
4 IEEE SOFTWARE  |  PUBLISHED BY THE IEEE COMPUTER SOCIETY  0 7 4 0 - 7 4 5 9 / 2 2 © 2 0 2 2 I E E E

IEEE Software  To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement the developers and managers who want to keep up with rapid technology change.

A Paradigm Shift in 
Automating Software 
Engineering Tasks: Bots
Ipek Ozkaya

INCREASING DEVELOPER PRO-
DUCTIVITY and improving software 
quality are enduring challenges in 
software engineering. Addressing these 
challenges has influenced research 
toward improved automation and 
formalisms to realize software devel-
opment tasks, along the way seeking 
for disruptive ways to support soft-
ware developers. The past 55 years 
of software engineering has seen a 
number of paradigm shifts, funda-
mental changes in our underlying as-
sumptions which led to making some 
progress in developing better quality 
software and disruptive improve-
ments. For example, agile and lean 
software development approaches 
challenged our assumptions about 
the way software development tasks 
are orchestrated and communicated. 
Agile and lean software development 
philosophies advocate elimination of 
waste by emphasizing value-added 
tasks and encouraging improved 
understanding of what tasks stay in 

inventory.1 Embracing agile and lean 
software development approaches 
with discipline led software engi-
neers to prioritize software engineer-
ing activities with a bias towards 
visible delivery, most often leading to 
improved software quality and de-
veloper well being when done right. 

In an effort to disrupt the chal-
lenge of improved software quality  
and developer productivity there 
has also been a focus on increasing  
amount of automated support through-
out the software development lifecy-
cle. Many of the automation and tool 
support developed during the previ-
ous decade for model-based software 
engineering,2 continuous integration 
and deployment,3 defect and vul-
nerability analysis,4 automated bug 
fixing,5 modern code review,6 and 
value stream management7 were all 
developed with the goal of improv-
ing software development efficiency 
and quality. The tooling philosophy 
used in all of the aforementioned 
techniques has been to solve a com-
plex, large software development task 
with a dedicated application, which 

then is added onto the software de-
velopment toolchain. In all these 
tools, software engineers are in the 
driver’s seat while their common goal 
is to shift the attention of develop-
ers to the conceptual tasks that com-
puters are not good at and eliminate 
developer error from tasks where com-
puters can help.

Providing increasingly capable 
automated environments to software 
engineers has been and will continue 
to be a top priority in software en-
gineering. Correctness, scale, trust, 
and user overhead are often among 
the top concerns that need to be ad-
dressed. Although improved tools 
have been developed, ranging from 
static code analyzers with fewer false 
positives, to model-based environ-
ments with improved code genera-
tion capabilities, to auto-generated 
tests to give a few examples, progress 
has still been limited. Automation 
efforts are often targeted at improv-
ing what already exists, rather than 
rethinking how automated develop-
ment tasks should work, maybe even 
with a different workflow. Automated 

Digital Object Identifier 10.1109/MS.2022.3167801
Date of current version: 22 August 2022

FROM THE EDITOR 
Editor in Chief: Ipek Ozkaya  
Carnegie Mellon Software Engineering Institute 
ipek.ozkaya@computer.org 



FROM THE EDITOR

 SEPTEMBER/OCTOBER 2022  |  IEEE SOFTWARE  5

software engineering needs a disrup-
tive perspective, a paradigm shift, 
where we challenge the underlying 
assumptions of what needs to be and 
can be effectively automated in soft-
ware development.

Software development bots, along 
with increasing applicability of arti-
ficial intelligence (AI) and machine 
learning (ML) techniques, do offer 
an opportunity for researchers and 
tool vendors to revisit the funda-
mental assumption of what can be 
automated in software engineering 
and how. There is applicability of 
software engineering bots at almost 
every stage of software develop-
ment, holding the promise of assist-
ing software engineers and making 
the process more efficient, effective, 
and enjoyable. Envisioning software 
development tool chain with assis-
tance from bots will find broader 
acceptance by developers and reach 
wider adoption if they are scoped 
correctly. Next generation auto-
mated software engineering, includ-
ing bots, should narrowly focus on 
workflows that target data-intensive 
and tedious activities, which might 
potentially shift handoffs and task 
dependencies in the software devel-
opment lifecycle. Researchers and 
tool developers need to shift their 
perspective to make speedy prog-
ress, initially driven by the follow-
ing goals:

• Think small: Solve-bounded 
tasks, but at scale with improved 
speed and correctness, rather 
than solve complex tasks with 
several dependencies.

