.6

Working toward a common pro-
fession goal requires thinking like
a software engineer before a practi-
tioner or researcher. As a software
engineer, success is not how many
other people have read a paper, but
it is how many other people used a
developed technique to develop new
functionality better. As a software
engineer, success is not how quickly
I shipped functionality that works,
but it is how I shipped functionality
using techniques that help guarantee
that it not only works but also does
not compromise any safety, secu-
rity, or privacy issues. Aligning the
success criteria around a commonly
agreed-upon set of “goodness” prin-
ciples of software is an important
place to start.7

Building Skills to Cross
the Divide
Not all software engineers have to
have the skills to conduct long-term
fundamental research or be cogni-
zant of all the development frame-
works and tools to ship software.
There is simply too much to know;
technologies and tools in software en-
gineering change quickly; and theo-
ries start breaking as new techniques,
tools, and hardware are introduced.
Specialization matters, and an expert
in secure coding will not necessar-
ily be as well versed in optimizing
performance. However, all software
engineers need to know where to
start. All software engineers need
to know how to build a hypothesis
relevant to software engineering

CONTACT
US

AUTHORS

For detailed information on submitting
articles, visit the “Write for Us” section at
www.computer.org/software

LETTERS TO THE EDITOR

Send letters to software@computer.org

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

address.change@ieee.org
(please specify IEEE Software.)

MEMBERSHIP
CHANGE OF ADDRESS

member.services@ieee.org

MISSING
OR DAMAGED COPIES

contactcenter@ieee.org

REPRINT PERMISSION

IEEE utilizes Rightslink for permissions
requests. For more information, visit www.
ieee.org/publications/rights/rights-link.html

FROM THE EDITOR

6 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

challenges and collect evidence
to prove it one way or another ei-
ther with a prototype or by col-
lecting and analyzing data. All
software engineers need to know
the software engineering lifecycle
and key activities and the body of
knowledge.8 Building such a fun-
damental basic set of skills sets
the stage for not only effectively
crossing the divide but also un-
derstanding what it takes to sur-
vive on the other side.

However, not enough software
engineers cross the divide between
research and practice, starting
their careers on one side and con-
tinue on the other side. The ability
to build a career that crosses the
divide requires having the skills
that are fundamental to the tasks
of a researcher and a practicing
engineer as well as having bridges
that make this transition easy. The
career paths in software engineer-
ing are not welcoming in making
individuals consider choices that
involve both research and prac-
tice. This further contributes to
the divide. Researchers become
disconnected from practice with
only options left to further focus
on acquiring minor delta research
funding and putting out more
publications. This is also further
encouraged by the structure of
academic promotions. Practitio-
ners as a result of the ever-increas-
ing resource challenges need to
focus on delivering on tasks and
become disconnected from scop-
ing enduring challenges that may
require several hypothesis and
test cycles. Of course, some of the
save the day engineering strategies
do end up solving difficult prob-
lems, and some research do make
it into practice and change the way
how developers work. However,

regardless of success, the examples
where the work is conducted collabor-
atively is simply not frequent enough.

Be a Software Engineer
Before a Researcher or
a Practitioner
I argue that our ability to bring soft-
ware engineering research and prac-
tice closer will not be possible if we
continue to embrace our career roles
(researcher or practitioner) before we
embrace our profession role (software
engineer). We all need to think and
act like software engineers first and
understand what it means to align
around the common principles of
what it takes to develop safe and se-
cure software that meets its resource
and business goals for the domain
it serves. A sound software engi-
neer has areas of expertise and skills
that include the ability to navigate re-
search and practice tasks as needed.
A well-rounded software engineer
is equipped to cross great divides of
any magnitude, while a researcher or
a practitioner by definition is stuck
on one side of the divide, often frus-
trated by not being able to bring the
right tools to the task.

References
1. P. Abrahamsson, M. A. Babar, and

P. Kruchten, “Agility and archi-

tecture: Can they coexist?” IEEE

Softw., vol. 27, no. 2, pp. 16–22,

2010, doi: 10.1109/MS.2010.36.

2. S. M. Mitchell and C. B. Seaman, “A

comparison of software cost, dura-

tion, and quality for waterfall vs. it-

erative and incremental development:

A systematic review,” in Proc. 2009

3rd Int. Symp. Empirical Softw. Eng.

