
Editor: Editor Name
affi l iation
email@email.com

84	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0740 -7459 / 23©2023 I EEE

REQUIREMENTS
Editor: Philippe Kruchten
University of British Columbia
pbk@ece.ubc.ca

SOUNDING BOARD

JÜRGEN CITO IS interviewing Vi-
jayaraghavan Murali (VM), a soft-
ware engineer at Meta, and Eddie
Aftandilian (EA), a principal researcher
at GitHub Next.

Q. What do you think is the role of
machine learning (ML) and artificial
intelligence (AI) in the broader sense
in relation to software engineering?

VM: ML is going to play a very criti-
cal role in pretty much all stages of
software engineering. Typically, we
talk about the software engineering
cycle as having an inner loop and an
outer loop. The inner loop is where
developers write code, debug it, test
it, and build it. They produce an ar-
tifact we call a diff or a commit. And
then there’s an outer loop, where con-
tinuous integration runs automated
tests and, additionally, a code review
is performed on that artifact. Further
stages include the product release and
potentially the debugging and attri-
bution of postproduction bugs, which
constitute the outer loop. We have
initially focused on the outer loop
with projects like Minesweeper,1 try-
ing to attribute post release bugs and

crashes. We are now also starting to
focus on the inner loop, where peo-
ple are actually authoring code, and
on what we can do to use models to
assist them in writing code faster, for
example, by performing code search.

EA: I think AI and ML are becoming
a critical part of the software engi-
neering process. We’re already seeing
an impact on how developers write
code with tools like GitHub Copilot.
And I think we’re just starting to see
the impact of tools like ChatGPT on
answering questions, especially an-
swering technical questions. For in-
stance, how do I do X in PyTorch?
ChatGPT will give me a pretty good
answer. And I don’t have to read pages
and pages of PyTorch documentation.

Q. What is the spectrum of models
and software artifacts you’re seeing?

EA: In the near future, we’re going to
see ML transform many other aspects
of the software development process,
for example, of all the things that
software developers do that are not
just writing code. They’re doing code
reviews, they’re debugging issues,
they’re fixing bugs, and they’re writ-
ing documentation. We’re right on
the cusp of ML transforming how

those activities are done. It’s interest-
ing to ask whether all of those ac-
tivities still exist in a world with very
smart ML models. Do I need a human
to review my code if I have a model
that can review my code synchro-
nously with me? Or maybe the model
just never suggests the bad code that I
would have written and doesn’t need
to be reviewed. I see documentation
as another example of that. If a model
can do a good job generating docu-
mentation from source code, does the
human ever have to write documenta-
tion? Maybe not. This is all very spec-
ulative, and who knows how much
of all this will pan out. At the pace at
which we’re seeing AI improve today,
things will shift very soon.

VM: We have a lot of interest in mod-
eling all kinds of software artifacts
that are produced by developers. For
instance, we are looking at code com-
mits, which are different in the distri-
bution than other code because they
constitute a particular unit of code
that a developer deems complete,
rather than incomplete code as they
are typing and forming an idea at the
same time (in the context of genera-
tive models). We are also looking at
what happens in code review: com-
ments that reviewers make, requests

Expert Perspectives
on Explainability
Jürgen Cito, Satish Chandra, Chakkrit Tantithamthavorn , Hadi Hemmati

Digital Object Identifier 10.1109/MS.2023.3255663
Date of current version: 18 April 2023

https://orcid.org/0000-0002-5516-9984

SOUNDING BOARD

	 MAY/JUNE 2023 | IEEE SOFTWARE � 85

for changes, and these sorts of sig-
nals. We are also looking to capture
discussions that happen around code
in internal discussion forums (a bit
like Stack Overflow) as part of our
models. This is particularly useful to
teach models how natural language
interacts with code elements. We are
also looking at crashes or bug reports
that are collected through telemetry.
Training our models with these vari-
ous artifacts can aid in generative
tasks, like helping developers write
code or addressing code review com-
ments automatically. We also build
models that are discriminative in na-
ture, for example, attributing a par-
ticular regression to a team.

