
0 7 4 0 - 7 4 5 9 / 2 2 © 2 0 2 2 I E E E JANUARY/FEBRUARY 2023 | IEEE SOFTWARE 23

WE LEAD A mixed-methods re-
search team at Google that seeks
to understand what makes engi-
neers productive and happy. We
explore the impact of different
engineering tools, infrastructure,
processes, and best practices on
engineering productivity.

Introduction
As part of our job, we regularly meet
with and advise Google leaders on
what changes they should make (or
should not make) to our development
tools and processes. These leaders
frequently wish to understand—in

simple terms—whether productivity
is up, down, or stable. They want to
know whether their particular tool
is making an impact (for example,
“Is my framework making develop-
ers more productive?”). They hope to
see a single metric that clearly goes
up or down (and they want “up”
and “down” to map unambiguously
to “good” and “bad”). Alas, we fre-
quently disappoint them, not because
of the estimated effect of their sys-
tem, but because of the uncertainty
around such effects; uncertainty
that comes from the fact that mea-
suring developer productivity is in-
herently difficult.

Why is it so difficult to measure
developer productivity?

1. Engineers are humans, and hu-
mans are inherently messy.

2. Engineering is a complex and
creative task.

3. Measuring the productivity of
any knowledge worker is gener-
ally a hard problem.

Developer productivity for hu-
mans is what our new column is
about: how we understand it, how
we measure it, and how we improve
it. In this article, we’ll talk about
why this problem is so difficult, and
in future installments, we’ll get into
specific aspects of developer produc-
tivity and consider how we might—
collectively—improve developer
productivity across the industry.

A Human-Centered
Approach to Developer
Productivity
Ciera Jaspan and Collin Green

Digital Object Identifier 10.1109/MS.2022.3212165
Date of current version: 23 December 2022

Editor: Ciera Jaspan
Google
ciera@google.com

Editor: Collin Green
Google
colling@google.com

DEVELOPER PRODUCTIVITY
FOR HUMANS

From the Editors

The “Developer Productivity for Humans” column aims to draw attention to

advances and challenges in research and practice in tools and practices that

help improve developers’ day-to-day tasks. In this column, we reinforce that

software engineers and developers are human and productivity tools should

support making their jobs easier as opposed to turning them into productivity

machines. We share our experiences and expertise and welcome your contribu-

tions and feedback.

https://orcid.org/0000-0003-4500-1392
https://orcid.org/0000-0003-1307-3869

DEVELOPER PRODUCTIVITY FOR HUMANS

24 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Software Developers
Are Humans
Software developers are humans. All
of them. It seems that this should be
an uncontroversial assertion. Indeed,
when we assert it, no one ever dis-
agrees. And yet, we find ourselves
making this assertion on a regular ba-
sis. Why? Because despite wide agree-
ment with the assertion itself, many
people behave as though developers
were not humans, but rather nonhu-
man components in a larger system—
cogs in a machine, if you will.

There are two good reasons to
think of developers as humans. First,
developers strongly prefer that their
humanity is acknowledged and re-
spected (a key indicator of their hu-
manity, in fact, is their preference for
others to recognize it). Second, if we
want to understand what makes devel-
opers more or less productive, we need
to understand what makes humans
more or less productive, with software
development as a special case.

There are many things that, in com-
bination, will influence how produc-
tive a human will be at a task.

• The characteristics and limita-
tions of human decision-making
processes and memory: Humans
reason in different ways at dif-
ferent times and may select a
reasoning approach based on
context (for example, time pres-
sure and incentives can push a
person into thinking “fast” or
“slow”1), and the different modes
are subject to different strengths
and weaknesses.2 People also
have limits to their working
memory,3 so anything we can do
to bring the right information to
their attention at the right time
can improve productivity.

• The complexity of a task and
whether that task is essentially

complex or accidentally so4:
We can reduce complexity (and
therefore increase productiv-
ity) by removing accidental
complexity.

• The team of other humans that
one needs to work with to ac-
complish the task: In addition to
the dynamics of the team mem-
bers, factors such as geographic
and time zone dispersion will
affect how people communicate,
and factors such as a mix of
prior experience affect techni-
cal mentorship and institutional
knowledge.