• Eliminate tasks: Identify and 
automate the tasks that can be 
mostly removed from the de-
veloper’s responsibilities, rather 
than add new tasks even if au-
tomated or simply replace them 

with automation but still requir-
ing developers to closely monitor.   

• Empower partnership: Enable a 
developer-tool-teaming model, 
rather than developer-tool- 
interaction model.

An underlying message in articulat-
ing these goals is to also remind re-
searchers and tool vendors to talk 
to developers more often to better 
understand challenges and adoption 
models. Empirical studies with de-
velopers have identified that there is 
a tendency to perceive any application 
as a bot and include a large  range 
of characteristics.8,9 There is room 
for a range of approaches and objec-
tives for improving automated tool 
support in software engineering; 
however, development bots when 
scoped around well defined goals 
fill a unique gap and can create leap 
ahead improvements. 

Think Small
Software development bots, commonly 
defined as automated tools that han-
dle tedious tasks, force their creators 
to scope automation goals more nar-
rowly. What constitutes a tedious 
task can have a wide range of char-
acteristics. Tedious tasks are repeti-
tive, numerous, and have bounded 
decision space. These criteria, when 
applied to automation, narrow appli-
cation scenarios of automated tools 
while potentially increasing their 
likelihood of providing correct out-
comes. For example, a static analysis 
tool checks for a range of software 
quality conformance criteria, but 
not all conformance rules have ap-
plicability to the entire codebase or 
have well-defined criteria. Creating 
bots for those repetitive, numerous, 
and well-defined conformance viola-
tions and integrating them into the 
development flow as default checkers 

CONTACT 
US

AUTHORS

For detailed information on submitting 
articles, visit the “Write for Us” section at 
www.computer.org/software

LETTERS TO THE EDITOR

Send letters to software@computer.org

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/subscribe

SUBSCRIPTION 
CHANGE OF ADDRESS

address.change@ieee.org 
(please specify IEEE Software.)

MEMBERSHIP 
CHANGE OF ADDRESS

member.services@ieee.org

MISSING 
OR DAMAGED COPIES

contactcenter@ieee.org

REPRINT PERMISSION

IEEE utilizes Rightslink for permissions 
requests. For more information, visit www.
ieee.org/publications/rights/rights-link.html



FROM THE EDITOR

6 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

improves achieving just-in time 
code corretness. The ability to 
provide tool support becomes 
a more tractable problem as re-
sponsibilities shift, where tedious 
checks are provided as bots and 
the remaining tasks can be ad-
dressed with different techniques, 
including automation but not 
limited to.

The repetitive, numerous, and 
bounded decision-space criteria 
provide opportunities for AI- and 
ML-based approaches to be more 
successful. Repetitive and numer-
ous tasks also tend to have more 
data, which can enable develop-
ment of AI assistants. 

Most developers do not enjoy 
repetitive tasks at scale due to 
their lack of creativity in task ex-
ecution. However, decomposing 
complex tasks into smaller ones 
that are tedious in nature can 
provide more opportunities of de-
veloping impactful automation. 
For example, software evolution 
and refactoring are complex tasks 
with a lot of decisions involved, 
however, enumerating dependen-
cies and categorizing them are 
not—these tasks are also com-
mon to many other software de-
velopment activities.10 In this new 
paradigm, automation becomes a 
quest for rethinking software de-
velopment as a series of tedious 
and common tasks and automat-
ing them, rather than mimicking 
the complicated developer tasks 
with automation.

Eliminate Tasks
Incorporating bots and AI-based de-
veloper-support tools need to also 
include envisioning more effective 
workflows for developers, where 
tedious tasks are offloaded from  
the developer’s responsibilities. 

