
FOCUS: GUEST EDITORS’ INTRODUCTION

28 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 2 © 2 0 2 2 I E E E

The Present and Future
of Bots in Software
Engineering
Emad Shihab, Concordia University

Stefan Wagner, University of Stuttgart

Marco A. Gerosa, Northern Arizona University and University of São Paulo

Mairieli Wessel, Radboud University

Jordi Cabot, ICREA

FOCUS: GUEST EDITORS’ INTRODUCTION

Digital Object Identifier 10.1109/MS.2022.3176864
Date of current version: 22 August 2022

28 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 2 © 2 0 2 2 I E E E

SEPTEMBER/OCTOBER 2022 | IEEE SOFTWARE 29

SOFTWARE ENGINEERING BOTS
are applications that are able to react
to external stimuli, such as events trig-
gered by tools and messages posted
by users, and run automated tasks in
response, working as an interface be-
tween users and services. Bots often
include conversational capabilities
to interact with end users through
textual messages (in chatbots) and
speech (in voicebots) in the same
communication channels as their hu-
man counterparts. Bots can support
technical and social activities in soft-
ware engineering, including commu-
nication and decision making.

We are witnessing a massive adop-
tion of bots in a variety of domains,
including e-commerce, customer ser-
vice, and education. Software de-
velopment is no exception.1,2 Given
the essential complexity of software
projects and the large community of
people around them (stakeholders,
designers, developers and, let’s not
forget, end users), there are plenty
of opportunities for bots to jump in
and tame this complexity by (semi)
automating repetitive tasks. We of-
ten see bots working on software
repositories, e.g., to manage pull re-
quests; acting as Q&A bots, e.g., for
information retrieval; and integrated
in software development environ-
ments, e.g., automating bug repair.3

Automation is even more relevant
for open source projects, which typi-
cally face sustainability issues. The
adoption of bots may help relieve
some responsibilities of open source
maintainers and allow them to focus
on the most critical tasks, benefiting
the long-term health of open source.
In open source (and inner-source) proj-
ects, bots can leverage the public avail-
ability of software assets, including
source code, discussions, issues, and
comments, to target more signifi-
cant contributions. This special issue

offers a perspective on the current
role of bots in software engineering.

Overview of Articles in
This Special Issue
Zimmermann et al., in their article
“The Advantages of Maintaining a
Multitask, Project-Specific Bot: An
Experience Report,” report their ex-
perience developing and maintaining

a custom bot, Coq bot, which was
built to support the Coq team (with
circa 40 developers and hundreds
of contributors). The bot was ini-
tially developed to automate the syn-
chronization between pull requests
opened on a GitHub repository and
branches on a GitLab mirror. Based
on user feedback, the bot evolved to
execute other tasks, including merg-
ing a pull request, keeping track of
pull requests with merge conflicts,
and backporting pull requests. The
authors note that relying on famil-
iar technology and straightforward
and extensible architecture choices
can ease the maintenance of a bot by
facilitating the onboarding of new
bot maintainers.

The adoption and characteriza-
tion of bots in open source projects
is the topic of “From Specialized Me-
chanics to Project Butlers: The Usage
of Bots in Open Source Software
Development,” by Wang, Wang, and
Redmiles. In this article, the authors
sample the top 1,000 most popular

(using the number of stars as a popu-
larity metric) software development
repositories on GitHub and study
whether projects employed software
bots and, if so, what types of tasks
those bots were helping with. As
part of their conclusions, they high-
light that over 60% of open source
projects do use bots, even though
these bots often focus on automating

simple tasks. The authors note that
these bots are typically rule based,
reacting to certain events they have
subscribed to, and show very limited
interactive capabilities.