• The organizational and busi-
ness context in which the hu-
man completes the task: The
way that projects and people are
organized can impact productiv-
ity (Conway’s law4,5). Orga-
nizational incentives can also
impact productivity: if delivering
software fast is rewarded more
than delivering software that is
reliable, that pressure will shape
how work gets done (and what
the output looks like). It also
shapes the very definition of pro-
ductivity in that context.

• The environmental, social,
and cultural context in which
the human completes the task:
Whether they do it overtly or co-
vertly, individuals bring a whole
self to work. They bring their
sex, gender, race, ethnicity, na-
tionality, religious background,
height, weight, personal beliefs,
age, and choices in hairstyle,
clothing, and music to work.
This introduces a whole other
level of complexity to their work
and work context. Addition-
ally, the state of the world more
broadly (whether it be a global
pandemic, geo-political events,
press releases from the company,

or election results) can change
how an individual interacts with
others and whether that person
might be distracted by outside
forces or more sharply focused
on the tasks at hand.

These problems are not specific to
software development, yet they af-
fect a developer’s ability to be pro-
ductive. Too often, however, people
seem desperate to separate “human
problems” from “technical prob-
lems.” There is a persistent belief
that “human problems” are tricky
and relegated to human resources
and psychology departments, while
“technical problems” are somehow
more tractable. Yet we don’t see any
difference between the two: “tech-
nical problems” frequently require
understanding human decision-mak-
ing processes and performance, and
“human problems” can sometimes
be addressed by technical solutions.
Consider some examples of how
they intertwine.

• It’s widely accepted that having
a faster build speed improves
developer productivity. We see
evidence that this effect does
not happen because a developer
sits idly by, waiting for the build
to complete. Rather, it occurs
because when a build is suffi-
ciently fast, the developer is likely
to stay in flow and retain the
context of the task. If a build is
too slow, a developer will make a
very human decision and context
switch away to a new task. The
developer will also take longer to
resume the task when he or she
switches back because of the need
to regain the context of the task.

• Developers, as humans, are sub-
ject to unconscious biases that
may affect how they interact

DEVELOPER PRODUCTIVITY FOR HUMANS

 JANUARY/FEBRUARY 2023 | IEEE SOFTWARE 25

with others through bug reports,
design docs, and code reviews.
These biases may improve or
degrade their own—and oth-
ers’—productivity and experi-
ence. While one could argue that
they constitute a “human prob-
lem,” we can also mitigate such
biases with tool changes, such as
anonymous code reviews.6

So to recap: developers are hu-
man, and thus the things that make
being a human harder or easier also
make being an engineer harder or
easier. This isn’t to say that there
are no factors that specifically affect
software developers more than they
affect other humans. Flaky tests,
build speeds, and technical debt
are domain-specific phenomena that
have lots to do with software devel-
opment as an activity. But the influ-
ence of domain-specific factors is
always accompanied by (and often
small in comparison to) the influence
of those factors that are general
to humans.

Software Engineering Is a
Complex, Creative Endeavor
One good reason that we continue to
employ humans as software develop-
ers, despite all of the messiness de-
scribed previously, is that humans are
good creative problem solvers. Engi-
neering is an inherently creative en-
deavor in that it involves finding novel
solutions to complex problems. Not
every solution is novel, and not every
problem is complex, of course, but
applying known solutions to simple
problems doesn’t really require “engi-
neering” in any meaningful sense.

A related simplification about en-
gineering work is that it is linear and
predictable. We find that engineer-
ing leaders, in the face of a complex
problem, seek to simplify the entire

software engineering process: ideas
are generated, designed, implemented,
tested, experimented, launched, and
maintained. Even engineers are in-
clined to describe these activities as
algorithmic in the most fundamental
sense: a prescribed series of steps will
inevitably move things from a starting
state to a solution.

However, engineering is not a lin-
ear or predictable process, and when
it is, we consider it “toil” or “boiler-
plate” and automate away the predict-
ability. This is diametrically opposite
of stamping out parts in a machine
shop, which is linear and predictable
(within some tolerances). So is paint-
ing a house, or assembling a rocket,
or shoveling coal. Additionally, suc-
cess in these activities is measur-
able and unambiguously understood.
More coal shoveled is better than
less coal shoveled (strictly from a
coal-shoveling-productivity point of
view). Further, the solution in these
examples is about the production of
uniform, interchangeable outputs.
One pound of coal is pretty much in-
distinguishable from any other. Not
so for code.

