
4 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 2 © 2 0 2 2 I E E E

IEEE Software To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement the developers and managers who want to keep up with rapid technology change.

INFRASTRUCTURE AS CODE
(IaC) is the practice to automatically
configure system dependencies and
create deployment specifications to
enable the orchestration of any sys-
tem mostly running in the cloud. IaC
is an established approach to support
DevOps, the set of practices to enable
software developers and operations
teams to accelerate the delivery of
software through automation, collab-
oration, fast feedback, and iterative
improvement. IaC focuses on auto-
mating the processes needed to man-
age the deployment and configuration
infrastructure that otherwise would
rest on the shoulders of system ad-
ministrators and, by doing so, aims to
create a single source of truth for the
deployment structure of the system.

The infrastructure that needs to be
managed by IaC techniques include

physical servers as well as virtual ma-
chines, databases, and all the related
configuration resources. Any tool using
a programmatic approach, including
continuous configuration automation
tools, which assist with defining and
executing infrastructure configura-
tions and frameworks, often is consid-
ered IaC. Such tooling and scripting
allow developers and operations roles
to contribute to the goal of managing
infrastructure elements with automa-
tion collaborative ly. Developers define

configurations, identifying dependen-
cies among software elements, and ad-
dressing how to orchestrate runtime
and development time software struc-
ture concerns. Operations teams get
involved in the software development,
deployment, and operations process
earlier along with developers, bring-
ing visibility to the state of the servers,
their specifications, and enterprise-level
requirements and constraints.

There has been a significant amount
of attention paid to researching the

Digital Object Identifier 10.1109/MS.2022.3213880
Date of current version: 23 December 2022

FROM THE EDITOR
Editor in Chief: Ipek Ozkaya
Carnegie Mellon Software Engineering Institute
ipek.ozkaya@computer.org

Infrastructure as
Code and Software
Architecture
Conformance Checking
Ipek Ozkaya

The infrastructure that needs to be
managed by IaC techniques include

physical servers as well as virtual
machines, databases, and all the
related configuration resources.

https://orcid.org/0000-0002-7336-4775

FROM THE EDITOR

 JANUARY/FEBRUARY 2023 | IEEE SOFTWARE 5

automated tool support aspect of IaC.
There are quite a number of exist-
ing frameworks and tools provided
by the dominant cloud providers
to support development and opera-
tions teams so that they can take
advantage of the speed through au-
tomation vision of IaC. These IaC
tools aim to make it easier to deploy
the system in the corresponding
vendor’s cloud platform. Therefore,
it is not surprising to see that the
systematic mapping study of IaC re-
search conducted by Rahman et al.
identified the framework and tools
for IaC as the top area with signifi-
cant research attention. Other ar-
eas where IaC research has mostly
focused on include adoption of IaC,
empirical studies related to IaC, and
testing in IaC, where many of the
studies either propose a new frame-
work or tool for IaC or extend a
new one.1

While most research empha-
sis is on developing tools for IaC,
these tools do not necessarily assure
that the code developed to enable
the automation of the infrastructure
setup and configuration is not with-
out issues itself. Jiang and Adams,
in their 2015 study, demonstrated
that projects they studied had
a substantial number of IaC files,
hinting at a need to study how they
evolve along with source code, test
code, and built scripts.2 In addition
to its large size, the study identified
that code realizing IaC churns sig-
nificantly more often than test and
build files. Furthermore, the study
found that infrastructure code files
are coupled tightly with other files
in a project, especially test files, in-
dicating an increased likelihood of
change propagation and bugs in
IaC, similar to source code.