Q. Where do you see the role of ex-
plainability in those powerful models?

EA: I’ve been thinking about this
question, but from the perspective of
someone building the tools. Currently,
the process, especially for prompt
engineering, is very trial and error
based. It’s in its early days, and we’re
continuing to evolve our principles
around it. You try random things and
you need some way to evaluate them.
If they work, they work; if they don’t,
they don’t. And you have no idea why.
So, as someone who has spent a lot of
time crafting prompts, it’d be really
helpful for me to know why a certain
generation was wrong. What about
this prompt caused this incorrect gen-
eration? And how could I change this
prompt to get the generation I want?
From the user’s perspective, one thing
I observed from my use of Copilot
over time is that I’ve learned how to
redirect it when it gives me the wrong
generation. And I do that by writ-
ing comments. Often I’ll first look
at what it suggests for me, and if it’s
not what I want, I’ll write a comment,
telling it very specifically what I want.

From there, it does give it to me, but
that’s not very discoverable. In that
sense, it would be nice if somehow
the model could tell the user: I need to
know more to give you the generation
that you’re looking for.

Sometimes I would like to know:
Did Copilot produce this genera-
tion because there was an example of
something similar somewhere in the
context? Or is it because I gave it the
definition of the application program-
ming interface (API) or saw the defi-
nition of the API somewhere and read
the documentation and learned how
to use it? Or did it just see this kind
of thing in the training set? At a user
level, it would be nice to collect a set of
tips and tricks of how to make the best
use of Copilot, and that probably al-
ready exists in some GitHub repo. Or
maybe you could automate that a bit
so that the user doesn’t have to read a
document to learn how to do things.
If Copilot itself could provoke you and
push you into the right path for it to
give good completions, I think that
would be helpful to a lot of users.

In some of the literature where
people have investigated productivity
analyses of Copilot, it seems that new
programmers, like junior program-
mers and undergraduates, tend to
have more trouble with it than experi-
enced programmers. I wonder if that
is a case where new programmers are
just not experienced using the tool?
Are they not prompting it in the right
way and then getting low-quality
completions that take them longer to
verify? As you can see, there’s a lot
we’re looking to understand here.

VM: I think explainability is going
to become a really important feature
because we need to build trust among
developers. There are certain tasks
for which I do not see an immediate
need for explainability from a user’s

perspective, for example, code genera-
tion. When that happens right in the
ideation stage, developers are con-
stantly in the flow typing code, and
we are using a model to suggest the
next few tokens or maybe a few lines
of code that the developer has to write.
In that kind of very fast-paced setting,
explainability is tricky to pull in. It’s
very hard to show the developer that
piece of code and also an explana-
tion about why the model generated
that code. It doesn’t really fit into that
kind of product. The understanding is
that the model may not be entirely ac-
curate. And past literature has shown
that developers are fine with rework-
ing some of those additions, as long
as they don’t need to rewrite the en-
tire thing. So, as long as the sugges-
tions are sort of accurate, developers
are fine with accepting it and then re-
working things here and there.

But there are other settings where
explainability is really critical—where
there is less involvement from the hu-
man side. For instance, sometimes
we are operating in a setting where
we are trying to help automate code
review comments. In that case, the
involvement of the human is not as
tight as in code authoring because
code review is asynchronous. It hap-
pens offline. The goal would be to see
if we can use an AI system to auto-
matically suggest some patches for
review comments that are suggested.
This is also similar for discriminatory
models that make judgments about
code, for example, bug localization,
detecting privacy-sensitive dataflow,
or unoptimized code. In those kinds
of settings, it is really critical for the
model to offer an explanation along
with the prediction because, if you’re
just pointing to a line of code and
saying, “Oh, this line of code has
a bug,” or ”This line of code is not
optimized,” developers would want

SOUNDING BOARD

86	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

to know why you came up with this
prediction. The explanation serves an
educational purpose and also builds
trust in the model. In these other
kinds of applications involved in very
similar technology, explainability is
going to be very critical. To follow up
on what I mentioned earlier: I think
in a setting of the inner loop, where
you write code and you’re getting
suggestions from the AI, that might
not be the right time to induce an ex-
planation, but it would definitely be
right in stages of the outer loop.

