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FOCUS: GUEST EDITORS’ INTRODUCTION

IN RECENT YEARS, artificial intel-
ligence/machine learning (AI/ML) 
have been widely used in software 
engineering (SE) to improve devel-
oper productivity, software quality, 
and decision making. This includes 
well-known tools for code comple-
tion (for example, GitHub’s Copilot) 
but also code search; automated task 

recommendation; automated devel-
oper recommendation; automated 
defect/vulnerability/malware predic-
tion, detection, localization, and re-
pair; and many other purposes.

The Importance of 
Explainable AI for SE
Although AI/ML have opened up the 
possibilities of creating innovative de-
veloper tools that were hard to build 
using non-ML methods, their im-
pact will not be fully realized until 
developers trust the tools. A lack of 
explainability of AI/ML often leads 
to a lack of trust in the predictions 
of AI/ML models in SE, which in 
turn hinders the adoption of AI /
ML models in real-world software 
development practices. This prob-
lem is especially more pronounced 
for deep learning-based models. 
Most model techniques for creat-
ing ML-based tools are based on 
large language models that, aside 
from containing an enormous (and 
growing!) number of parameters, 
are black box and complex in na-
ture: CodeBERT, GraphCodeBERT, 

CodeGPT, CodeT5, UniXCoder, Co-
dex, GPT3, and so on.

Therefore, Explainable AI (XAI) 
for SE (XAI4SE) is a pressing con-
cern for the software industry and 
academia.1 In the light of predic-
tions made in SE contexts,1,2 prac-
titioners would like to know: Why 
has this code been generated? Why 

is this person best suited for this 
task? Why is this file predicted as 
defective? Why is this task required 
the highest development effort? and 
so forth.

XAI in a Nutshell
XAI is a set of processes and methods 
that allows human users to compre-
hend the results and output created 
by ML algorithms to enable trust. 
The explainability of AI/ML algo-
rithms can be achieved by 1) making 
the entire decision-making process 
transparent and comprehensible and 
2) explicitly providing an explana-
tion for each decision since an expla-
nation is not likely applicable to all 
decisions. In addition, explanations 
of AI/ML systems can be presented 
in various forms (for example, natu-
ral text, decision trees, rules, or im-
portant factors) to serve the various 
goals of different stakeholders (for 
example, developers, managers, tes-
ters, lawyers, and CEOs).

There is a multitude of XAI tech-
niques that have been used to support 
understanding models for various 

SE tasks (for example, explaining 
an Agile story point estimation,3 
explaining a defect prediction,4 lo-
calizing which lines are likely to be 
defective,5 and providing actionable 
advice on how to fix a defect6,7). 
They can be broadly categorized into 
white-box and black-box techniques. 
White-box techniques are tailored 
to specific ML models and exploit 
the internals of the model. Attention 
mechanisms and integrated gradients 
are popular white-box techniques 
for explaining deep learning mod-
els. Attention is used as a means for 
generating explanations by assign-
ing weights to different parts of the 
input, indicating an attribution of 
importance for the prediction. Inte-
grated gradients involve creating in-
terpolated inputs and evaluating the 
model. However, these techniques 
are not naturally suitable for models 
of code as there is no natural inter-
polation between a zero token and a 
token in the input code.

Many black-box, that is, model-
agnostic, techniques are based on 
perturbation mechanisms. While 
there are certainly variations in these 
methods, the basic idea is to modify 
the input data in a systematic way and 
observe the difference in the model’s 
output to help understand which parts 
of the input are most important for 
the model. There are different types 
of perturbation-based explanation 
techniques, including Local Interpre-
table Model-Agnostic Explanations 
(LIME)8 and Shapley Additive Expla-
nations (SHAP).9

Other mechanisms, which could be 
considered perturbation based, have 
used delta-debugging techniques to 
comprehend source code models by re-
ducing a program to a minimum set of 
statements that still retain the model’s 
initial output. The underlying assump-
tion is that the remaining statements 
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are the crucial signals being detected 
by the model. The objective is to iden-
tify the crucial features that affect 
the model’s output.