• Software engineering is not
algorithmic: There is no pre-
scribed set of steps that will take
one from having no function-
ing code to having functioning
code. While there are general
processes or best practices (agile
methods, test-driven develop-
ment, modular designs, fault-
tolerant architectures), engineers
adapt to the current problem
and take alternative paths as
necessary.

• The output of software devel-
opment is not known from the
start: In part, that’s because the
solution is not known ahead of
time. It may be well constrained,

and it may look a lot like solu-
tions that have been built in the
past, but even where code reuse
is extensive and a developer
draws on bits and pieces from
others’ solutions, the output of
a software development task is
unique.

• Software development is not
about the production of uni-
form, interchangeable outputs:
Given that the solution isn’t
known at the outset and given
that the eventual solution is
unique, it should be no surprise
that the products of software
development are neither uniform
nor interchangeable. Not all pro-
grams are equal, not all files or
functions are equal, and not all
lines of code are equal.

Similar to the assertion that devel-
opers are human, the assertion that
software engineering work is nonlin-
ear and unpredictable is often met
with agreement. But again, we see at-
tempts to simplify engineering work
to make the problem of engineering
productivity more tractable. This sim-
plification leads to failures to treat
engineering as appropriately complex
and creative in practice. For example:

• Conflating throughput with pro-
ductivity: One might count the
lines of code written by a devel-
oper in a certain period and cal-
culate a simple output per unit
time “productivity” measure like
lines of code per minute. Pounds
of coal shoveled per hour will
tell you which shovelers are the
best shovelers; lines of code per
minute will not tell you which
software developers are the best
software developers.

• Assuming the built product is
the right product: Some code

DEVELOPER PRODUCTIVITY FOR HUMANS

26 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

that gets submitted and deployed
is terrible. It might have per-
formance issues or introduce
bugs. It might be brittle or scale
poorly. It might be difficult to
comprehend, modify, or main-
tain. It might even work per-
fectly, yet be the wrong market
fit. Part of productivity is not
just the output but whether it
was the right output to build.

• Assuming work that doesn’t
result in output has no value:
Software developers do a lot
of cognitive work. They think
through a problem, they look for
analogous solutions, and they
learn what tools, libraries, and
technologies are at their disposal
and how to use them. Problem
solving (because that’s what this
really is) involves a bunch of work
that doesn’t result in an immedi-
ate objective output, is hard to
measure, and may pay long-term
dividends in productivity. Maybe.

To recap: software engineering
is complex and creative. It is prob-
lem solving at its core. It’s pretty
much nothing like shoveling coal,
and any attempt to treat it similarly
in hopes of understanding devel-
oper productivity is going to miss
the mark.

Measuring Productivity
Is Hard
We’ve made a few not-very-controversial
assertions so far: that developers
are human, that humans are messy,
that software development involves
creative problem solving, and that
humans are good at software de-
velopment because they’re good at
problem solving. Given that none of
these broader observations is really
controversial and that humans have
been trying to measure productivity

systematically for at least a century,
haven’t we progressed further with
measuring developer productivity?
Yes. And no.

For starters, modern attempts to
quantify and analyze work produc-
tivity began with Frederick Taylor,7
who was, in fact, measuring produc-
tivity for tasks like shoveling coal,
moving heavy objects, and operating
machinery in known, repeatable pat-
terns. Taylor held four principles of
scientific management, which might
be paraphrased:

1. Don’t make guesses about ef-
ficiency and productivity;
measure and evaluate them
systematically.

2. Select, train, and cultivate work-
ers deliberately.

3. Decompose work into tasks that
can be delegated to workers (ide-
ally, along organizational lines).

4. Provide specific, prescriptive
task instructions to each worker
and monitor them to ensure they
execute as directed.

Taylor’s approach feels rigor-
ous and objective and dispassion-
ately scientific. But does it apply to
developer productivity? We have
no complaint about the first prin-
ciple; we systematically study devel-
oper productivity, and we think it’s
a good idea. Similarly, the second
principle doesn’t present a problem:
thoughtful hiring, deliberate train-
ing and mentoring, and a focus on
developing and retaining developers
are table stakes (though overly rigid
one-size-fits-all notions of how to do
those things are problematic).