Q. What would be the properties of
your ideal explainability tool?

VM: There are certain applications
where the explainability needs to be
really fast, but I would say that, typi-
cally, when we think of a discrimina-
tory problem, we would imagine that
the model would come up with some
probability numbers. To me, the main
incarnation of explainability should be
that rather than just coming up with a
number, the model should also be able
to point out and say why it specifically
came up with that number. It could be
as simple as pointing to certain parts
of the input that caused it to come up
with that prediction. Or it could be
more conversational in nature, like
what ChatGPT currently does. It ex-
plicitly asked the system why it made
a particular prediction, and the model
comes up with a natural language ex-
planation for why it made the predic-
tion. For instance, you could provide
a piece of code, tell it is there a bug in
this code, and ask it to explain it; lit-
erally, “What is the bug there?” And
it actually offers an elaborate explana-
tion. However, that explanation could
itself be faulty, but confident.

EA: Interactivity, for example, inter-
active speed, would be really helpful.

If an explainability tool could operate
in the integrated development envi-
ronment while I’m working and pro-
actively tell me, “If you did this, you’d
get a better completion,” that would
be really helpful. It’s much better to
try to teach these things in context
when the users are actually trying to
do something. Precision is very im-
portant. It would be really frustrat-
ing if I were told: this is why you got
this generation, and then as a result I
tried to change it and still didn’t get
what was expected. You do want to
have high precision. You don’t want
to ask yourself whether your debug-
ger is buggy.

Q. What do you think are good ways
we can systematically evaluate and
measure the quality of these AI sys-
tems and also the explanations that
we produce?

EA: Evaluating these sorts of natu-
ral language processing (NLP)-type
things is very difficult. In terms of
evaluating model outputs, we try to
execute the code and compare them
to test cases and those kinds of things.
One of the things that I think is inter-
esting about the latest large language
models is that they can kind of act
like human raters by themselves. You
can ask them to compare two para-
graphs of text and determine whether
they are factually consistent. And they
can kind of answer you. It’ll be in-
teresting to see if this all evolves into
models producing output and then
other models evaluating the quality of
the outputs, like reinforcement learn-
ing from human feedback. There are
various techniques from the NLP lit-
erature that could be useful for vali-
dating the accuracy of explanations.
Potentially, we could perform back
translation, where you provide the
prompt or some context, then you

give the explanation, and then you
check whether the explanation fol-
lows from the prompt. I’m wondering
if there’s something clever here you
can do with the models themselves to
evaluate the outputs.

VM: I think it basically would boil
down to user adoption rate in terms
of online metrics, that is, essentially
conducting some A/B experiments
on how often a particular metric is
moved. Let’s say you are predicting
if a particular piece of code is opti-
mized or not. One particular metric
we can track there is how often a user
made some changes based on predic-
tion of the model. Essentially, we
want to compare two things: how of-
ten users are taking an action based
on the prediction of the model, and if
the model just offered the prediction
alone versus if it offered the predic-
tion along with an explanation. That
is the kind of the split that we want
to make. Of course, controlling for
randomness and biases, we want to
be able to show that users are more
likely to take some action on a model
prediction if it came along with that
explanation. This is one way we can
validate that the explanation was key
to actually making the user take fur-
ther action based on the model. It’s
also sort of a measure of trust be-
cause it means that the user trusted
the model prediction more with the
explanation and trusted it enough to
take an action.

Q. Explainability can be seen as a
tool we show to developers that use
these models, but we can also use
explainability tools to debug models
so that we understand how end users
may see them. How would you think
these approaches for explainability
differ, or is there one tool that can
rule them all?

