
90 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 2 © 2 0 2 2 I E E E

THE PRAGMATIC
DESIGNER

Editor: George Fairbanks
gf@georgefairbanks.com

SOFTWARE ARCHITECTURE HAS
long sought the attention of agile de
velopers, but its love is unrequited.
For decades, architects have offered
up gifts to agile teams. In response,
agile developers have responded with
little more than a raised eyebrow. As
a result, teams that blend architecture
principles and agile practices are rare.

Over time, the agile teams have
warmed to architecture’s attention.
One gift in particular has put a spar
kle in their eyes: architecture decision
records (ADRs). While previous archi
tecture offerings have fallen flat, ADRs
have that special something. Teams
that had ignored architecture model
ing and documentation practices are
increasingly embracing ADRs.

Understanding why ADRs appeal
to today’s agile teams will lead to a

stronger, mutual relationship between
the architecture and agile communi
ties. This is the story of architecture,
agile, and a practice that is bringing
them together: ADRs.

Design Decisions and ADRs
Making good design decisions is hard,
and changing them is harder. Archi
tecture decisions set the direction for
a project and guide smaller decisions
in the code, so it’s critical that devel
opers understand them. Documenta
tion helps, but how exactly?

ADRs are typically small text
files, each describing a single design
decision and rationale. ADR tem
plates commonly include three parts:
context, decision, and consequences.
The context of an ADR describes the
technical, business, social, or political
circumstances that directly influence
a design decision. A brief descrip
tion of the decision itself outlines the

selected course of action for the de
sign. Consequences describe the ex
pected outcomes that result once the
decision is applied.

As an example, say a team of expe
rienced Java developers needs to deliver
a web service on a tight schedule. The
team’s experience, the expected proj
ect timeline, and a technical constraint
that the team is to deliver a Javabased
web service are contextual forces. In
response to this context, the team de
cides to use a popular framework as
the backbone for the architecture. As a
consequence of this decision, the team
expects to deliver a highly maintain
able solution in only a few weeks and
to hoist several other desirable quality
attributes into the web service’s archi
tecture. However, adopting the frame
work introduces a risk that the team
may someday encounter a problem that
is awkward or impossible to solve due
to the framework’s constraints.

Love Unrequited: The Story
of Architecture, Agile,
and How Architecture
Decision Records Brought
Them Together
Michael Keeling

Digital Object Identifier 10.1109/MS.2022.3166266
Date of current version: 20 June 2022

THE PRAGMATIC DESIGNER

JULY/AUGUST 2022 | IEEE SOFTWARE 91

In this example, the rationale pri
marily focuses on quality attributes
(maintainability and time to market),
engineering risks, and scheduling.
The consequences describe positive
and negative outcomes but do not
pass judgment on the hypothesized
outcomes. While the decision allows
the team to ship quickly and pro
motes desirable quality attributes, a
new risk is introduced by the deci
sion that must be managed. Accept
ing this decision means that the team
accepts all of these consequences.

Discussing and writing down de
sign decisions is not a new idea. For
as long as we’ve developed software,
teams have described, debated, and
shared their decisions. What is new is
treating decisions as artifacts that the
team writes down. Looking back in
time can help us understand why this
shift is happening now and why agile
teams are willing to write ADRs.

 The Seeds of a
One-Sided Romance
Despite the importance of decisions,
when software architecture was first
studied carefully, in the 1990s, re
searchers focused primarily on struc
ture and abstraction. Perry and Wolf
were an exception when they included
design rationale prominently in their
formula, “Architecture = {Elements,
Form, Rationale}.”1 A more typical
treatment of architecture is found in
David Garlan and Mary Shaw’s early
publications,2 which referred to de
cision making only indirectly. De
cisions were seen as something you
made to arrive at the key architecture
abstractions, like components, con
nectors, and modules, but not as one
of those key abstractions

As we look back with fresh eyes,
we should not forget that software ar
chitecture was still a new discipline in
the 1990s. After decades of muddling

through increasingly complex soft
ware systems using ad hoc models,
the software industry had finally ar
rived at an initial set of useful abstrac
tions for describing how to arrange
software systems to promote desirable
system properties. Software architects
of the day gained access to tremen
dous explanatory power in the form
of views, view models, and architec
tural styles. This was a game changer.