Cogo and Hassan focus, in “Un-
derstanding the Customization of
Dependency Bots: The Case of De-
pendabot,” on a popular bot used
on GitHub: Dependabot. This bot is
used for checking and updating de-
pendencies to libraries used in a proj-
ect. The authors analyze almost 500
projects that use Dependabot and
have corresponding configuration
files. They conclude that customizing
a bot’s behavior can help in reducing
noise but might also limit the bot’s
usefulness, as certain features might
stop working. Therefore, designers
of bots should be careful in consid-
ering the tradeoff between allowing
bot users to configure a bot and the
interaction with features that the
bot offers. In general, configurations
should be as simple as possible since
users interact with many different

We are witnessing a massive
adoption of bots in a variety of

domains, including e-commerce,
customer service, and education.

30 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

bots and therefore are not able to
spend significant effort on maintain-
ing their configurations. Cogo and
Hassan even suggest that there could
be sharing platforms for distributing
tailored configuration files for cer-
tain project characteristics.

Markusse et al. study the use
of benchmarking bots in their ar-
ticle, “Using Benchmarking Bots
for Continuous Performance As-
sessment.” The authors show that
bots are rarely used to continuously
benchmark performance but that
the situation is changing, with the
newly introduced GitHub Actions.
Based on their findings, the authors

encourage developers of perfor-
mance-sensitive projects to consider
adopting bot-based benchmarking.
Specifically, adopting such bots can
help with performance testing, the
detection of performance regres-
sions, and providing confidence to
maintainers about complex changes.

Golzadeh et al. make a call for
better bot identification techniques
in their article, “Recognizing Bot
Activity in Collaborative Software
Development.” The authors show
that bots are among the most ac-
tive accounts in open source GitHub
projects, yet they are rarely well
identified. This widespread presence
of bots can impact certain analysis
techniques that give credit based on
activity. Hence, the authors argue

that although current manual tech-
niques tend to be the best option for
maintainers, future work should ex-
amine the use of machine learning
and artificial intelligence to detect
bot activity.

Future Challenges
The growth in popularity and con-
tribution of bots is undeniable. The
number of libraries, platforms, and
reusable bots keeps mounting up.
Nevertheless, to fully unleash the po-
tential of bots in software engineer-
ing, we would like to draw attention
to several technical and socioeco-
nomic open challenges. Regarding

technical challenges, we need better
systems to facilitate the coordina-
tion and collaboration of bots in the
same project, as right now, each bot
behaves in an independent way, and
bots can have conflicting actions.
This challenge requires defining bot-
specific coordination and integra-
tion policies.

The quality evaluation of bots is
another key area. Generally, when
bots include conversational capa-
bilities, bot testing implies redefin-
ing many of the classical evaluation
concepts, as we need to assess the
behavioral part of a bot, the conver-
sational component, and the combi-
nation of the two.4,5 Finally, security
and privacy also pose relevant chal-
lenges. Since we must be able to trust

the bots we add to our projects, we
need techniques that ensure that bots
will not perform malicious activities
and leak data and that they request
the bare minimum permissions.

Beyond technical aspects, we
need to better understand users’ per-
ception of bots and how to optimize
human–bot collaboration. Bots will
need to get better communication
and cognitive skills. For instance,
when interacting with users, bots
should be able to show empathy and
react differently depending on the
result of their sentiment analysis of
the conversation they are having.
Learning and mimicking the specific
idiosyncrasy of a project (including
its vocabulary and natural language
use) would increase bots’ chances of
being accepted. At the same time,
bots could help in promoting social
diversity in a project. As an example,
they could identify and better sup-
port contributions from community
minorities. Finally, they should be
able to explain their behavior to im-
prove their trustworthiness.

The economic impact of bots in a
project also deserves special attention.
We do not have good economic mod-
els to evaluate the return on invest-
ment of adopting a certain bot. If we
could estimate the value of a bot for
a project, it would be much easier to
have rational discussions with project
owners, considering the cost–benefit
analysis of integrating the bot. Even if
some bots are released as open source
software, there may be costs to adopt
them. For example, developers often
disregard the cost of learning how to
use a bot properly.

So far, we have mostly discussed
the impact of bots on software engi-
neering. But since bots are software
components themselves, bot develop-
ment could and should benefit from
well-grounded software engineering

Beyond technical aspects, we
need to better understand users’

perception of bots and how to
optimize human–bot collaboration.