Existing research studies dem-
onstrate that IaC occupies a signifi-

cant and critical part of the overall
software ecosystem. IaC repre-
sents a substantial amount of code
that needs to align with the rest of
the source, test, and build code to
avoid unintended rework and tech-
nical debt, even within IaC.2,3

While importance of the align-
ment of IaC with other implemen-
tation elements is recognized, its
potential in contributing to im-
proving the structure and behavior of
the software through realizing the
deployment concerns of its architec-
ture is less taken advantage of.4

The Allocation Structures
In defining the software architecture
of a system, there are three domi-
nant types of structures: the module
structures, the component and con-
nector structures, and the allocation
structures. The module structure
assists software engineering teams
with reasoning about the implemen-
tation elements and their design and
development time relationships. The
component and connector struc-
tures focus on the runtime behavior
of software elements and are used
to reason about behavior, such as
how resources are shared, whether
they are available when needed, and
how secure they are at runtime. Al-
location structures describe the
mapping of software elements de-
fined through module and com-
ponent and connector structures to
the environment elements where the
software executes. Naturally, the
most dominant concern in allocation
is the deployment, the servers, the
databases, the virtual machines,
and the infrastructure that pro-
vides runtime support and how the
system is structured to align with
the environment that it will execute
within. Software architects, when
designing the system, are responsible

CONTACT
US

AUTHORS

For detailed information on submitting
articles, visit the “Write for Us” section at
www.computer.org/software

LETTERS TO THE EDITOR

Send letters to software@computer.org

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

address.change@ieee.org
(please specify IEEE Software.)

MEMBERSHIP
CHANGE OF ADDRESS

member.services@ieee.org

MISSING
OR DAMAGED COPIES

contactcenter@ieee.org

REPRINT PERMISSION

IEEE utilizes Rightslink for permissions
requests. For more information, visit www.
ieee.org/publications/rights/rights-link.html

FROM THE EDITOR

6 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

for ensuring that the alignment
of development, build, staging,
and production environments is
consistent and playing from the
same sheet of music.5 IaC tools and
frameworks provide an opportu-
nity to provide that enforcement.

Provisioning and infrastructure
consistency as a desired outcome
of DevOps starts by understand-
ing the expected response mea-
sures and service-level agreements
of system functionality. The soft-
ware architecture of the system
describes and prescribes the devel-
opment time, runtime, deployment
time, and operational concerns.
The responsibility of IaC tools is to
provide automation that takes the
best advantage of the infrastruc-
ture available in meeting some of
these concerns, especially when
unexpected changes occur.

IaC assists with development
time expectations; for example,
the ability to run security and user
acceptance testing without road-
blocks at scale and to identify build
dependencies that may create in-
consistencies during deployment
is achieved more consistently
with IaC. Making the deployment
structure explicit—what you get
from the scripts for deployment
tools—can make enforcement
and conformance much easier.
IaC enables conformance to a well-
defined runtime and deployment ar-
chitecture by managing the ad hoc
configuration changes, installation
and configuration of operating
system software, and connection
to middleware, networks, storage,
servers, and the like.

The software architecture of a
system has the goal of defining the
fundamental structures of a system
through the software elements,
re lationships among them, and

properties of both elements and re-
lations. IaC, as a corollary, has the
goal of automating the process of
supplying the resources where these
elements will run. Since an increas-
ing number of systems run in the
cloud, concerns, such as on-demand
resource access, including network
and storage, resource pooling, elastic-
ity to scale up and down, and being
aware of the resources and optimizing
for them, are both design time as well
as deployment and operation time
concerns. The allocation structures
provide the keystone, where IaC tool-
ing not only serves the goal of infra-
structure scaling in the cloud but can
also enable conformance to a well-
defined system.

Architecture Conformance
Is Not Up-Front Design
Creating a reliable software archi-
tecture conformance checking tool
has been difficult to implement be-
cause the architecture is typically
buried in the code. To some, archi-
tecture conformance implies making
the most of design decisions up front
and exposing these design concerns.
Conformance suggests compliance
and governance, the scrutiny of the
design, code, and other system ar-
tifacts against established architec-
tural criteria and business objectives
and, at the enterprise level, adher-
ence to rules and guidance to ensure
that the available resources are uti-
lized appropriately.6 The spirit
of both activities is to ensure high-
quality systems that meet their busi-
ness and user goals, where resources
are spent effectively and systems are
designed to be easily adaptable
to change. Without effective tool
support, architecture conformance
becomes a difficult goal to achieve,
especially as technologies evolve and
code evolves along with them.