The third principle presents some
problems. The act of decomposition
of work into tasks is itself a soft-
ware engineering design, process,
and management problem. There are

entire books dedicated to the decom-
position and modularization of code
such that tasks can be more easily
delegated across a team with lower
communication overhead. This de-
composition, though, is itself an en-
gineering task and is arguably much
more difficult and time consuming
than the completion of the decom-
posed work.

The fourth principle cannot be
implemented without the third, but
even if it could, it presents a prob-
lem: pretty much no human likes
being surveilled in this manner.
They like it even less if their work
is such that outward indications of
productivity are not always appar-
ent when, in fact, progress is be-
ing made via thinking, learning, or
experimentation.

At the beginning of this article, we
mentioned that we study what makes
engineers productive and happy. Pro-
ductive engineers might be unhappy
and—despite feeling productive—
decide to go someplace else for a job.
They’re human after all. Despite sys-
tematic selection processes, develop-
ers are not interchangeable. When a
senior, long-tenured engineer leaves
an organization, it is impossible to
simply drop in a replacement en-
gineer who has been in cold stor-
age. Attrition (whether on good or
bad terms) has a cost in productivity
and resources, and when productiv-
ity measurements (especially myopic
and inappropriate measurements,
like mere throughput) are foisted
upon developers, they are likely to
become unhappy.

So the original flavor of scientific
management isn’t suited to measuring
developer productivity (or, really, any
kind of knowledge worker productiv-
ity); this is a point that others have
made before. Management science has
evolved in its methods and philosophy

DEVELOPER PRODUCTIVITY FOR HUMANS

 JANUARY/FEBRUARY 2023 | IEEE SOFTWARE 27

(see Drucker8 and Ebert and Freibi-
chler9). Drucker noted that: “Knowl-
edge-worker productivity is the biggest
of the 21st century management chal-
lenges” (Drucker, p. 157).8 Despite
taking a more complete and nuanced
view of management science, these
more current works continue to strug-
gle with the question of how to mea-
sure productivity, specifically. Drucker
does acknowledge the need to focus on
quality of outputs over their quantity,
and he embraces the idea that produc-
tivity is complex and involves trad-
eoffs. However, these authors focus on
discarding the idea that one can imple-
ment Taylor’s principles for knowledge
work (we agree on this) and talk about
other ways of trying to improve pro-
ductivity, but they fall short of suggest-
ing a measurement strategy.

Developer Productivity
for Humans
So what can one do, given the mushy
mess that is measuring productivity
for a bunch of humans doing a com-
plex, creative thing?

We need to think about mea-
suring productivity in a holistic
and multifaceted way, not in a re-
ductionist, unidimensional way.10
Accordingly, we need to measure
productivity using more than one
metric, and we need frameworks
for selecting metrics (for example,
SPACE from Forsgren et al.)11 that
enable us to understand tradeoffs.
We must think about productiv-
ity both in the short term and the
long term; for example, we need
to understand the effects that biases
against underrepresented groups have
on developer productivity in terms
of getting code submitted and also
on retaining skilled employees by
treating them fairly and affording
them the same opportunities that
others enjoy.

We also need to remind our stake-
holders that developers are human.
Well, not remind perhaps—it’s not
something that’s forgotten so much
as overlooked. We must keep the fact
that developers are human in focus as
we create metrics and measurement
strategies. It’s critical that developer
productivity metrics are human cen-
tered. This makes the problem harder
(as we’ve discussed), but it’s also the
only way to do the problem justice
and make real progress.

I n future installments of this
column, we’ll talk more about
how we’re trying to do all of

this at Google. For each article,
we’ll explore one problem within
developer productivity, and we’ll
take a holistic, human-oriented
view toward understanding the
problem space, how to measure it,
and how to improve it. We’ll draw
on our own team’s research but
also on the amazing research done
by colleagues at other companies
and across academia. We’ll cover a

wide range of topics, as diverse as
the future of hybrid and distributed
teams, flaky tests, inclusive teams,
code quality, ramping up new hires,
and technical debt. Each of these
subjects involves both human and
technical considerations, each of
them is a complex topic, and each
is very tricky to measure. Yet we
can use the same holistic, human-
oriented way to understand these
topics and make real improvements
to developer productivity. We hope
you enjoy exploring these topics
with us, and we look forward to
hearing from our readership!