SOUNDING BOARD

	 MAY/JUNE 2023 | IEEE SOFTWARE � 87

EA: I don’t think that end users want
to be exposed to the details of prompt
generation. I think they want you to
automate that as much as you pos-
sibly can. Then you run into the fol-
lowing problem: if they don’t get what
they want, if you take too much of the
prompt generation away from them,
how do they push the model back to
giving them what they want? Espe-
cially from the Copilot perspective,
you don’t want the users to really have
to think about how they’re generating
their prompt. You want them to just
write code the way they’re going to
write code, and then we magically give
them the completion they want. We’re
not there yet, so you have to give them
some control to do that. The current
way of doing this is not very discover-
able and depends a lot on experience.
I don’t know how long it would take
a user to figure out that’s how they’re
supposed to do it. There was an inter-
esting article recently from Microsoft
Research, where they had around 20
subjects complete a task using Copi-
lot, and they recorded their actions.2
They then had them retrospectively
label what they were doing at each
time interval during the session. They
found that 11.6% of the time was
spent in prompt crafting. They were
already doing it.

VM: I think explainability can help in
both cases, but there’s a slightly dif-
ferent notion of explainability in my
opinion. In the first case, we are trying
to show explanations per prediction
to users, so that is essentially going to
quantify the consistency between the
model’s prediction and the explanation
that it offers. It’s going to be per exam-
ple or per prediction. For debugging, I
think we need maybe a slightly differ-
ent notion of explainability, which is
explaining what the model has actually
learned. As model designers, that is

essentially what we want to know: not
necessarily individual explanations per
prediction, but something that actually
looks at the model as a whole. Maybe

it’s an aggregation of individual pre-
dictions. For these really large models,
such as ChatGPT, the model design-
ers probably ask themselves: What has

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JÜRGEN CITO is an assistant professor at TU Wien, 1040

Vienna, Austria. His research interests include machine learning

for software engineering applications. Cito received his Ph.D. in

computer science from the University of Zurich, Switzerland and

was a postdoctoral research scholar at the Massachusetts Institute

of Technology. Contact him at juergen.cito@tuwien.ac.at.

SATISH CHANDRA is a research scientist at Google, CA 94043

USA. His research interests include programming

languages and software engineering, including program

analysis, type systems, software synthesis, bug finding and repair,

software testing and test automation, and, most recently, applica-

tions of machine learning to developer tools. Chandra received his

Ph.D. in computer science from the University of Wisconsin-Mad-

ison. He is an Association for Computing Machinery Distinguished

Scientist. Contact him at schandra@acm.org.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

CHAKKRIT TANTITHAMTHAVORN is a senior lecturer

of software engineering and a 2020 Australian Research Council

Discovery Early Career Research Award Fellow in the Faculty of

Information Technology, Monash University, Clayton, Victoria 3800,

Australia. His current focus is on pioneering an emerging research

area of explainable artificial intelligence (AI) for software engineer-

ing and inventing many AI/machine learning/deep learning/natural

language processing-based technologies to improve developers’

productivity and make software systems more reliable and secure,

while being explainable to practitioners. Contact him at chakkrit@

monash.edu. Contact him at chakkrit@monash.edu.

JÜRGEN CITO is an assistant professor at TU Wien, 1040

Vienna, Austria. His research interests include machine learning

for software engineering applications. Cito received his Ph.D. in

computer science from the University of Zurich, Switzerland and

was a postdoctoral research scholar at the Massachusetts Institute

of Technology. Contact him at juergen.cito@tuwien.ac.at

HADI HEMMATI is an associate professor in the Department

of Electrical Engineering and Computer Science, York University,

Toronto, ON M3J1P3, Canada. He is also an adjunct associate pro-

fessor at Calgary, AB, Canada. His main research interests include

automated software engineering (with a focus on software testing,

debugging, and repair) and trustworthy artificial intelligence (with a

focus on robustness and explainability). His research has a strong

focus on empirically investigating software/machine learning engi-

neering practices in large-scale industrial systems. He is a Senior

Member of IEEE. Contact him at hemmati@yorku.ca.

SATISH CHANDRA is a research scientist at Google, CA 94043

USA. His research interests include programming

languages and software engineering, including program

analysis, type systems, software synthesis, bug finding and repair,

software testing and test automation, and, most recently, applica-

tions of machine learning to developer tools. Chandra received his

Ph.D. in computer science from the University of Wisconsin-Mad-

ison. He is an Association for Computing Machinery Distinguished

Scientist. Contact him at schandra@acm.org.

