
4 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 3 © 2 0 2 3 I E E E

IEEE Software To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement the developers and managers who want to keep up with rapid technology change.

A fool with a tool is still a fool.
—Grady Booch

WITHIN A SHORT amount of six
months, the productivity and creativ-
ity improvement promise delivered
by generative artificial intelligence
(AI), such as in large language mod-
els (LLMs), has taken the world by
storm. This storm in particular is felt
by developers and those conducting
research in automated software engi-
neering. The quick shift observed in
software engineering conferences
gives one data point to understand
the magnitude of the excitement
(and panic) the changes that the ap-
plication of LLMs are hinting at. For
example, the Automated Software

Engineering 20231 conference not
only received a record number of
661 submissions, it received more
than half of those focused on AI for
software engineering topics, most
of which experiment with various
applications of LLMs in conduct-
ing software engineering tasks. The
software engineering community has
entered a “we don’t know what we
do not know” period.

The challenge in front of every in-
dividual, team, and organization who
is involved in the creation of soft-
ware is an obligation to start figur-
ing out what their expectations are
from generative AI and shifting to
AI-based tools. This cannot and
should not be an exploration process
driven by fear of missing out. What
challenge will AI-based tools solve
that today’s software development

tools and processes cannot address
well? What will be the price of shift-
ing to these generative AI tools, es-
pecially as they increasingly depend
on foundation models in which a
model trained on a large amount
of unlabeled data can be adapted
to many applications? What do we
need to do to educate or hire the
individuals with the right skill sets
so that we can manage the risks in-
volved and reap the ever so hoped
for exponential benefits? We need
to be reminded more strongly than
ever before that despite the availabil-
ity of potentially improved tools, it
will be the humans who will use and
guide these tools in their purposeful
application. The infamous quote by
Grady Booch, “a fool with a tool is
still a fool,” is more relevant than
ever as we enter this uncertain era of

Digital Object Identifier 10.1109/MS.2023.3278056
Date of current version: 14 July 2023

FROM THE EDITOR
Editor in Chief: Ipek Ozkaya
Carnegie Mellon Software Engineering Institute
ipek.ozkaya@computer.org

The Next Frontier in
Software Development:
AI-Augmented Software
Development Processes
Ipek Ozkaya

mailto:ipek.ozkaya@computer.org
https://orcid.org/0000-0002-7336-4775

FROM THE EDITOR

 JULY/AUGUST 2023 | IEEE SOFTWARE 5

accelerated pace in development of
AI-augmented software engineering
tools and software development pro-
cesses which rely on them.

The evolution of tools for soft-
ware engineers to support improved
efficiency in software development
processes have historically focused
on removing a significant barrier to
enable better, faster, cheaper soft-
ware development, resulting ideally
in a higher quality product. Tools
developed to support software en-
gineers are powered by the vision to
accelerate pace while reducing the
number of mistakes. In this article,
I will review how software develop-
ment processes have evolved along
with the tools that enable develop-
ers to execute them more effectively. I
argue that, as we continue to investi-
gate the potential of recent advances
in LLMs and their applications in
software development,2 as well as
other forms of automation with or
without AI, such as bot-driven soft-
ware engineering,3 we do not lose the
focus of the key obstacles in quality
and timely software system delivery
that we are aiming to remove. As
the software engineering community,
we should be cautious to not create
approaches whose creation and sus-
tainment may create longer-term lim-
itations. We should boldly and clearly
recognize that removing challenges
will not solely be achieved by the
next most powerful generative AI
model: it will require hybrid tooling
fit for the task at hand.

AI-Augmented Software
Development
AI-augmented software development
refers to use of AI-based (while rec-
ognizing other tools are involved as
well) automated tools to improve the
efficiency of software engineers and
reduce their cognitive load, shifting

the attention of humans to the con-
ceptual tasks that computers are not
good at and eliminating human er-
ror from tasks where computers
can help. AI-augmented software
development implies a multimodal
human–computer “partnership” ap-
proach where the roles the software
development tools and software en-
gineers take can vary including but
not limited to the following ways:

• an intern we don’t entirely trust
but who does save us time,
sometimes a lot of it

• a bot that does things for us3

• a partner or pair programmer
that gives us advice.