References
1. D. Kahneman, Thinking, Fast and

Slow. New York, NY, USA: Macmil-

lan, 2011.

2. A. Tversky and D. Kahneman,

“Judgment under uncertainty: Heu-

ristics and biases,” Science, vol. 185,

no. 4157, pp. 1124–1131, 1974, doi:

10.1126/science.185.4157.1124.

3. A. Baddeley, “Working memory,” Sci-

ence, vol. 255, no. 5044, pp. 556–559,

1992, doi: 10.1126/science.1736359.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

CIERA JASPAN the software engineering lead for the Engineering

Productivity Research team at Google, Mountain View, CA 94043

USA. Contact her at https://research.google/people/CieraJaspan/ or

ciera@google.com.

COLLIN GREEN is the user experience research lead for the En-

gineering Productivity Research team at Google, Mountain View, CA

94043 USA. Contact him at https://research.google/people/107023/

or colling@google.com.

https://research.google/people/CieraJaspan
https://research.google/people/107023

28 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

DEVELOPER PRODUCTIVITY FOR HUMANS

4. F. P. Brooks, The Mythical Man-

Month: Essays on Software En-

gineering. Reading, MA, USA:

Addison-Wesley, 1975.

5. M. Conway, “How do committees

invent?” Datamation, vol. 14, no. 4,

pp. 28–31, 1968.

6. E. Murphy-Hill, C. Jaspan, C. Egel-

man, and L. Cheng, “The pushback

effects of race, ethnicity, gender, and

age in code review,” Commun. ACM,

vol. 65, no. 3, pp. 52–57, 2022, doi:

10.1145/3474097.

7. F. W. Taylor, The Principles of

Scientific Management. New York,

NY, USA: Harper & Brothers,

1911.

8. P. F. Drucker, Management Challenges

for the 21st Century. Oxford, U.K.:

Butterworth-Heinemann, 1999.

9. P. Ebert and W. Freibichler, “Nudge

management: Applying behavioural

science to increase knowledge worker

productivity,” J. Org. Des., vol. 6,

no. 1, 2017, Art. no. 4, doi: 10.1186/

s41469-017-0014-1.

10. C. Jaspan and C. Sadowski, “No

single metric captures productiv-

ity,” in Rethinking Productivity

Software Engineering, C. Sadowski

and T. Zimmermann, Eds. Berke-

ley, CA, USA: Apress, 2019, pp.

13–20.

11. N. Forsgren, M. A. Storey,

C. Maddila, T. Zimmerman,

B. Houck, and J. Butler, “The

SPACE of developer productiv-

ity: There’s more to it than you

think,” ACM Queue, vol. 19,

no. 1, pp. 20–48, 2021, doi:

10.1145/3454122.3454124.

12. S. B. Johnson, The Secret of Apollo:

Systems Management in American

and European Space Programs. Johns

Hopkins Univ. Press, 2002.

Rejuvenating Binary Executables ■ Visual Privacy Protection ■ Communications Jamming

January/February 2016
Vol. 14, No. 1

Policing Privacy ■ Dynamic Cloud Certification ■ Security for High-Risk Users

March/April 2016
Vol. 14, No. 2

IEEE Symposium on
Security and Privacy

Smart TVs ■ Code Obfuscation ■ The Future of Trust

May/June 2016
Vol. 14, No. 3

IEEE Symposium onIEEE Symposium onIEEE Symposium onIEEE Symposium onIEEE Symposium on
Security and PrivacySecurity and PrivacySecurity and PrivacySecurity and PrivacySecurity and PrivacySecurity and Privacy

IEEE Security & Privacy magazine provides articles
with both a practical and research bent by the top
thinkers in the fi eld.
• stay current on the latest security tools and theories and gain invaluable practical and

research knowledge,
• learn more about the latest techniques and cutting-edge technology, and
• discover case studies, tutorials, columns, and in-depth interviews and podcasts for the

information security industry.

computer.org/security

Digital Object Identifier 10.1109/MS.2022.3223243

	023_40ms01-developerprod-3212165