For preagile teams of the day (the
Agile Manifesto was not published
until 2001), these powerful new ideas
were challenging to adopt. Contempo
rary design practices were time con
suming and required deep expertise to
apply well. Preagilists felt that the work
necessary to document multiple views
of the architecture, especially using the
notations, tools, and practices common
in the early 1990s, was costprohibi
tively time consuming. Thus, working
software was valued over comprehen
sive documentation, and the seeds of a
onesided romance were sown.

As both industry and research
gained experience with the emerg
ing software architecture discipline,
there was a growing recognition that
successfully implementing a system’s
architecture required more than only
a correct and complete architecture
description. Teams who understood
the trail of decisions leading to a de
sign were better able to scale up their
organizations, improve design quality,
handle staff turnover, and evolve the

system over time. The resulting system
design was certainly important, but
understanding the rationale behind a
design had practical significance.

Given that so much state of the
art was established during this time,
it seems only reasonable that some
building blocks would not be fully
understood or appreciated at the
time. Naturally, these missed foun
dational concepts would be investi
gated in the years to follow.

 Architects Love Views
Throughout the late 1990s and early
2000s, design decisions were dis
cussed increasingly often in the ar
chitecture community. The topic is
briefly mentioned in the Software En
gineering Institute’s series of books on
software architecture as an approach
for describing models more richly and
as an analysis tool. Both researchers
and practitioners—including Anton
Jansen, Dana Bredemeyer, Jan Bosch,
Olaf Zimmerman, Paris Avgeriou,
Rich Hilliard, Ruth Malan, Uwe Van
Heesch, and others—shared their ob
servations about the increasing promi
nence and promise of design decisions
and the evolving software architect’s
role in decision making.

During this time, there was a clear
turning point in how software archi
tects thought about design decisions.
The available software architecture
abstractions, while powerful and ex
pressive, were beginning to be seen

Instead of inadvertently gatekeeping
design, ADRs gave developers direct
access and empowered them to
own it.

THE PRAGMATIC DESIGNER

92 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

as necessary but not sufficient for
designing and describing a software
system. From this new perspective,
design decisions were a key architec
ture abstraction on a par with compo
nents and modules.3

If design decisions are a new ab
straction, how do they relate to the
others, and how should we express
them? Many in the software archite
cture community attempted to incor
porate design decisions by creating
decisionfocused views.4,5

Agile teams were unimpressed. De
scribing decisions as views required
them to fully embrace the very archi
tecture formalisms they had already
rejected. Jeff Tyree and Art Akerman,
noting the challenges agile teams
encountered when incorporating ar
chitecture ideals, attempted to strike a
balance by cataloging design decisions
using a structured template.6

Despite the awkward fit of deci
sion views, the architecture com
munity’s interest in design decisions
kept growing. In 2009, Philippe
Kruchten, Rafael Capilla, and Juan
Dueñas synthesized more than a de
cade of research on design decisions
into a single call to action for the
software architecture community to
create practical and useful decision
focused viewpoints.7 The age of de
sign decisions had officially arrived,
and agile would soon show signs of
warming to software architecture.

ADRs Make Sparks Fly
After more than two decades, archi
tecture finally found a gift that ex
cited the agile community. That gift
was packaging decisions as ADRs.
Decisioncentric design complemented
existing architecture abstractions and
helped teams describe a new dimen
sion of the architecture: change over
time. Any agile team eager to embrace
change would be excited by this idea.

