
SOFTWARE
ENGINEERING RADIO

Editor: Robert Blumen
Katana Graph
robert@robertblumen.com

0 7 4 0 - 7 4 5 9 / 2 2 © 2 0 2 2 I E E E SEPTEMBER/OCTOBER 2022 | IEEE SOFTWARE 113

Robert Blumen: What is Postgres?

Bruce Momjian: Michael Stonebreaker,
who designed the early relational da-
tabase system Ingress in the 1970s,
designed Postgres in 1986 as the
next generation of relational sys-
tems. He thought that extensibil-
ity for databases—being able to add
new data types, indexing methods,

aggregates, castes, and stored pro-
cedure languages—was critical.
Extensibility has allowed Postgres
to move seamlessly into data ware-
house tasks, storing JSON, doing
full-text searches, doing geographic
information systems (GISs), and
handling the data ingestion we need
today—from the Internet of Things,
web apps, mobile apps, telemetry
data, GIS data, and social media
text. This extensibility is fueling
Postgres’s popularity.

Why is isolation important for
databases?

Shared, volatile data are hard for
applications to work with. Isola-
tion makes it easy for program-
mers to interact with the database
and basically say, “My changes are
not going to be visible until [some
time], and I’m not going to see
other people’s changes while I’m
working.” By giving as static a view
of the data as possible, isolation

Postgres Server
Developer Bruce Momjian
Discusses Multiversion
Concurrency Control
 Robert Blumen

From the Editor

Postgres server developer Bruce Momjian discusses multiversion concurrency

control (MVCC) in the Postgres database. I discuss with Momjian the isolation

requirement in database transactions; locking; MVCC; how Postgres manages mul-

tiple versions of a row; snapshots; copy-on-write and snapshots; visibility; database

transaction IDs; how IDs, snapshots, and versions interact; locking when there are

multiple writers; how MVCC was added to Postgres; and how to clean up unused

space. We provide summary excerpts below; to hear the full interview, visit http://

www.se-radio.net or access our archives via RSS at http://feeds.feedburner.com/

se-radio.—Robert Blumen

Digital Object Identifier 10.1109/MS.2022.3179865
Date of current version: 22 August 2022

SOFTWARE ENGINEERING RADIO

114 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

allows the writing of a cleaner ap-
plication, pushing complexity into
the database where it’s easier to
deal with.

How can locking achieve isolation,
and what are the disadvantages in a
multiuser system?

When you lock anyone else out of
the database while you use it, con-
currency is poor. During the 1970s
to 1990s, the approach was to make

locking granular, such as table-,
page-, or row-level granularity. But
this created overhead and did not
solve the concurrency problem: it
just pushed concurrency into smaller
pieces. It also led to lock escalation—
you would try to be as granular as
possible, but as your job got bigger,
locking spilled into other places.

What is multiversion concurrency
control (MVCC), and how does it
compare with locking?

In MVCC, you create multiple ver-
sions of individual rows. This prevents
a reader from coming in while some-
body else is writing. If we do an up-
date, instead of overwriting that row,
we create a new version of the row
with the new data and leave the old
version in place. All readers can effec-
tively read the old version of the row
and see a consistent copy of the da-
tabase. Concurrently, another newer
version of the row is created that en-
ables consistent snapshots for all data-
base users and reduces the blocking of
readers by writers—you always have
one copy of the row that is visible to
anyone doing a read operation.

What is a snapshot?

It’s a record that’s created when you
start a query. Once you take the snap-
shot, the things recorded in it allow
you to distinguish which of the mul-
tiple versions of a row should be vis-
ible. In a row that has been updated
five times in recent history, the snap-
shot identifies which of those five
rows is visible to a transaction. This
concept is not unique to Postgres. It
basically says that at the time you
start your query or transaction, this
is the time slot or instant at which
you see the data. Even if inserts and
deletes are happening, the snapshot
ties you to a specific, consistent view
of the database for the entire duration
of your query.

The snapshot should guarantee
that you see all transactions that have
committed before your snapshot. Any
committed work that happened in the
past will be visible to you. And as a
corollary, any work that is in prog-
ress and not committed, or any work
that starts after the snapshot is taken,
will not be visible.

Different users see the database
differently depending on when their

SOFTWARE ENGINEERING RADIO

Visit www.se-radio.net to listen to these and other insightful hour-long podcasts.

RECENT EPISODES
• 515—Senior software engineer, instructor, and blogger Swizec Teller

spoke with host Brijesh Ammanath about the “senior mindset.” This
episode offers insights into what it takes to become a senior engineer.

