
 MAY/JUNE 2023 | IEEE SOFTWARE 29

FOCUS: GUEST EDITORS’ INTRODUCTION FOCUS: GUEST EDITORS’ INTRODUCTION

Digital Object Identifier 10.1109/MS.2023.3246686
Date of current version: 18 April 2023

Chakkrit Tantithamthavorn , Monash University

Jürgen Cito, TU Wien

Hadi Hemmati, York University

Satish Chandra, Google

Explainable AI for SE:
Challenges and
Future Directions

0740 -7459 / 23©2023 I EEE MAY/JUNE 2023 | IEEE SOFTWARE 29

https://orcid.org/0000-0002-5516-9984

30 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

IN RECENT YEARS, artificial intel-
ligence/machine learning (AI/ML)
have been widely used in software
engineering (SE) to improve devel-
oper productivity, software quality,
and decision making. This includes
well-known tools for code comple-
tion (for example, GitHub’s Copilot)
but also code search; automated task

recommendation; automated devel-
oper recommendation; automated
defect/vulnerability/malware predic-
tion, detection, localization, and re-
pair; and many other purposes.

The Importance of
Explainable AI for SE
Although AI/ML have opened up the
possibilities of creating innovative de-
veloper tools that were hard to build
using non-ML methods, their im-
pact will not be fully realized until
developers trust the tools. A lack of
explainability of AI/ML often leads
to a lack of trust in the predictions
of AI/ML models in SE, which in
turn hinders the adoption of AI /
ML models in real-world software
development practices. This prob-
lem is especially more pronounced
for deep learning-based models.
Most model techniques for creat-
ing ML-based tools are based on
large language models that, aside
from containing an enormous (and
growing!) number of parameters,
are black box and complex in na-
ture: CodeBERT, GraphCodeBERT,

CodeGPT, CodeT5, UniXCoder, Co-
dex, GPT3, and so on.

Therefore, Explainable AI (XAI)
for SE (XAI4SE) is a pressing con-
cern for the software industry and
academia.1 In the light of predic-
tions made in SE contexts,1,2 prac-
titioners would like to know: Why
has this code been generated? Why

is this person best suited for this
task? Why is this file predicted as
defective? Why is this task required
the highest development effort? and
so forth.

XAI in a Nutshell
XAI is a set of processes and methods
that allows human users to compre-
hend the results and output created
by ML algorithms to enable trust.
The explainability of AI/ML algo-
rithms can be achieved by 1) making
the entire decision-making process
transparent and comprehensible and
2) explicitly providing an explana-
tion for each decision since an expla-
nation is not likely applicable to all
decisions. In addition, explanations
of AI/ML systems can be presented
in various forms (for example, natu-
ral text, decision trees, rules, or im-
portant factors) to serve the various
goals of different stakeholders (for
example, developers, managers, tes-
ters, lawyers, and CEOs).

There is a multitude of XAI tech-
niques that have been used to support
understanding models for various

SE tasks (for example, explaining
an Agile story point estimation,3
explaining a defect prediction,4 lo-
calizing which lines are likely to be
defective,5 and providing actionable
advice on how to fix a defect6,7).
They can be broadly categorized into
white-box and black-box techniques.
White-box techniques are tailored
to specific ML models and exploit
the internals of the model. Attention
mechanisms and integrated gradients
are popular white-box techniques
for explaining deep learning mod-
els. Attention is used as a means for
generating explanations by assign-
ing weights to different parts of the
input, indicating an attribution of
importance for the prediction. Inte-
grated gradients involve creating in-
terpolated inputs and evaluating the
model. However, these techniques
are not naturally suitable for models
of code as there is no natural inter-
polation between a zero token and a
token in the input code.

Many black-box, that is, model-
agnostic, techniques are based on
perturbation mechanisms. While
there are certainly variations in these
methods, the basic idea is to modify
the input data in a systematic way and
observe the difference in the model’s
output to help understand which parts
of the input are most important for
the model. There are different types
of perturbation-based explanation
techniques, including Local Interpre-
table Model-Agnostic Explanations
(LIME)8 and Shapley Additive Expla-
nations (SHAP).9

Other mechanisms, which could be
considered perturbation based, have
used delta-debugging techniques to
comprehend source code models by re-
ducing a program to a minimum set of
statements that still retain the model’s
initial output. The underlying assump-
tion is that the remaining statements

Explainable AI for SE is a pressing
concern for the software industry

and academia.

 MAY/JUNE 2023 | IEEE SOFTWARE 31

are the crucial signals being detected
by the model. The objective is to iden-
tify the crucial features that affect
the model’s output.