With AI-based tools there are two
paths that tools can take: do a task
better without changing the flow of
the task or complete the task with a
different flow. AI-based tools pro-
vide opportunities in both aspects.

Improving developer productivity,
consequently system quality, has been
a key concern in software engineer-
ing for decades. A focus on improved
automation, including AI-augmented
tools (your favorite generative AI tool
too), is neither new nor novel. Soft-
ware development tools have already
been incorporating use of AI-based
tools for improved task execution.
Examples are plentiful. Multiobjec-
tive search has demonstrated devel-
opment of test cases, localization
and triage of crashes, and suggest-
ing and monitoring their fixes, such
as Sapienz developed in Meta.4 Sa-
pienz is used in production systems
at Meta today. Natural language
processing (NLP), such as bidirec-
tional encoder representation from
transformers (BERT), has been help-
ful in integrating information that
is disconnected to improve require-
ment traceability.5 Often manual

CONTACT
US

AUTHORS

For detailed information on submitting
articles, visit the “Write for Us” section at
www.computer.org/software

LETTERS TO THE EDITOR

Send letters to software@computer.org

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

address.change@ieee.org
(please specify IEEE Software.)

MEMBERSHIP
CHANGE OF ADDRESS

member.services@ieee.org

MISSING
OR DAMAGED COPIES

contactcenter@ieee.org

REPRINT PERMISSION

IEEE utilizes Rightslink for permissions
requests. For more information, visit www.
ieee.org/publications/rights/rights-link.html

http://www.computer.org/software
mailto:software@computer.org
http://www.computer.org/software
http://www.computer.org/subscribe
mailto:address.change@ieee.orgplease
mailto:address.change@ieee.orgplease
mailto:member.services@ieee.org
mailto:contactcenter@ieee.org
http://www.ieee.org/publications/rights/rights-link.html
http://www.ieee.org/publications/rights/rights-link.html

FROM THE EDITOR

6 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

and potentially slow process of code
review has both benefitted from
more targeted tool support, as well
as investigations around automatic,
flexible, and adaptive code analy-
sis and recommendation of reviews
using NLP and deep neural net-
works.6 Hierarchical clustering
to learn past fix patterns is applied to
drive program repair to automati-
cally fix instances of common bugs.7
Last but not least, improved versions
of LLMs have made auto code com-
plete a reality despite pitfalls.7 All
of these tools mimic the workflow of
existing software engineering ac-
tivities and aim to improve conduct-
ing them as both fast and correct.

The opportunity, and challenge,
for the software engineering com-
munity is to discover whether the
fast-paced improvements in AI as-
sistants change how we engage
with and orchestrate software de-
velopment activities, such that the
use of tools triggers changes in sev-
eral dimensions. First and foremost,
software engineers and business
stakeholders do not just hope for
modest improvement, but expect
improvements at scale, reaching 10x
or more reduction in resource need
and error rates. They hope that such
tools will reduce their reliance on
highly skilled engineers, flipping
the economies of scale in software
development workforce challenges.
Similarly, availability of better tools
gives the illusion that the need for
certain classes of activities, such as
extensive testing and analysis, may
become negligible. Such tools sadly
can easily fool novice stakeholders
that hard-to-find expertise will not
be an as critical issue anymore.

There are several open ques-
tions: Will these new generation
of AI-augmented tools be able to
guarantee security, performance,

conformance to quality standards,
and intended architectures? As
tools get more sophisticated, will
such tools help developers to man-
age ripple effects of decisions,
manage complexity, and focus on
difficult tasks? Will users (develop-
ers and end users alike) trust these
tools? Will expertise demand de-
crease, as tools will carry some of
the burden? Early empirical stud-
ies reflecting on use of LLM sup-
ported software development tools,
such as Copilot, reflect that abil-
ity to critique will be a key skill
needed, implying relying on exper-
tise will not decrease.8 However,
we will see the leap ahead to im-
provements desired and promised
not simply by getting better tools
that conduct current activity flows
better, but also getting tools which
help us redesign workflows, a step
forward in evolving our software
development processes.