• 514—Host Priyanka Raghavan spoke with Vandana Verma, who heads
security relations at Snyk, about the Open Web Application Security
Project (OWASP) Top 10.

• 511—Host Jeremy Jung talks with Ant Wilson of Supabase about build-
ing an open source alternative to Firebase with PostgreSQL.

UPCOMING EPISODES
• Brian Okken discusses testing Python with host Nikhil Krishna.
• Host Felienne talks code generators with Jordan Alder.
• Host Gavin Henry talks to Karl Wiegers about software engineering

lessons.

If we do an update, instead of
overwriting that row, we create a new
version of the row with the new data
and leave the old version in place.

SOFTWARE ENGINEERING RADIO

SEPTEMBER/OCTOBER 2022 | IEEE SOFTWARE 115

query started and when their snap-
shot was taken. We have to guar-
antee that they see a consistent
view of the database even if the
 database is changing. Somebody
who started a transaction before me
or after me may see a different set
of values than I see. To handle the
high-volume, high-concurrency, and
high-write-volume requirements of
a database, what I see as visible and
what some other user sees as visible
may be different. Different people
who do things at different times see
actual different realities.

What if there are two transactions
trying to write the same rows?

Readers don’t block writers or other
readers, but writers have to block
writers. When you’re updating a row
or inserting a row with a unique key
that may already exist, you have to
know if the previous transaction
completes or not when you do the up-
date, so you update the most recent
version of this row. We talked about

isolation, but isolation doesn’t apply
when you’re trying to update another
row because you effectively have to
see the newest version of that row. We
can’t have somebody updating an old
version of that row while somebody
is creating a new version of that row
because then you’d get anomalies. So
when you try and update a row that’s
already being updated or try to insert
a row with a unique key where an-
other row has already been inserted
but not committed yet, we have to
stop the insert or update until that
transaction either commits or aborts.
And once that transaction commits or
aborts, we then get a lock on it. And

then we can decide if our update or
our insert should continue.

How does cleanup work?

Pruning is a lightweight operation that
can happen at any time. It removes
old versions of the row that nobody
can see any longer. But there are cases
that don’t work that way. We have an
autovacuum process that continually
wakes up every minute and looks to
see what tables potentially have dead
rows in them and what indexes need to
be cleaned up, and it just runs at a low
priority in the background, freeing up
that space and making it available.

ABOUT THE AUTHOR

ROBERT BLUMEN is with Katana Graph. He is the editor of the Software
Engineering Radio podcast. Contact him at robert.blumen@gmail.com.

IEEE So� ware (ISSN 0740-7459) is published bimonthly by the IEEE
Computer Society. IEEE headquarters: � ree Park Ave., 17th Floor, New
York, NY 10016-5997. IEEE Computer Society Publications O� ce: 10662
Los Vaqueros Cir., Los Alamitos, CA 90720; +1 714 821 8380; fax +1 714
821 4010. IEEE Computer Society headquarters: 2001 L St., Ste. 700, Wash-
ington, DC 20036. Subscribe to IEEE So� ware by visiting www.computer.
org/so� ware.

Postmaster: Send undelivered copies and address changes to IEEE So� -
ware, Membership Processing Dept., IEEE Service Center, 445 Hoes Lane,
Piscataway, NJ 08854-4141. Periodicals Postage Paid at New York, NY, and
at additional mailing o� ces. Canadian GST #125634188. Canada Post
Publications Mail Agreement Number 40013885. Return undeliverable
Canadian addresses to PO Box 122, Niagara Falls, ON L2E 6S8, Canada.
Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of
this material is permitted without fee, provided such use: 1) is not made
for pro� t; 2) includes this notice and a full citation to the original work on
the � rst page of the copy; and 3) does not imply IEEE endorsement of any

third-party products or services. Authors and their companies are per-
mitted to post the accepted version of IEEE-copyrighted material on their
own webservers without permission, provided that the IEEE copyright
notice and a full citation to the original work appear on the � rst screen of
the posted copy. An accepted manuscript is a version that has been revised
by the author to incorporate review suggestions, but not the published
version with copyediting, proofreading, and formatting added by IEEE.
For more information, please go to: http://www.ieee.org/publications
_standards/publications/rights/paperversionpolicy.html. Permission to
reprint/republish this material for commercial, advertising, or pro-
motional purposes or for creating new collective works for resale or
redistribution must be obtained from IEEE by writing to the IEEE
Intellectual Property Rights Office, 445 Hoes Lane, Piscataway, NJ
08854-4141 or pubs-permissions@ieee.org. Copyright © 2022 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the
source. Libraries are permitted to photocopy for private use of patrons,
provided the per-copy fee is paid through the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.