Overview of the Special
Issue Articles
The aim of this special issue is to be
a venue for sharing practical expe-
riences and research results on the
new emerging research direction of
XAI4SE. The special issue includes
two articles that address two impor-
tant challenges (that is, reliability
and trustworthiness). Next, we give
a brief overview of the contents of
the special issue.

“Toward Reliable Software Ana-
lytics: Systematic Integration of
Explanations From Different Model-
Agnostic Techniques,” the article by
Gichan Lee and Scott Uk-Jin Lee,A1
addresses the reliability challenge of
model-agnostic techniques. Recently,
software analytics began to explain
the reasons behind the predictions
of ML and AI models for various
aspects of software projects using
model-agnostic techniques derived
from the XAI domain. However,
there is no guarantee that different
model-agnostic techniques will gen-
erate consistent explanations for the
same predictions. Therefore, practi-
tioners may obtain different insights
depending on the technique they use.
This article discusses the problem
caused by the inconsistent explana-
tions generated from different model-
agnostic techniques. In addition, the
authors propose a method to inte-
grate inconsistent explanations to
derive information that can provide
more useful and reliable explanations
to practitioners.

“Don’t Lie to Me: Avoiding Mali-
cious Explanations with STEALTH,”
the article by Lauren Alvarez and
Tim Menzies , A 2 add re s s e s the

trust worthiness challenge of model-
agnostic techniques. They propose
STEALTH, which is a method for
using some AI-generated models
without suffering from malicious at-
tacks (that is, lying) or associated
unfairness issues. After recursively
biclustering the data, the STEALTH
system asks the model a limited num-
ber of queries about class labels.
STEALTH asks so few queries (one
per data cluster) that malicious algo-
rithms cannot 1) detect its operation
or 2) know when to lie.

We also prepared Sounding Board,
“Expert Perspectives on Explainabil-
ity,” with interviews from inter-
nationally recognized experts in
industry who have deployed large AI/
ML systems as part of the SE lifecy-
cle.A3 We want to gather their expert
perspectives on how their work has
shaped the SE landscape and what
role explainability has currently
and in the future. We conducted in-
terviews with Eddie Aftandilian
(principal researcher at GitHub
Next) and Vijay Murali (software
engineer at Meta). We talked about
the broader role of ML/AI for SE;
the spectrum of models and software
artifacts that are affected; how we
could more systematically evaluate
explanations; and the role of trust-
worthiness that explainability en-
ables for the future of AI in SE.

Future Directions
While XAI has shown lots of prom-
ise in SE, there are various emerging
challenges that remain largely unex-
plored.10 Possible research questions
include the following.

Designing an Explanation
• What are the needs, motivations,

and challenges of XAI4SE?
• Do different stakeholders need

different explanations?

• What is the best form of expla-
nations for SE tasks that are
most understandable by soft-
ware practitioners?

• What aspects of psychology,
learning theories, cognitive sci-
ence, and social sciences must be
considered when designing an
explanation for SE tasks?

Developing and Evaluating
XAI4SE techniques
• Can XAI techniques be applied

to new SE tasks to serve other
purposes, for example, testing,
debugging, visualizing, inter-
preting, and refining AI/ML
models?

• Can we use XAI methods to de-
tect and explain potential biases
when applying AI tools in SE?

• What is a systematic evaluation
framework of XAI techniques
for SE tasks?

• How can we evaluate the impact
of using XAI techniques in soft-
ware development practices?

• What are the industrial case
studies, experience reports, and
lessons learned from XAI4SE in
practice?

W e look forward to see-
ing more publications
addressing these impor-

tant research questions.

Acknowledgment
We express our sincere thanks to the
authors and reviewers of all of the
high-quality submissions we received
for this theme issue. We also thank
Editor in Chief Ipek Ozkaya and the
IEEE Software team for their guid-
ance and support. Chakkrit Tan-
tithamthavorn was partly supported
by the Australian Research Council’s
Discovery Early Career Researcher

32 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

Award (DECRA) funding scheme
(Grant DE200100941). Hadi Hem-
mati is partly supported by the NSERC
Alliance (ALLRP 568643-21)–Alberta
Innovates Advance Program (Grant
212200865).

References
1. C. Tantithamthavorn and J. Jiarpak-

dee, “Explainable AI for software

engineering,” in Proc. Int. Conf.

Automated Softw. Eng. (ASE), May

2021. [Online]. Available: http://

xai4se.github.io

2. H. K. Dam, T. Tran, and A.

Ghose, “Explainable software

analytics,” in Proc. 40th Int. Conf.

Softw. Eng., New Ideas Emerg.

Results, 2018, pp. 53–56, doi:

10.1145/3183399.3183424.

