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Robert Blumen: What is Postgres?

Bruce Momjian: Michael Stonebreaker, 
who designed the early relational da-
tabase system Ingress in the 1970s, 
designed Postgres in 1986 as the 
next generation of relational sys-
tems. He thought that extensibil-
ity for databases—being able to add 
new data types, indexing methods, 

aggregates, castes, and stored pro-
cedure languages—was critical. 
Extensibility has allowed Postgres 
to move seamlessly into data ware-
house tasks, storing JSON, doing 
full-text searches, doing geographic 
information systems (GISs), and 
handling the data ingestion we need 
today—from the Internet of Things, 
web apps, mobile apps, telemetry 
data, GIS data, and social media 
text. This extensibility is fueling 
Postgres’s popularity.

Why is isolation important for 
databases?

Shared, volatile data are hard for 
applications to work with. Isola-
tion makes it easy for program-
mers to interact with the database 
and basically say, “My changes are 
not going to be visible until [some 
time], and I’m not going to see 
other people’s changes while I’m 
working.” By giving as static a view 
of the data as possible, isolation 
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allows the writing of a cleaner ap-
plication, pushing complexity into 
the database where it’s easier to 
deal with.

How can locking achieve isolation, 
and what are the disadvantages in a 
multiuser system?

When you lock anyone else out of 
the database while you use it, con-
currency is poor. During the 1970s 
to 1990s, the approach was to make 

locking granular, such as table-, 
page-, or row-level granularity. But 
this created overhead and did not 
solve the concurrency problem: it 
just pushed concurrency into smaller 
pieces. It also led to lock escalation—
you would try to be as granular as 
possible, but as your job got bigger, 
locking spilled into other places.

What is multiversion concurrency 
control (MVCC), and how does it 
compare with locking?

In MVCC, you create multiple ver-
sions of individual rows. This prevents 
a reader from coming in while some-
body else is writing. If we do an up-
date, instead of overwriting that row, 
we create a new version of the row 
with the new data and leave the old 
version in place. All readers can effec-
tively read the old version of the row 
and see a consistent copy of the da-
tabase. Concurrently, another newer 
version of the row is created that en-
ables consistent snapshots for all data-
base users and reduces the blocking of 
readers by writers—you always have 
one copy of the row that is visible to 
anyone doing a read operation.

What is a snapshot?

It’s a record that’s created when you 
start a query. Once you take the snap-
shot, the things recorded in it allow 
you to distinguish which of the mul-
tiple versions of a row should be vis-
ible. In a row that has been updated 
five times in recent history, the snap-
shot identifies which of those five 
rows is visible to a transaction. This 
concept is not unique to Postgres. It 
basically says that at the time you 
start your query or transaction, this 
is the time slot or instant at which 
you see the data. Even if inserts and 
deletes are happening, the snapshot 
ties you to a specific, consistent view 
of the database for the entire duration 
of your query.

The snapshot should guarantee 
that you see all transactions that have 
committed before your snapshot. Any 
committed work that happened in the 
past will be visible to you. And as a 
corollary, any work that is in prog-
ress and not committed, or any work 
that starts after the snapshot is taken, 
will not be visible.

Different users see the  database 
differently depending on when their 
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If we do an update, instead of 
overwriting that row, we create a new 
version of the row with the new data 
and leave the old version in place.
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query started and when their snap-
shot was taken. We have to guar-
antee that they see a consistent 
view of the database even if the 
 database is changing. Somebody 
who started a transaction before me 
or after me may  see a different set 
of values than I see. To handle the 
high-volume, high-concurrency, and 
high-write-volume requirements of 
a database, what I see as visible and 
what some other user sees as visible 
may be different. Different people 
who do things at different times see 
actual different realities.

What if there are two transactions 
trying to write the same rows?

Readers don’t block writers or other 
readers, but writers have to block 
writers. When you’re updating a row 
or inserting a row with a unique key 
that may already exist, you have to 
know if the previous transaction 
completes or not when you do the up-
date, so you update the most recent 
version of this row. We talked about 

isolation, but isolation doesn’t apply 
when you’re trying to update another 
row because you effectively have to 
see the newest version of that row. We 
can’t have somebody updating an old 
version of that row while somebody 
is creating a new version of that row 
because then you’d get anomalies. So 
when you try and update a row that’s 
already being updated or try to insert 
a row with a unique key where an-
other row has already been inserted 
but not committed yet, we have to 
stop the insert or update until that 
transaction either commits or aborts. 
And once that transaction commits or 
aborts, we then get a lock on it. And 

then we can decide if our update or 
our insert should continue.

How does cleanup work?

Pruning is a lightweight operation that 
can happen at any time. It removes 
old versions  of the row that nobody 
can see any longer. But there are cases 
that don’t work that way. We have an 
autovacuum process that continually 
wakes up every minute and looks to 
see what tables potentially have dead 
rows in them and what indexes need to 
be cleaned up, and it just runs at a low 
priority in the background, freeing up 
that space and making it available. 
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