Meas., pp. 511–515, doi: 10.1109/

ESEM.2009.5314228.

3. P. Alexander, “Best of both worlds

[formal and semi-formal software

engineering],” IEEE Potentials,

EDITORIAL
STAFF
IEEE SOFTWARE STAFF
Managing Editor: Jessica Welsh, j.welsh@ieee.org
Cover Design: Andrew Baker
Peer Review Administrator: software@computer.org
Publications Staff Editor: Cathy Martin
Periodicals Operations Project Specialist:
Christine Shaughnessy
Content Quality Assurance Manager: Jennifer Carruth
Publications Portfolio Manager: Carrie Clark
Publisher: Robin Baldwin
IEEE Computer Society Executive Director:
Melissa Russell
Senior Advertising Coordinator: Debbie Sims

CS PUBLICATIONS BOARD
David Ebert (VP of Publications), Terry Benzel, Greg
Byrd, Chuck Hansen, Hui Lei, Shixia Liu, Sarah Malik,
San Murugesan, Timothy Pinkston; Ex officio:
Robin Baldwin, William Gropp, Melissa Russell

CS MAGAZINE OPERATIONS
COMMITTEE
San Murugesan (MOC Chair), Lorena Barba,
Irena Bojanova, Longbing Cao, Shu-Ching Chen,
Gerardo Con Diaz, Lizy K. John, Marc Langheinrich,
Torsten Möller, Ipek Ozkaya, George Pallis,
Sean Peisert, Jeffrey Voas

IEEE PUBLICATIONS OPERATIONS
Senior Director, Publishing Operations: Dawn
M. Melley
Director, Editorial Services: Kevin Lisankie
Director, Production Services: Peter M. Tuohy
Associate Director, Information Conversion and
Editorial Support: Neelam Khinvasara
Senior Manager, Journals Production: Patrick Kempf
Senior Art Director: Janet Dudar

Editorial: All submissions are subject to editing for clarity,
style, and space. Unless otherwise stated, bylined articles
and departments, as well as product and service descriptions,
reflect the author’s or firm’s opinion. Inclusion in IEEE Software
does not necessarily constitute endorsement by IEEE or the
IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s Web-based
system, ScholarOne, at http://mc.manuscriptcentral.com/
sw-cs. Be sure to select the right manuscript type when
submitting. For complete submission information, please visit
the Author Information menu item under “Write for Us” on our
website: www.computer.org/software.

IEEE prohibits discrimination, harassment and bullying:
For more information, visit www.ieee.org
/web/aboutus/whatis/policies/p9-26.html.

Digital Object Identifier 10.1109/MS.2022.3148369

FROM THE EDITOR

 JULY/AUGUST 2022 | IEEE SOFTWARE 7

vol. 14, no. 5, pp. 29–32, Dec. 1995/

Jan. 1996, doi: 10.1109/45.481509.

4. V. Garousi, M. Borg, and M. Oivo,

“Practical relevance of software engi-

neering research: Synthesizing the com-

munity’s voice,” Empirical Softw. Eng.,

vol. 25, no. 3, pp. 1687–1754, 2020,

doi: 10.1007/s10664-020-09803-0.

5. D. Lo, N. Nagappan, and T. Zim-

mermann, “How practitioners

perceive the relevance of software

engineering research,” in Proc.

2015 10th Joint Meeting Found.

Softw. Eng., pp. 415–425, doi:

10.1145/2786805.2786809.

6. H. Koziolek, “Tracing the practi-

cal impact of software architecture

research.” Medium. https://medium.

com/@heiko.koziolek/tracing-the

-practical-impact-of-software

-architecture-research-a2b91136455

(Accessed: May 12, 2022).

7. C. L. Goues, C. Jaspan, I. Ozkaya,

M. Shaw, and K. T. Stolee, “Bridging

the gap: From research to practical

advice,” IEEE Softw., vol. 35, no. 5,

pp. 50–57, Sep./Oct. 2018, doi:

10.1109/MS.2018.3571235.

8. “Software Engineering Body

of Knowledge (SWEBOK) v3.0,”

IEEE Computer Society,

Washington, DC, USA, 2013.

[Online]. Available: https:

//www.computer.org/education/

bodies-of-knowledge/software

-engineering

Digital Object Identifier 10.1109/MS.2022.3177873