Throughout the early 2010s, a
number of practicing, agile teams,
inspired by Kruchten’s, Capilla’s,
and Dueñas’s call to action, shared
their experiences with design deci
sions. In late 2011, Michael Nygard
published a blog post describing his
team’s experiences writing ADRs in
the shape of patterns, following a
lightweight template. Each decision
record was added to an immutable
decision log that, over time, built a
history of a system’s design.8

ADRs were materially different
from other approaches coming out
of the architecture community up
to that point. Anyone on the team
could assume the architect’s role by
writing an ADR. Instead of inad
vertently gatekeeping design, ADRs
gave developers direct access and
empowered them to own it. ADRs
achieved this in three ways.

First, no special tools are required
to write an ADR. ADRs are stored
as plain text documents, written in
markdown. Anyone with a text edi
tor can create an ADR. Diagrams
are created with any tool, formal
or informal, and might be as simple
as a picture of a sketch on a white
board. Tools that treat diagrams as
code have become especially popular
for this purpose.

Second, ADRs are stored in the
same version control repository as
the code to which those decisions ap
ply. Storing ADRs close to the code
makes it easier for developers to dis
cover them and increases the likeli
hood that developers will read and
be guided by past design decisions.
Since ADRs are stored in the ver
sion control system, they are subject
to the same peerreview process as
code. This makes it easier to solicit
feedback and share knowledge.

Third, ADRs do not require spe
cial notations or knowledge. ADRs

rely heavily on plain prose descrip
tions. A lightweight template pro
vides structure and guidance for
authors. Developers can write their
first ADR after only brief training.
ADR authors with deep software ar
chitecture knowledge or experience
can still use what they know to write
concise and comprehensive ADRs,
but knowledge and experience are
not prerequisites for participation.
Anyone with a passion for writing
an ADR need only describe a design
decision to the best of their ability.

These new ways of thinking
about design decisions made sparks
fly between agile and software ar
chitecture. Documenting even only a
single decision provides a strong re
turn on investment. The cost of each
ADR is measured independently as it
is written. Investment is easily justi
fied, even for systems with rapidly
evolving architectures. By these eco
nomics, creating something akin to a
decision view, such as a decision log
depicting the evolving history of the
architecture, is practically free.

In the decade since Nygard’s blog
post, practitioners and researchers
have continued to explore design de
cisions and ADRs. In fact, Nygard’s
take on ADRs is not the only one
out there. One example described
by Olaf Zimmerman emphasizes
not only past decisions but also fu
ture ones yet to be made.9 Thanks
to contributions from Heiko Kozi
olek, Joe Runde, Lukas Wegmann,
Nat Pryce, Oliver Kopp, Paulo Mer
son, Rafael Capilla, Thomas Gold
schmidt, and so many others, there
is now a rich knowledge base of
pragmatic advice available to help
teams use ADRs effectively. Search
the web today, and you’ll find a ro
bust discussion about design deci
sions, templates, and techniques for
describing design rationale.

THE PRAGMATIC DESIGNER

JULY/AUGUST 2022 | IEEE SOFTWARE 93

AD Rs Are the Gateway to
Better Design Practice
It may not have been love at first sight
for agile and architecture, but you
wouldn’t know that seeing them to
gether today. Design decisions were
not invented with ADRs, but ADRs
made design decisions accessible in a
way other software architecture de
sign methods did not. This broad ac
cessibility made it easy for practicing
agile teams to have an active hand in
helping design decisions cross over
from research to practice.

ADRs are quickly becoming a
standard practice across the soft
ware industry. New advice, tem
plates, and variations on ADRs
emerge regularly as the practice is
explored and refined by practicing
software development teams. Of
course, as more teams improve their
design and documentation practice
by writing ADRs, new problems
emerge. Knowledge management is
increasingly a problem with which
software development teams must
contend.10

Just like any partner, ADRs are
not perfect. Unstructured prose is no
toriously difficult to analyze. ADRs
strongly emphasize technical stakehold
ers’ perspectives, especially developers,
at the sacrifice of nontechnical stake
holders. While not requiring particu
lar notations and tooling makes ADRs
easy to use, it also makes ADRs diffi
cult to use well, especially by novices.
From a certain point of view, this is a
feature, not a bug.