A Brief, Incomplete History
of the Evolution of Software
Development Processes
Winston Royce is attributed with
describing the implementation
steps of software development
process, infamously known as the
waterfall process.9 Royce’s depic-
tion included the major activities
of system and software require-
ments, analysis, design, coding,
test ing, and operations. Identi-
fying and explaining a f low of
software engineering activities en-
abled developers to get a handle
on the otherwise complex to
orchestrate software engineering
projects. Computer-aided software
engineering tools emerged to assist
design modeling and implementa-
tion; requirement traceability tools
got popularized to achieve con-
sistency checking across artifacts

EDITORIAL
STAFF
IEEE SOFTWARE STAFF
Journals Production Manager: Peter Stavenick,
p.stavenick@ieee.org
Cover Design: Andrew Baker
Peer Review Administrator: software@computer.org
Periodicals Portfolio Specialist: Cathy Martin
Periodicals Operations Project Specialist:
Christine Shaughnessy
Content Quality Assurance Manager: Jennifer Carruth
Periodicals Portfolio Senior Manager: Carrie Clark
Director of Periodicals and Special Products:
Robin Baldwin
IEEE Computer Society Executive Director:
Melissa Russell
Senior Advertising Coordinator: Debbie Sims

CS PUBLICATIONS BOARD
Greg Byrd (Interim VP of Publications), Terry Benzel,
Irena Bojanova, David Ebert, Dan Katz, Shixia Liu,
Dimitrios Serpanos, Jaideep Vaidya; Ex officio:
Robin Baldwin, Nita Patel, Melissa Russell

CS MAGAZINE OPERATIONS
COMMITTEE
Irena Bojanova (Chair), Lorena Barba, Lizy K. John,
Fahim Kawsar, San Murugesan, Ipek Ozkaya,
George Pallis, Charalampos (Babis) Z. Patrikakis,
Sean Peisert, Balakrishnan (Prabha) Prabhakaran,
André Stork, Ramesh Subramanian, Jeff Voas

IEEE PUBLICATIONS OPERATIONS
Senior Director, Publishing Operations: Dawn M. Melley
Director, Editorial Services: Kevin Lisankie
Director, Production Services: Peter M. Tuohy
Associate Director, Information Conversion and
Editorial Support: Neelam Khinvasara
Senior Manager, Journals Production: Katie Sullivan
Senior Art Director: Janet Dudar

Editorial: All submissions are subject to editing for clarity, style, and
space. Unless otherwise stated, bylined articles and departments,
as well as product and service descriptions, reflect the author’s
or firm’s opinion. Inclusion in IEEE Software does not necessarily
constitute endorsement by IEEE or the IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s Web-based
system, ScholarOne, at http://mc.manuscriptcentral.com/
sw-cs. Be sure to select the right manuscript type when
submitting. For complete submission information, please visit
the Author Information menu item under “Write for Us” on our
website: www.computer.org/software.

IEEE prohibits discrimination, harassment and bullying:
For more information, visit www.ieee.org
/web/aboutus/whatis/policies/p9-26.html.

Digital Object Identifier 10.1109/MS.2023.3276830

mailto:p.stavenick@ieee.org
mailto:software@computer.org
http://mc.manuscriptcentral.com/sw-cs
http://mc.manuscriptcentral.com/sw-cs
http://www.computer.org/software
http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html
http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html

FROM THE EDITOR

 JULY/AUGUST 2023 | IEEE SOFTWARE 7

to manage the ripple effects and
dependencies between the “water-
fall” software development activities.
However, the unintended sequential
execution of these activities created
roadblocks due to delayed or nonex-
isting feedback loops and communi-
cation barriers.

The next generation of software
development processes, with an ef-
fort to remove these barriers, focused
on iterative and agile activity flows to
address communication and feedback
loop issues. Workflow management
tools, along with integrated devel-
opment environments and software

analysis tools, supported iterative
and agile processes as the task or-
chestration changed from sequential
on the entire requirements to itera-
tive. Workflow management tools
and issue trackers aimed to empower
software engineers to work with a
just-in-time mindset, pulling the next
task based on their tempo to eliminate
wait time and support iterative execu-
tion on requirements.

Software engineers learned the
hard way that when not conducted
with discipline, agile and iterative pro-
cesses result in disconnects between
design, development, and operations,

often causing unintended rework. No
matter what process you are follow-
ing, testing often gets short-changed.
Variations of iterative and incremen-
tal processes that also incorporate
“test first” philosophies further im-
proved workflows, catching unin-
tended mistakes early, supported by
unit-testing frameworks.