3. M. Fu and C. Tantithamthavorn,

“GPT2SP: A transformer-based agile

story point estimation approach,”

IEEE Trans. Softw. Eng., vol. 49,

no. 2, pp. 611–625, Feb. 2023, doi:

10.1109/TSE.2022.3158252.

4. J. Jirayus, C. Tantithamthavorn,

and J. Grundy, “Practitioners’

perceptions of the goals and visual

explanations of defect prediction

models,” in Proc. Int. Conf. Min-

ing Softw. Repositories (MSR),

2021, pp. 432–443, doi: 10.1109/

MSR52588.2021.00055.

5. W. Supatsara, P. Thongtanunam,

C. Tantithamthavorn, H. Hata, and

K. Matsumoto, “Predicting defective

lines using a model-agnostic tech-

nique,” IEEE Trans. Softw. Eng., vol.

48, no. 5, pp. 1480–1496, May 2022,

doi: 10.1109/TSE.2020.3023177.

6. J. Jiarpakdee, C. Tantithamthavorn,

H. K. Dam, and J. Grundy, “An em-

pirical study of model-agnostic tech-

niques for defect prediction models,”

IEEE Trans. Softw. Eng., vol. 48,

no. 1, pp. 166–185, Jan. 2022, doi:

10.1109/TSE.2020.2982385.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S
A

B
O

U
T
 T

H
E

 A
U

T
H

O
R

S

CHAKKRIT TANTITHAMTHAVORN is a senior lecturer of

software engineering and a 2020 Australian Research Council

Discovery Early Career Research Award Fellow in the Faculty

of Information Technology, Monash University, Clayton, Victoria

3800, Australia. His current focus is on pioneering an emerg-

ing research area of explainable artificial intelligence (AI) for

software engineering and inventing many AI/machine learning/

deep learning/natural language processing-based technolo-

gies to improve developers’ productivity and make software

systems more reliable and secure, while being explainable to

practitioners. Contact him at chakkrit@monash.edu. Contact

him at chakkrit@monash.edu.

JÜRGEN CITO is an assistant professor at TU Wien, 1040

Vienna, Austria. His research interests include machine

learning for software engineering applications. Cito received

his Ph.D. in computer science from the University of Zurich,

Switzerland and was a postdoctoral research scholar at the

Massachusetts Institute of Technology. Contact him at juer-

gen.cito@tuwien.ac.at

HADI HEMMATI is an associate professor in the Depart-

ment of Electrical Engineering and Computer Science, York

University, Toronto, ON M3J1P3, Canada. He is also an adjunct

associate professor at Calgary, AB, Canada. His main research

interests include automated software engineering (with a

focus on software testing, debugging, and repair) and trust-

worthy artificial intelligence (with a focus on robustness and

explainability). His research has a strong focus on empirically

investigating software/machine learning engineering practices

in large-scale industrial systems. He is a Senior Member of

IEEE. Contact him at hemmati@yorku.ca.

SATISH CHANDRA is a research scientist at Google, CA

94043 USA. His research interests include programming

languages and software engineering, including program

analysis, type systems, software synthesis, bug finding

and repair, software testing and test automation, and, most

recently, applications of machine learning to developer tools.

Chandra received his Ph.D. in computer science from the

University of Wisconsin-Madison. He is an Association for

Computing Machinery Distinguished Scientist. Contact him at

schandra@acm.org.

CHAKKRIT TANTITHAMTHAVORN is a senior lecturer

of software engineering and a 2020 Australian Research

Council Discovery Early Career Research Award Fellow in

the Faculty of Information Technology, Monash University,

Clayton, Victoria 3800, Australia. His current focus is on

pioneering an emerging research area of explainable artificial

intelligence (AI) for software engineering and inventing many

AI/machine learning/deep learning/natural language process-

ing-based technologies to improve developers’ productivity

and make software systems more reliable and secure, while

being explainable to practitioners. Contact him at chakkrit@

monash.edu.

JÜRGEN CITO is an assistant professor at TU Wien, 1040 Vi-

enna, Austria. His research interests include machine learning

for software engineering applications. Cito received his Ph.D.

in computer science from the University of Zurich, Switzerland

and was a postdoctoral research scholar at the Massachusetts

Institute of Technology. Contact him at juergen.cito@tuwien.

ac.at.

HADI HEMMATI is an associate professor in the Depart-

ment of Electrical Engineering and Computer Science, York

University, Toronto, ON M3J1P3, Canada. He is also an adjunct

associate professor at Calgary, AB, Canada. His main research

interests include automated software engineering (with a

focus on software testing, debugging, and repair) and trust-

worthy artificial intelligence (with a focus on robustness and

explainability). His research has a strong focus on empirically

investigating software/machine learning engineering practices

in large-scale industrial systems. He is a Senior Member of

IEEE. Contact him at hemmati@yorku.ca.