A DRs’ greatest strength is
their low barrier to entry.
Since anyone on the team can

write an ADR, everyone who wants
can fill the role of software architect.
That anyone can write ADRs creates

an opportunity to grow software ar
chitects over time. In my experience,
ADRs create a gateway to increasingly
sophisticated architecture design prac
tice. Teams who write AD Rs, it seems,
can’t help but become better software
architects over time. Even if it isn’t
true love, agile and architecture seem
to have finally found a common inter
est upon which a stronger relationship
can be built.

References
1. D. E. Perry and A. L. Wolf, “Founda

tions for the study of software archi

tecture,” ACM SIGSOFT Softw. Eng.

Notes, vol. 17, no. 4, pp. 40–52, Oct.

1992, doi: 10.1145/141874.141884.

2. D. Garlan and M. Shaw, “An intro

duction to software architecture,”

in Proc. Adv. Softw. Eng. Knowl.

Eng., V. Ambriola and G. Tortora,

Eds. Hackensack, NJ, USA: World

Scientific, 1993, vol. I, pp. 1–39, doi:

10.1142/9789812798039_0001.

3. A. Jansen and J. Bosch, “Software

architecture as a set of architectural

design decisions,” in Proc. 5th Work.

IEEE/IFIP Conf. Softw. Architecture

(WICSA’05), 2005, pp. 109–120,

doi: 10.1109/WICSA.2005.61.

4. J. C. Dueñas and R. Capilla, “The

decision view of software archi

tecture,” in Software Architec-

ture, vol. 3527, R. Morrison and F.

Oquendo, Eds. Berlin, Germany:

SpringerVerlag, 2005, pp. 222–230,

doi: 10.1007/11494713_15.

5. U. van Heesch, P. Avgeriou, and R.

Hilliard, “Forces on architecture de

cisions A viewpoint,” in Proc. 2012

Joint Work. IEEE/IFIP Conf. Softw.

Architecture Eur. Conf. Softw. Archi-

tecture, pp. 101–110, doi: 10.1109/

WICSAECSA.212.18.

6. J. Tyree and A. Akerman, “Architec

ture decisions: Demystifying archi

tecture,” IEEE Softw., vol. 22, no.

2, pp. 19–27, Mar./Apr. 2005, doi:

10.1109/MS.2005.27.

7. P. Kruchten, R. Capilla, and J. C.

Dueñas, “The decision view’s role in

software architecture practice,” IEEE

Softw., vol. 26, no. 2, pp. 36–42, Mar./

Apr. 2009, doi: 10.1109/MS.2009.52.

8. M. Nygard. “Documenting architec

ture decisions.” Cognitect. https://

cognitect.com/blog/2011/11/15/

documentingarchitecturedecisions

(Accessed: Apr. 3, 2022).

9. O. Zimmerman, “Making architec

tural knowledge sustainable The Y

approach industrial practice report

and outlook,” in Proc. SATURN

Conf., May 2012. [Online]. Available:

https://resources.sei.cmu.edu/library/

assetview.cfm?assetID=31345

10. G. Hohpe, I. Ozkaya, U. Zdun, and

O. Zimmermann, “The software ar

chitect’s role in the digital age,” IEEE

Softw., vol. 33, no. 6, pp. 30–39, Nov./

Dec. 2016, doi: 10.1109/MS.2016.137.

ABOUT THE AUTHOR

MICHAEL KEELING is a software engineer at Kiavi, Pittsburgh, Penn-

sylvania, 15208, USA, and the author of Design It!: From Programmer to
Software Architect. Contact him at http://neverletdown.net/ or mkeeling@

neverletdown.net.