SEPTEMBER/OCTOBER 2022 | IEEE SOFTWARE 31

practices. What the best practices
are for this specific type of software
component remains to be seen. For
example, it is still unclear how bots,
especially collaborative and cognitive
bots, will be tested. Bots are becom-
ing smarter, and we know that the
creation of smart software applica-
tions poses a specific set of additional
challenges.6 We hope the community
can benefit from this special issue’s ar-
ticles and keep working on innovating
in this increasingly important field.

References
1. M. D. Storey and A. Zagalsky, “Dis-

rupting developer productivity one

bot at a time,” in Proc. 2016 24th

ACM SIGSOFT Int. Symp. Found.

Softw. Eng., (FSE), T. Zimmermann,

J. Cleland-Huang, and Z. Su, Eds.

New York, NY, USA: Association for

Computing Machinery, pp. 928–931,

doi: 10.1145/2950290.2983989.

2. L. Erlenhov, F. G. de Oliveira Neto,

and P. Leitner, “An empirical study

of bots in software development:

Characteristics and challenges from

a practitioner’s perspective,” in

Proc. 28th ACM Joint Eur. Softw.

Eng. Conf. Symp. Found. Softw.

Eng., Virtual Event, USA (ESEC/

FSE ’20), P. Devanbu, M. B. Cohen,

and T. Zimmermann, Eds. New

York, NY, USA: Association

for Computing Machinery,

Nov. 8–13, 2020, pp. 445–455, doi:

10.1145/3368089.3409680.

3. S. Santhanam, T. Hecking, A.

Schreiber, and S. Wagner, “Bots in

software engineering: A systematic

mapping study,” Peer J Comput.

Sci., vol. 8, p. e866, Feb. 2022, doi:

10.7717/peerj-cs.866.

4. V. Riccio, G. Jahangirova, A. Stocco,

N. Humbatova, M. Weiss, and P.

Tonella, “Testing machine learning

based systems: A systematic map-

ping,” Empirical Softw. Eng., vol.

25, no. 6, pp. 5193–5254, 2020, doi:

10.1007/s10664-020-09881-0.

5. J. Cabot, L. Burgueño, R. Clarisó,

G. Daniel, J. Perianez-Pascual, and

R. Rodríguez-Echeverría, “Test-

ing challenges for NLP-intensive

bots,” in Proc. 3rd IEEE/ACM

Int. Workshop Bots Softw. Eng.

(BotSE), Madrid, Spain, Jun. 4,

2021, pp. 31–34, doi: 10.1109/

BotSE52550.2021.00014.

6. I. Ozkaya, “What is really dif-

ferent in engineering AI-enabled

systems?” IEEE Softw., vol. 37,

no. 4, pp. 3–6, 2020, doi: 10.1109/

MS.2020.2993662.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

EMAD SHIHAB is a full professor and research chair at Con-

cordia University, Montréal, H3G 1M8, Canada, where he leads

the Data-Driven Analysis of Software lab. Contact him at emad.

shihab@concordia.ca or https://das.encs.concordia.ca.

STEFAN WAGNER is a full professor of empirical software

engineering and the director of the Institute of Software Engi-

neering, University of Stuttgart, Stuttgart, 70569, Germany.

Contact him at stefan.wagner@iste.uni-stuttgart.de.

MARCO A. GEROSA is a full professor at Northern Arizona

University, Flagstaff, Arizona, 86011, USA, and a Ph.D. advi-

sor at the University of São Paulo, São Paulo, 05508-220,

Brazil. Contact him at marco.gerosa@nau.edu or http://www.

marcoagerosa.com.

MAIRIELI WESSEL is an assistant professor at Radboud

University, Nijmegen, 6525EC, The Netherlands. Contact her at

mairieli.wessel@ru.nl.

JORDI CABOT is an ICREA research professor at the Open

University of Catalonia, Barcelona, E08035, Spain, where he

leads the Software and Systems Modeling Lab. Contact him at

jordi.cabot@icrea.cat or https://jordicabot.com.