CHAKKRIT TANTITHAMTHAVORN is a senior lecturer of

software engineering and a 2020 Australian Research Council

Discovery Early Career Research Award Fellow in the Faculty

of Information Technology, Monash University, Clayton, Victoria

3800, Australia. His current focus is on pioneering an emerging

research area of explainable artificial intelligence (AI) for software

engineering and inventing many AI/machine learning/deep learn-

ing/natural language processing-based technologies to improve

developers’ productivity and make software systems more reliable

and secure, while being explainable to practitioners. Contact him

at chakkrit@monash.edu.

HADI HEMMATI is an associate professor in the Department

of Electrical Engineering and Computer Science, York University,

Toronto, ON M3J1P3, Canada. He is also an adjunct associate pro-

fessor at Calgary, AB, Canada. His main research interests include

automated software engineering (with a focus on software testing,

debugging, and repair) and trustworthy artificial intelligence (with a

focus on robustness and explainability). His research has a strong

focus on empirically investigating software/machine learning engi-

neering practices in large-scale industrial systems. He is a Senior

Member of IEEE. Contact him at hemmati@yorku.ca.

mailto:juergen.cito%40tuwien.ac.at?subject=
mailto:schandra%40acm.org?subject=
mailto:chakkrit%40monash.edu?subject=
mailto:hemmati%40yorku.ca?subject=

SOUNDING BOARD

88	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

this model actually learned? What are
the blind spots for this model? Where
can it use offensive content or content
that we don’t want to show to users?
Where is it more accurate; where is it
less accurate? As model designers, we
want to understand the model as a
whole and ensure that we have all of
those things covered, so we are not, for
instance, generating vulnerable code.

Q. Where do you think the future of
these AI systems for software en-
gineering is going, and how do you
think explainability can support that?

EA: We’re on the cusp of these models
being integrated into all aspects of the
development process—activities be-
yond just writing code. To make that
work and to make sure the outputs

are accurate, you’re going to need to
be able to understand the “why.” Why
did you get the generation that you
didn’t want? Why did this bit of the
generation come out this way? I’m very
focused on the side of the person mak-
ing these tools, but right now the pro-
cess is in its infancy. We’re touching on
a wide set of problems, and our prin-
ciples are evolving. You can see this in
the various prompts. There are a lot
of tricks. A lot of it is just experience
based. But also, who knows if those
tricks will hold up with newer models?
I see explainability as critical in help-
ing to build these tools and, of course,
in enabling the users to actually use
them and build trust in them.

VM: I think we need to identify the
systems where explanations are more

critical compared to others and build
the explanation into the model itself.
I think that the output that comes
out of the model itself is the best way
to get explanations in front of users
and start making real impact.

References
1.	V. Murali, E. Yao, U. Mathur and S.

Chandra, “Scalable statistical root

cause analysis on app telemetry,” in

Proc. IEEE/ACM 43rd Int. Conf.

Softw. Eng.: Software Engineering in

Practice (ICSE-SEIP), Madrid, Spain,

2021, pp. 288-297, doi: 10.1109/

ICSE-SEIP52600.2021.00038.

2.	H. Mozannar, G. Bansal, A.

Fourney, and E. Horvitz, “Reading

between the lines: Modeling user

behavior and costs in AI-assisted pro-

gramming,” 2022, arXiv-2210.

Computing in Science
& Engineering
The computational and data-centric problems faced
by scientists and engineers transcend disciplines.
There is a need to share knowledge of algorithms,
software, and architectures, and to transmit lessons-
learned to a broad scientific audience. Computing in
Science & Engineering (CiSE) is a cross-disciplinary,
international publication that meets this need
by presenting contributions of high interest and
educational value from a variety of fields, including
physics, biology, chemistry, and astronomy. CiSE
emphasizes innovative applications in cutting-edge
techniques. CiSE publishes peer-reviewed research
articles, as well as departments spanning news and
analyses, topical reviews, tutorials, case studies, and
more.

Read CiSE today! www.computer.org/cise

Digital Object Identifier 10.1109/MS.2023.3262314

	084_40ms03-soundboard-3255663