EDITORIAL
STAFF
IEEE SOFTWARE STAFF
Managing Editor: Jessica Welsh, j.welsh@ieee.org
Cover Design: Andrew Baker
Peer Review Administrator: software@computer.org
Periodicals Portfolio Specialist: Cathy Martin
Periodicals Operations Project Specialist:
Christine Shaughnessy
Content Quality Assurance Manager: Jennifer Carruth
Periodicals Portfolio Senior Manager: Carrie Clark
Director of Periodicals and Special Products:
Robin Baldwin
IEEE Computer Society Executive Director:
Melissa Russell
Senior Advertising Coordinator: Debbie Sims

CS PUBLICATIONS BOARD
David Ebert (VP of Publications), Terry Benzel, Greg
Byrd, Chuck Hansen, Hui Lei, Shixia Liu, Sarah Malik,
San Murugesan, Timothy Pinkston; Ex officio:
Robin Baldwin, William Gropp, Melissa Russell

CS MAGAZINE OPERATIONS
COMMITTEE
San Murugesan (MOC Chair), Lorena Barba,
Irena Bojanova, Shu-Ching Chen,
David Hemmendinger, Lizy K. John, Marc Langheinrich,
Torsten Möller, Ipek Ozkaya, George Pallis,
Sean Peisert, Jeffrey Voas

IEEE PUBLICATIONS OPERATIONS
Senior Director, Publishing Operations: Dawn
M. Melley
Director, Editorial Services: Kevin Lisankie
Director, Production Services: Peter M. Tuohy
Associate Director, Information Conversion and
Editorial Support: Neelam Khinvasara
Senior Manager, Journals Production: Patrick Kempf
Senior Art Director: Janet Dudar

Editorial: All submissions are subject to editing for clarity,
style, and space. Unless otherwise stated, bylined articles
and departments, as well as product and service descriptions,
reflect the author’s or firm’s opinion. Inclusion in IEEE Software
does not necessarily constitute endorsement by IEEE or the
IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s Web-based
system, ScholarOne, at http://mc.manuscriptcentral.com/
sw-cs. Be sure to select the right manuscript type when
submitting. For complete submission information, please visit
the Author Information menu item under “Write for Us” on our
website: www.computer.org/software.

IEEE prohibits discrimination, harassment and bullying:
For more information, visit www.ieee.org
/web/aboutus/whatis/policies/p9-26.html.

Digital Object Identifier 10.1109/MS.2022.3223719

FROM THE EDITOR

 JANUARY/FEBRUARY 2023 | IEEE SOFTWARE 7

IaC assists with infrastructure re-
source management. IaC can at least
supply one set of inputs by auto-
mating the change management of
systems from the server, network,
virtual machine, database, and any
other operational infrastructure per-
spective of the system. These re-
sources are critical both during the
development and operation of sys-
tems. The nimble way the high-level
descriptive languages and scripts of
IaC are designed allows room for

introducing conformance to qual-
ity, resource utilization, and change
management goals of the system.
If we envision architecture confor-
mance not as a single tool but as a set
of information that needs to be con-
tinuously collected and checked
for, IaC tools and frameworks read-
ily provide part of the software system
design allocation structure infor-
mation needed for conformance.
Improved collective ownership of the
structure and behavior of systems;

improved alignment of system ar-
tifacts, including the design of the
system; and improved management
of runtime and deployment time
resources and architecturally sig-
nificant requirements of the system
are essential for both architecture
conformance and configuration and
infrastructure flexibility that IaC
aspires to. Responsibility sits on the
shoulders of both roles. Software ar-
chitecture and engineering teams
need to take advantage of IaC as an

INTRODUCING THE
“DEVELOPER PRODUCTIVITY FOR HUMANS” COLUMN

With this first issue of 2023, we are launching a column
dedicated to featuring the research and practices that sup-
port developer well-being and productivity. We are calling
this the “Developer Productivity for Humans” column. The
title of the column has the goal of enforcing that we are op-
posed to treating developers as “interchangeable cogs in a
machine,” as expressed by Ciera Jaspan, one of the coedi-
tors of the column. Ciera and her coeditor, Collin Green,
with this column, will reinforce that software engineers and
developers are human and that productivity tools should
support making their jobs easier as opposed to turning
practitioners into productivity machines. This is the primary
lens they use in their day job at Google when understand-
ing, measuring, and improving developer productivity.