For example, improved real-time 
assistance in code-quality confor-
mance can reduce reliance on the 
added static code analysis checks 
during testing and deployment, im-
proving the effort balance of local 
conformance analysis versus anal-
ysis of system-wide, cross-cutting, 
and harder-to-conduct architectural 
quality and runtime concerns. To-
day, system-wide analysis is often an 
activity which requires time consum-
ing manual intervention despite tool 
support. With improved testing bots, 
software engineers may not need to 
test for certain classes of bugs when 
AI-augmented bug fixing becomes a 
trusted service at scale.

Can automation be scoped to shift 
software development tasks from de-
velopers to tools? Can developers 
and users trust systems supported 
by such automation? Re-envisioning 
automation as small chunks of te-
dious tasks can enable improving 
trust and developer task overhead 
as well. Narrowly scoped tasks that 
follow repetitive, numerous, and 
well-defined decision-space crite-
ria are often easier to validate due 
to ability to sketch decision options 
supported by data. Trust will be 
built as automation not only sup-
ports developers but surpasses their 
ability to achieve the capabilities of 
being able to resolve tasks better 
and faster than humans, and with-
out errors due to cognitive decline. 
As the capabilities of these narrowly 
scoped services increase, they also 
will shift responsibility from de-
velopers to the tools. If each bot, 
automated service, is added as yet 
another new tool to the develop-
ment toolchains, the places where 
developers need to integrate their 
development data will increase, 
complicating efforts, only with au-
tomation. Achieving success in a 

EDITORIAL 
STAFF
IEEE SOFTWARE STAFF 
Managing Editor: Jessica Welsh, j.welsh@ieee.org
Cover Design: Andrew Baker
Peer Review Administrator: software@computer.org
Publications Staff Editor: Cathy Martin
Periodicals Operations Project Specialist:  
Christine Shaughnessy
Content Quality Assurance Manager: Jennifer Carruth
Publications Portfolio Manager: Carrie Clark
Publisher: Robin Baldwin
IEEE Computer Society Executive Director:  
Melissa Russell
Senior Advertising Coordinator: Debbie Sims

CS PUBLICATIONS BOARD
David Ebert (VP of Publications), Terry Benzel, Greg 
Byrd, Chuck Hansen, Hui Lei, Shixia Liu, Sarah Malik,  
San Murugesan, Timothy Pinkston; Ex officio:  
Robin Baldwin, William Gropp, Melissa Russell

CS MAGAZINE OPERATIONS 
COMMITTEE
San Murugesan (MOC Chair), Lorena Barba,  
Irena Bojanova, Longbing Cao, Shu-Ching Chen, 
Gerardo Con Diaz, Lizy K. John, Marc Langheinrich, 
Torsten Möller, Ipek Ozkaya, George Pallis,  
Sean Peisert, Jeffrey Voas 

IEEE PUBLICATIONS OPERATIONS
Senior Director, Publishing Operations: Dawn 
M. Melley
Director, Editorial Services: Kevin Lisankie
Director, Production Services: Peter M. Tuohy
Associate Director, Information Conversion and 
Editorial Support: Neelam Khinvasara
Senior Manager, Journals Production: Patrick Kempf
Senior Art Director: Janet Dudar

Editorial: All submissions are subject to editing for clarity, 
style, and space. Unless otherwise stated, bylined articles 
and departments, as well as product and service descriptions, 
reflect the author’s or firm’s opinion. Inclusion in IEEE Software 
does not necessarily constitute endorsement by IEEE or the 
IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s Web-based 
system, ScholarOne, at http://mc.manuscriptcentral.com/ 
sw-cs. Be sure to select the right manuscript type when 
submitting. For complete submission information, please visit 
the Author Information menu item under “Write for Us” on our 
website: www.computer.org/software.

IEEE prohibits discrimination, harassment and bullying:  
For more information, visit www.ieee.org 
/web/aboutus/whatis/policies/p9-26.html.

Digital Object Identifier 10.1109/MS.2022.3154846



FROM THE EDITOR

 SEPTEMBER/OCTOBER 2022  |  IEEE SOFTWARE  7

new automated software engineer-
ing paradigm will necessitate seam-
less integration with development 
environments and empowering de-
veloper-tool partnership. 