Overview of the Special 
Issue Articles
The aim of this special issue is to be 
a venue for sharing practical expe-
riences and research results on the 
new emerging research direction of 
XAI4SE. The special issue includes 
two articles that address two impor-
tant challenges (that is, reliability 
and trustworthiness). Next, we give 
a brief overview of the contents of 
the special issue.

“Toward Reliable Software Ana-
lytics: Systematic Integration of 
Explanations From Different Model-
Agnostic Techniques,” the article by 
Gichan Lee and Scott Uk-Jin Lee,A1   
addresses the reliability challenge of 
model-agnostic techniques. Recently, 
software analytics began to explain 
the reasons behind the predictions 
of ML and AI models for various 
aspects of software projects using 
model-agnostic techniques derived 
from the XAI domain. However, 
there is no guarantee that different 
model-agnostic techniques will gen-
erate consistent explanations for the 
same predictions. Therefore, practi-
tioners may obtain different insights 
depending on the technique they use. 
This article discusses the problem 
caused by the inconsistent explana-
tions generated from different model-
agnostic techniques. In addition, the 
authors propose a method to inte-
grate inconsistent explanations to 
derive information that can provide 
more useful and reliable explanations 
to practitioners.

“Don’t Lie to Me: Avoiding Mali-
cious Explanations with STEALTH,” 
the article by Lauren Alvarez and 
Tim Menzies , A 2 add re s s e s  the 

trust    worthiness challenge of model-
agnostic techniques. They propose 
STEALTH, which is a method for 
using some AI-generated models 
without suffering from malicious at-
tacks (that is, lying) or associated 
unfairness issues. After recursively 
biclustering the data, the STEALTH 
system asks the model a limited num-
ber of queries about class labels. 
STEALTH asks so few queries (one 
per data cluster) that malicious algo-
rithms cannot 1) detect its operation 
or 2) know when to lie.

We also prepared Sounding Board, 
“Expert Perspectives on Explainabil-
ity,” with interviews from inter-
nationally recognized experts in 
industry who have deployed large AI/
ML systems as part of the SE lifecy-
cle.A3 We want to gather their expert 
perspectives on how their work has 
shaped the SE landscape and what 
role explainability has currently 
and in the future. We conducted in-
terviews with Eddie Aftandilian 
(principal researcher at GitHub 
Next) and Vijay Murali (software 
engineer at Meta). We talked about 
the broader role of ML/AI for SE; 
the spectrum of models and software 
artifacts that are affected; how we 
could more systematically evaluate 
explanations; and the role of trust-
worthiness that explainability en-
ables for the future of AI in SE.

Future Directions
While XAI has shown lots of prom-
ise in SE, there are various emerging 
challenges that remain largely unex-
plored.10 Possible research questions 
include the following.

Designing an Explanation
• What are the needs, motivations, 

and challenges of XAI4SE?
• Do different stakeholders need 

different explanations?

• What is the best form of expla-
nations for SE tasks that are 
most understandable by soft-
ware practitioners?

• What aspects of psychology, 
learning theories, cognitive sci-
ence, and social sciences must be 
considered when designing an 
explanation for SE tasks?

Developing and Evaluating  
XAI4SE techniques
• Can XAI techniques be applied 

to new SE tasks to serve other 
purposes, for example, testing, 
debugging, visualizing, inter-
preting, and refining AI/ML 
models?

• Can we use XAI methods to de-
tect and explain potential biases 
when applying AI tools in SE?

• What is a systematic evaluation 
framework of XAI techniques 
for SE tasks?

• How can we evaluate the impact 
of using XAI techniques in soft-
ware development practices?

• What are the industrial case 
studies, experience reports, and 
lessons learned from XAI4SE in 
practice?

W e look forward to see-
ing more publications 
addressing these impor-

tant research questions. 
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