DevOps philosophy and process
further broke barriers between de -
velopment and operations. DevOps
deployment pipelines further enabled
running automated testing, code re-
view, and code analysis tools, whether
they are AI-based or not.

INTRODUCING THE “FAILURE MODE” COLUMN

With this July/August 2023 issue we are introducing a new
column, “Failure Mode” by Lorin Hochstein, a senior soft-
ware engineer at Netflix. This column is Lorin’s brainchild,
taking root in his experiences in having had to deal with
many normal and not so nor-
mal failures in the organiza-
tions where he worked. He is
questioning what these fail-
ures can teach us about how
we might succeed better.

If you have been in the
business of software develop-
ment, you know by now that
failure in software is normal,
unavoidable, and constant.
Despite this, software systems do work, some even work
to the extent that they save our lives, safely take us to far
places, enable us to communicate with one another over
long distances, and more. Lorin will use failure as his sub-
ject matter to help us better understand software and how
to write software that works better.

With Lorin assuming the “Failure Mode” column’s lead-
ership, Silvia Abrahão and Miroslaw Staron will take on the
helm of the “Practitioners’ Digest” column as its coeditors.

Silvia Abrahão is an asso-
ciate professor at Universitat
Politècnica de València, Valen-
cia, Spain, and Miroslaw Staron
is a professor in the Software
Engineering Division, Chalm-
ers University of Technology and
the University of Gothenburg,
Gothenburg, Sweden. Both Sil-
via and Miroslaw are not new to
IEEE Software, having served as
associate editors.

The goal of the “Practitio-
ners’ Digest” column is to bring
practice-relevant content from
different venues and build bridges
between communities. In their
first column, along with their co-
authors, they review research in
Open Source Software: Communi-
ties and Quality, from a number of
events in 2022.

I know our readers will enjoy both columns. As always,
do reach out to us with your feedback, questions, and ideas.

FROM THE EDITOR

8 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

This short summary of software
development processes evolution is
both incomplete and opportunisti-
cally focused on what worked. The
key advances in software develop-
ment processes and the automation
that supports them have led us to bet-
ter recognize and remove the barriers
against improved productivity and
more streamlined workflows. It is only
when new workflows are also sup-
ported by purposeful automation that
we start seeing significant improve-
ments in productivity and quality.

The shift from waterfall to ag-
ile, iterative, and incremental pro-
cesses was enabled by recognizing
that if software engineers conduct
all tasks around a smaller scope of
requirements, and then iterate and
incrementally grow, as opposed to
tackling the entire scope, conducting
all activities consecutively, they can
identify and resolve problems ear-
lier. A new generation of tools sup-
ported this new smaller scope of
task orchestration.

Writing tests first, implementing
against them, and running all tests
as the system is developed, as op-
posed to writing and running tests at
the end of the requirement, analysis,
design, and implementation steps,
removed barriers in wait time until
errors were discovered. Having tests
written first in automated frame-
works served as one of the stepping

stones to integrate continuously, as
opposed to at the end of the develop-
ment, and running all checks during
each small integration, as opposed to
during predetermined phases.

Tools enable removing barriers;
however, the need for tools should
be driven by where barriers exist and
how workflows can be redesigned.
Improved efficiencies are not solely
a result of improved automation or
process steps, but they are an out-
come of designing workflows that
target removing challenges.

The Next Frontier
We are at a turning point where
AI-based approaches to software
development automation will em-
power improvements on several
fronts, including correctness, scale,
and timeliness, despite many po-
tential risks and pitfalls.2 The risks
will likely initially drive up the costs
of development and sustainment.
However, 10× improvement will
not be an outcome of better tools,
even if they help; 10× improvement
will be an outcome of understand-
ing and redesigning task flows to re-
move barriers.

The question in front of the soft-
ware engineering community is not
how to develop the best LLM to
become the next autocoder, or the
search-based reasoning tool to en-
able tradeoff analysis at the pareto
front, or the bot that can crawl a

code base and execute mundane but
repetitive and expensive tasks. We
need to ask what barriers we are re-
moving with these tools and how can
we redesign workflows to take advan-
tage of AI-augmented and other tools
for 10× improvements. What activi-
ties will be reordered? What activities
will have less priority and what new
activities and developer interaction
models will be needed?