Empower Partnership
When narrowly scoped tasks are 
offloaded to tools as services, mostly 
AI-based bots, both the developers 
and these AI-based bots as assis-
tants will need to have a supervisory 
role. Developers need to guide and 
consequently improve bots’ capabili-
ties. And AI-based bots eventually 
will take on a supervisory role by 
providing real-time feedback and, in 
time, demonstrating repeated mis-
takes to developers. There will al-
ways be some developers on a team 
whom you trust more than others, 
perhaps due to experience, skill 
sets, or demonstrated performance. 
Bots as AI-assisted development 

workflows will trigger the need to 
think these tools as “partners” in 
the same way. The partnership de-
velopers and automated assistants 
will engage in as part of an over-
all team that produces software of 
sufficient quality will range from 
complete delegation to software de-
velopment bots to bots providing 
feedback and improving based on 
developer input.

These interactions need to be en-
visioned as developer-tool teaming 
rather than developer-tool interac-
tion, although there are relevant 
scenarios for both. The trust in such 
automated solutions, whatever their 
form, boils down to a risk assess-
ment. What’s the probability that the 
result is correct? What is the over-
head and complexity involved in de-
tecting a wrong decision? What’s the 
impact if it’s wrong, and how can 
the associated risks be dramatically 

reduced if the bot makes the wrong 
decision? Developers will initially 
have to take the driver’s seat and ini-
tial progress will be slow, however, 
advances in answering such ques-
tions will accelerate progress.

We will likely see a head-
spinning pace of bots  
and AI-augmented tools 

in the next decade to support soft-
ware development, driven not only by 
research but also by their rapid inte-
gration into existing developer tools. 
For example, the release of GitHub 
Copilot already triggered studies 
which concluded that, although more 
lines of code may be produced by 
such AI-assisted automation, poten-
tially implying increased productiv-
ity, the quality may not necessarily 
be always as expected.11 This balance 
will improve in time.

A “REQUIREMENTS” COLUMN UPDATE

Change is the only constant! At IEEE Software, we try hard 
to embrace change and thrive to make it part of our suc-
cess, even if at times it is hard to accept. Sarah Gregory, 
who since 2017 has successfully led one of our flagship 
columns, “Requirements,” has decided to step down. 
 Sarah, as a requirements and systems engineer at Intel 
Corporation, has shared her insights and experiences 
through her 21 articles published in IEEE Software. She 
helped connect research in requirements engineering to 
practice based on her experience as well as inviting others 
to share their experiences. We are grateful for her service 
and thank her for her contributions. 

Starting with the November/December 2022 issue, 
Markus Borg, a principal researcher at CodeScene, will be  
taking the helm of the “Requirements” column. Previously, 
Markus was a senior researcher with RISE Research  

Institutes of Sweden. He is also an adjunct lecturer at 
Lund University from where he obtained a Ph.D. in 2015. 
His research interests include requirements engineering, 
software testing, verification and validation, and safety 
engineering. Currently, Markus’ research primarily targets 
quality assurance of applied artificial intelligence in the 
automotive domain. Before embarking on the career in re-
search, Markus worked at ABB as a software engineer in 
process automation. Markus serves on the editorial board 
of Empirical Software Engineering and is a board member 
of Swedsoft, an independent nonprofit organization with 
the mission to increase the competitiveness of Swedish 
software. He is an IEEE Member.  He is especially looking 
forward to bringing his testing and AI perspectives into 
how to improve requirements engineering practices.  
Welcome aboard, Markus!



FROM THE EDITOR

8 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

The assistance provided by auto-
mated tools, including in the form 
of bots, is not new in software en-
gineering. The goal of creating a 
collaboration model that improves 
transparency of the development 
workflow through connecting tools, 
processes, and automation, is also 
now clearly associated with bots.12 
Some readers may rightly ask, “Where 
is the paradigm shift?” The para-
digm shift is the opportunity that 
bot- and AI-augmented automation 
provides in challenging how we scope 
automation. We need to embrace 
the tediousness of software develop-
ment as an opportunity. We need to 
seek all those tedious tasks hidden in 
the complex design, search, tradeoff 
analysis, verification and validation, 
and many other decision-making ac-
tivities of developers. In doing so we 
open the door to a new reality in au-
tomated software development where 
trust is easier to build because tasks 
are easier to validate and developers 
have different tasks because the mun-
dane ones are offloaded to the tools. 
Regardless, developers have the control 
in the partnership to guide improve-
ment of the tools.