Ciera Jaspan is the tech lead manager of the Engineer-
ing Productivity Research team within Core Developer at
Google, where she uses a data-driven mixed-methods
approach to drive tool, process, and culture decisions
made by Google leadership. The team’s infrastruc-
ture, metrics, and research results are used to motivate
changes to Google’s developer tools that will increase
productivity and then to measure the impact of these
changes to developer productivity across Google. She
previously worked on Tricorder, Google’s static analysis
platform. She received her B.S. in software engineering
from California Polytechnic State University and her Ph.D.

from Carnegie Mellon University, where she worked with
 Jonathan Aldrich on cost-effective static analysis and
software framework design.

Collin Green is a user experience researcher and man-
ager of the Engineering Productivity Research team within
Core Developer at Google. His research focuses on applying
combined quantitative and qualitative behavioral research
methods to understand developer experience and engineer-
ing productivity. In prior roles, he has studied the design
and usability of software tools for technical users in medi-
cine and aerospace and the impacts those tools have on
productivity. Green received his Ph.D. in psychology from
the University of California, Los Angeles.

Ciera and Collin bring an interdisciplinary perspective to
this important subject. They will feature their experiences
through this column as well as those of others who have
successfully empowered the improved productivity and
well-being of developers in their organizations. I am very
excited to be introducing this column. Ciera, Collin, and my-
self as well as the rest of the board at IEEE Software all be-
lieve there is much work to be done in this area. We would
like to contribute to progress by featuring what has been
accomplished so far while shining a light on the remaining
challenges for the software engineering community to work
on. We are looking forward to your feedback as well as con-
tributions in this very important topic area.

FROM THE EDITOR

8 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

approach to enforce the allocation
structures of the systems. DevOps
teams need to think about the system
holistically, including the alignment of
IaC code with not only source code,
test code, and build code but also
with the architecturally significant
requirements of the system and the
design that realized them.

References
1. A. Rahman, R. Mahdavi-Hezaveh,

and L. Williams, “A systematic

mapping study of infrastructure as

code research,” Inf. Softw. Technol.,

vol. 108, pp. 65–77, Apr. 2019, doi:

10.1016/j.infsof.2018.12.004.

2. Y. Jiang and B. Adams, “Co-evolution

of infrastructure and source code– An

empirical study,” in Proc. 2015 IEEE/

ACM 12th Working Conf. Mining

Softw. Repositories, pp. 45–55, doi:

10.1109/MSR.2015.12.

3. P. Kruchten, R. Nord, and I. Ozkaya,

Managing Technical Debt: Reducing

Friction in Software Development.

Reading, MA, USA: Addison

-Wesley, 2019.

4. L. Bass, I. Weber, and Z. Liming,

DevOps: A Software Architect’s

Perspective. Reading, MA, USA:

Addison-Wesley, 2015.

5. L. Bass, “The software architect

and DevOps,” IEEE Softw., vol. 35,

no. 1, pp. 8–10, Jan./Feb. 2018, doi:

10.1109/MS.2017.4541051.

6. “The Open Group Architecture

Framework,” TOGAF™, version

8.1.1., 2006. Accessed: Oct. 2022.

[Online]. Available: https://pubs.

opengroup.org/architecture/

togaf8-doc/arch/toc-pt4.html

Write for the IEEE Computer
Society’s authoritative
computing publications
and conferences.

IEEE COMPUTER SOCIETY

Call for Papers

GET PUBLISHED
www.computer.org/cfp

Digital Object Identifier 10.1109/MS.2022.3223188

http://dx.doi.org/10.1016/j.infsof.2018.12.004

	004_40ms01-editorial-3213880