Once we better recognize what
barrier we are removing, we can
also maybe name this next exciting
phase in the evolution of the soft-
ware development processes. Maybe
this next frontier is a “self-validating
software development” process to
emphasize that we may not need
extensive assurance and validation,
because we can catch and fix er-
rors in real time and recommend
how to write them correctly in the
first place with our new tools. Per-
haps we will want to call such a de-
velopment process the “self-adaptive
software development” process, as
we will want to emphasize that our
data are working for us and help re-
flect, improve time to conduct activi-
ties and their correctness, as well as
where to focus. Or we will mirror
this new frontier based on skills of
expert engineers who know how to
critique their own as well as other’s
work, and will call it “reflective,
intelligent software development”
or “design prompt-driven iterative
development.”

I n th i s brave new world , we
should be reminded early on and
often enough that AI is the means
to the end, not the goal. It is a tool,
like many others that we have been
benefiting from. We will accomplish
improvements only when we map
how the tools remove the barriers,
not when we develop better founda-
tion models, general AI, or the next

In this brave new world, we should be
reminded early on and often enough

that AI is the means to the end,
not the goal.

FROM THE EDITOR

 JULY/AUGUST 2023 | IEEE SOFTWARE 9

best chat bot, which answers any pro-
gramming questions.

References
1. “ASE 2023,” in Proc. 38th IEEE/

ACM Int. Conf. Automated Softw.

Eng., Kirchberg, Luxembourg, Sep.

2023. [Online]. Available: https://

conf.researchr.org/home/ase-2023

2. I. Ozkaya, “Application of large

 language models to software

 engineering tasks: Opportunities,

risks, and implications,” IEEE

Softw., vol. 40, no. 3, pp. 4–8,

May/Jun. 2023, doi: 10.1109/

MS.2023.3248401.

3. I. Ozkaya, “A paradigm shift in

automating software engineering

tasks: Bots,” IEEE Softw., vol. 39,

no. 5, pp. 4–8, Sep./Oct. 2022, doi:

10.1109/MS.2022.3167801.

4. N. Alshahwan et al., “Deploying

search based software engineering

with Sapienz at Facebook,” in Proc.

Int. Symp. Search Based Softw. Eng.

(SSBSE), 2018, pp. 3–45.

5. J. Lin, Y. Liu, Q. Zeng, M. Jiang,

and J. Cleland-Huang, “Traceability

 transformed: Generating more

accurate links with pre-trained BERT

models,” in Proc. IEEE/ACM 43rd

Int. Conf. Softw. Eng. (ICSE), 2021,

pp. 324–335, doi: 10.1109/

ICSE43902.2021.00040.

6. A. Gupta and N. Sundaresan, “Intelli-

gent code reviews using deep learning,”

presented at the Deep Learning Day,

London, U.K., Aug. 2018.

7. J. Bader, A. Scott, M. Pradel, and

S. Chandra, “Getafix: Learning

to fix bugs automatically,” Proc.

ACM Program. Lang., vol. 3, no.

OOPSLA, Oct. 2019, Art. no. 159,

doi: 10.1145/3360585.

8. C. Bird et al., “Taking flight with

copilot: Early insights and opportu-

nities of AI-powered pair-program-

ming tools,” Queue, vol. 20, no. 6,

pp. 35–57, Nov./Dec. 2023, doi:

10.1145/3582083.

9. W. W. Royce, “Managing the devel-

opment of large software systems,”

Proc. IEEE WESCON, vol. 26,

pp. 1–9, Aug. 1970.

Write for the IEEE Computer
Society’s authoritative
computing publications
and conferences.

IEEE COMPUTER SOCIETY

Call for Papers

GET PUBLISHED
www.computer.org/cfp

Digital Object Identifier 10.1109/MS.2023.3284169

https://conf.researchr.org/home/ase-2023
https://conf.researchr.org/home/ase-2023
https://conf.researchr.org/home/ase-2023<AU
http://dx.doi.org/10.1109/MS.2023.3248401
http://dx.doi.org/10.1109/MS.2023.3248401
http://dx.doi.org/10.1109/MS.2022.3167801
http://dx.doi.org/10.1145/3360585
http://dx.doi.org/10.1145/3582083

	004_40ms04-editorial-3278056