Repeat after me! Software devel-
opment is composed of many tedious 
activities with countless opportu-
nities for trustworthy and reliable 
automation. 

References
1. D. Reinertson, The Principles of Prod-

uct Development Flow: Second Gen-

eration Lean Product Development. 

Celeritas Publishing, 2019. 

2. P. Lago, I. Malavolta, H. Muccini, 

P. Pelliccione, and A. Tang, “The 

road ahead for architectural lan-

guages,” IEEE Softw., vol. 32, no. 1, 

pp. 98–105, Jan./Feb. 2015. [Online]. 

Available: https://ieeexplore.ieee.org/

abstract/document/6756703, doi: 

10.1109/MS.2014.28.

3. A. Rahman, A. Partho, D. Meder 

and L. Williams, “Which factors  

influence practitioners’ usage of 

build automation tools?” in Proc. 

IEEE/ACM 3rd Int. Workshop 

Rapid Continuous Softw. Eng. 

(RCoSE), 2017, pp. 20–26, doi: 

10.1109/RCoSE.2017.8. 

4. P. Morrison, R. Pandita, Z. Xiao, R. 

Chillarege, and L. A. Williams, “Are 

vulnerabilities discovered and re-

solved like other defects?” Empirical 

Softw. Eng., vol. 23, no. 3, pp. 1383–

1421, Jun. 2018, doi: 10.1007/

s10664-017-9541-1.

5. C. Le Goues, M. Pradel, and A. 

Roychoudhury, “Automated program 

repair,” Commun. ACM, vol. 62,  

no. 12, pp. 56–65, 2019. [Online]. 

Available: https://cacm.acm.org/ 

magazines/2019/12/241055 

-automated-program-repair/fulltext, 

doi: 10.1145/3318162.

6. C. Sadowski, E. Söderberg,  

L. Church, M. Sipko, and  

A. Bacchelli, “Modern code review: 

A case study at google,” in Proc. 

2018 IEEE/ACM 40th Int. Conf. 

Softw. Eng., Softw. Eng. Practice 

Track (ICSE-SEIP), pp. 181–190, 

doi: 10.1145/3183519.3183525.

7. G. C. Murphy, M. Kersten, R. Elves, 

and N. Bryan, “Enabling productive 

software development by improving 

information flow,” in Rethinking 

Productivity in Software Engineer-

ing, S. Caitlin and Z. Thomas, Eds. 

Berkeley, CA, USA: Apress, 2019, pp. 

281–292.

8. L. Erlenhov, F. Gomes de Oliveira 

Neto, and P. Leitner, “An em-

pirical study of bots in software 

development: Characteristics and 

challenges from a practitioner’s per-

spective,” in Proc. 28th ACM Joint 

Meeting on Eur. Softw. Eng. Conf. 

Symp. Found. Softw. Eng., 2020, 

pp. 445–455, doi: 10.1145/3368089. 

3409680. 

9. C. Lebeuf, A. Zagalsky, M. Foucault, 

and M. Storey, “Defining and clas-

sifying software bots: A faceted tax-

onomy,” in Proc. 1st Int. Workshop 

Bots Softw. Eng., 2019, pp. 1–6, doi: 

10.1109/BotSE.2019.00008.

10. J. Ivers, C. Seifried, and I. Ozkaya, 

“Untangling the knot: Enabling 

architecture evolution with search-

based refactoring,” in Proc. 19th 

Int. Conf. Softw. Architecture, 

2022, pp. 101–111, doi: 10.1109/

ICSA53651.2022.00018.

11. S. Imai, “Is GitHub copilot a substi-

tute for human pair-programming? 

An empirical study,” in Proc.  

2022 IEEE/ACM 44th Int.  

Conf. Softw. Eng., Companion  

(ICSE-Companion), pp. 319–321,  

doi: 10.1109/ICSE-Companion 

55297.2022.9793778.

12. M. A. Storey and A. Zagalsky, “Dis-

rupting developer productivity one 

bot at a time,” in Proc. 2016 24th 

ACM SIGSOFT Int. Symp. Found. 

Softw. Eng., pp. 928–931, doi: 

10.1145/2950290.2983989.