SATISH CHANDRA is a research scientist at Google, CA

94043 USA. His research interests include programming

languages and software engineering, including program

analysis, type systems, software synthesis, bug finding

and repair, software testing and test automation, and, most

recently, applications of machine learning to developer tools.

Chandra received his Ph.D. in computer science from the

University of Wisconsin-Madison. He is an Association for

Computing Machinery Distinguished Scientist. Contact him at

schandra@acm.org.

http://xai4se.github.io
http://xai4se.github.io
mailto:chakkrit@monash.edu
mailto:chakkrit@monash.edu
mailto:juergen.cito@tuwien.ac.at
mailto:juergen.cito@tuwien.ac.at
mailto:hemmati@yorku.ca
mailto:schandra@acm.org
mailto:chakkrit@monash.edu
mailto:chakkrit@monash.edu
mailto:juergen.cito@tuwien.ac.at
mailto:juergen.cito@tuwien.ac.at
mailto:hemmati@yorku.ca
mailto:schandra@acm.org

 MAY/JUNE 2023 | IEEE SOFTWARE 33

7. C. Pornprasit, C. Tantithamthavorn,

J. Jiarpakdee, M. Fu, and

P. Thongtanunam, “PyExplainer:

Explaining the predictions of just-in-time

defect models,” in Proc. 36th IEEE/

ACM Int. Conf. Automated Softw. Eng.

(ASE), Nov. 2021, pp. 407–418, doi:

10.1109/ASE51524.2021.9678763.

8. M. T. Ribeiro, S. Singh, and

C. Guestrin, “‘Why should I trust

you?’ Explaining the predictions of

any classifier,” in Proc. 22nd ACM

SIGKDD Int. Conf. Knowl. Discov-

ery Data Mining, Aug. 2016,

pp. 1135–1144.

9. S. M. Lundberg and S. I. Lee, “A uni-

fied approach to interpreting model

predictions,” in Proc. 31st Adv.

Neural Inf. Process. Syst., 2017,

pp. 4768–4777.

10. A. H. Mohammadkhani, N. S.

Bommi, M. Daboussi, O. Sabnis,

C. Tantithamthavorn, and H. Hem-

mati, “A systematic literature review

of explainable AI for software

 engineering,” 2023. [Online].

Available: https://arxiv.org/abs/

2302.06065

11. A. Vaswani et al., “Attention is all

you need,” in Proc. 31st Adv.

Neural Inf. Process. Syst., 2017,

pp. 6000–6010.

Appendix: Related Articles
 A1. G. Lee and S. U.-J. Lee, “ Toward

reliable software analytics:

Systematic integration of explana-

tions from different model-agnostic

techniques,” IEEE Softw., vol. 40,

no. 3, pp. 34–42, May/Jun.

2023, doi: 10.1109/MS.2023.

3244204.

 A2. L. Alvarez and T. Menzies,

“Don’t lie to me: Avoiding mali-

cious explanations with STEALTH,”

IEEE Softw., vol. 40, no. 3, pp.

43–51, May/Jun. 2023, doi: 10.1109/

MS.2023.3244713.

 A3. J. Cito, S. Chandra, C. Tantitham-

thavorn, and H. Hemmati, “Expert

perspectives on explainability,”

IEEE Softw., vol. 40, no. 3, pp.

84–88, May/Jun. 2023, doi: 10.1109/

MS.2023.3255663.

Since 1994, the SEI and the Institute of Electrical and
Electronics Engineers (IEEE) Computer Society have
cosponsored the Watts S. Humphrey Software Quality
Award, which recognizes outstanding achievements
in improving an organization’s ability to create and
evolve high-quality software-dependent systems.

Humphrey Award nominees must have demonstrated
an exceptional degree of significant, measured,
sustained, and shared productivity improvement.

TO NOMINATE YOURSELF OR A COLLEAGUE, GO TO
computer.org/volunteering/awards/humphrey-
software-quality

Nominations due by September 1, 2023.

FOR MORE INFORMATION
resources.sei.cmu.edu/news-events/events/wattsN

O
M

IN
A

TI
O

N
S

N
O

W
 O

PE
N

2024 IEEE CO
M

PU
TER SO

CIETY
/

SO
FTW

A
RE EN

G
IN

EERIN
G

 IN
STITU

TE
W

A
TTS S. H

U
M

PH
REY SO

FTW
A

RE Q
U

A
LITY A

W
A

RD

Digital Object Identifier 10.1109/MS.2023.3260985

https://arxiv.org/abs/2302.06065
https://arxiv.org/abs/2302.06065

	029_40ms03-guested-3246686

