
0 7 4 0 - 7 4 5 9 / 2 3 © 2 0 2 3 I E E E SEPTEMBER/OCTOBER 2023 | IEEE SOFTWARE 13

IN OUR COLUMN thus far, we’ve
focused on understanding and mea-
suring productivity in a human-cen-
tered manner.1 Along the way, we
have noted that the productivity of
less senior and less tenured develop-
ers is, at least in some cases, sensitive
to different pressures (or differen-
tially sensitive to the same pressures)
as that of their more senior and more
tenured colleagues.2 This finding is
intuitive: developers that are ear-
lier in their career are typically as-
signed different tasks, they have less
variety of experience to draw upon
when faced with technical or orga-
nizational obstacles, and they may
be less familiar with relevant tools,
infrastructure, languages, libraries,
and processes when compared to
their more experienced fellow engi-
neers. But how does a developer go
from a rookie to a veteran? What
facilitates or hinders developer on-
boarding and ramp-up? How can
one assess interventions aimed at
speeding up or otherwise improving
developer training and education so

that new engineers are enabled to hit
their productivity stride quicker and
more easily?

How well software development
organizations can onboard new en-
gineers is critical to their produc-
tivity and success. Measuring the
onboarding experience of newly
hired engineers and tracking it over
time enables leaders to assess the
impact of developer onboarding re-
sources, practices, and programs to
drive improvements. Such tracking
also reveals the relative difficulty
of ramping up in different parts of
the organization, within different
development specialties, or on cer-
tain skills, to target interventions
appropriately. Enhancing the new
engineer experience has the poten-
tial to positively impact engineering
productivity, satisfaction, hiring,
and retention.

In this installment of our column,
we describe some recent research
on onboarding software develop-
ers, including some of the work
that we’ve done with colleagues at
Google to understand and measure
developer onboarding and ramp-up
at Google.

Understanding Ramp-Up
Experience
Many researchers have sought to
understand engineers’ “ramp-up
journey,” with a particular focus on
what facilitates or hinders ramp-up.3
A wide variety of factors can aid or
hinder a new engineer’s onboarding
and ramp-up,4 and numerous inves-
tigations have revealed that techni-
cal skills, social and organizational
factors, background and professional
experience, and onboarding and
training processes may speed or slow
the development of expertise in a
new software engineering role.3,5

To understand the onboarding and
ramp-up process of Google’s engi-
neers, we worked with an external
research vendor to interview en-
gineers across the tech industry to
understand common and unique on-
boarding practices. Then later, we
surveyed new engineers at Google to
understand who they are, what they
experienced during onboarding and
ramp-up, and what helped or hin-
dered their ramp-up.

Our research revealed a variety
of insights, many of which are mun-
dane in hindsight: they are about

Developer Productivity
for Humans, Part 5:
Onboarding and
Ramp-Up
Collin Green , Ciera Jaspan , Maggie Hodges , Lanting He, Demei Shen, and Nan Zhang

Digital Object Identifier 10.1109/MS.2023.3291158
Date of current version: 13 October 2023

DEVELOPER PRODUCTIVITY
FOR HUMANS

Editor: Ciera Jaspan
Google
ciera@google.com

Editor: Collin Green
Google
colling@google.com

https://orcid.org/0000-0003-1307-3869
https://orcid.org/0000-0003-4500-1392
https://orcid.org/0000-0002-9574-4752

DEVELOPER PRODUCTIVITY FOR HUMANS

14 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

how humans learn new concepts,
rather than anything specific to soft-
ware development specifically. We
found, for example, the need for
tailored onboarding specific to each
team’s work and each individual’s
prior knowledge. We also found that
the COVID-19 pandemic made it
harder to ramp-up, and that starter
projects needed to be selected to
maximize learning potential.

Although companywide onboard-
ing programs engaged nearly all new
developers, many noted that they
could use more training specific to
their team’s tools and processes; this
concern showed up in interviews
and was also one of the top-three
challenges in survey responses. New
developers reported that they felt
better supported when they had a
mentor who could provide context
for their work, and when they had
a manager who could guide them
on a pathway to ramping up on the
team. These insights are not new or
unique to Google; Microsoft also
did extensive research and found
that having a mentor or “onboard-
ing buddy” was useful for most
new employees.5

Developers who joined the com-
pany with prior work experience
also reported having unique needs
that were not always addressed by
companywide onboarding. These

developers would benefit from a
more tailored onboarding process
that allows them to opt-out of ses-
sions that cover common indus-
t r y best practices. Experienced
developers preferred to learn about
tools, processes, and systems by
diving into real tasks on their pri-
mary projects, rather than running
through sample tutorials or con-
trived starter projects.

For all developers, open responses
from the survey indicate that a major
challenge was the selection of an ap-
propriate starter project that would
facilitate learning key skills. This
also aligns with the research done
at Microsoft5 that highlighted the
importance of thoughtfully chosen
onboarding tasks, the benefit of tai-
loring those tasks to developer level,
and three strategies for doing so.

Reviewing the research that we
and others have conducted to un-
derstand the ramp-up experience for
new developers is useful because it
provides ideas about what is working
well, what is not working well, and
consequently, where we might act to
improve things. But how might we
determine whether the changes made
to onboarding are having the desired
effect? How might we estimate the
time saved or the efficiency gained in
ramp-up that results from improve-
ments? To do this, we need to have a

measurement that assesses how long
it takes new employees to ramp-up.

Measuring Ramp-Up Time
Measuring ramp-up time would en-
able leadership to assess the impact
of developer onboarding resources,
practices, and programs to drive
improvements. It would also reveal
the relative difficulty of ramping up
in different parts of the organiza-
tion, within different development
specialties, or on certain skills; this
would allow the company to target
interventions appropriately. In short,
measurement of ramp-up time is a
tool to help optimize the onboarding
and ramp-up experience.

It’s important to differentiate the
construction of quantitative mea-
sures of “ramp-up time” from a more
general notion of ramp-up experi-
ence. If we wanted to use logs-based
metrics to understand productivity
holistically during onboarding, we
would review multiple metrics that
capture the different facets of pro-
ductivity (e.g., speed, ease, and qual-
ity of engineering work) and allow
for consideration of tradeoffs that
may exist among those facets.6,7,8
But that wasn’t our goal in this work;
our goal in creating ramp-up-time
metrics was to facilitate the evalua-
tion of different interventions (e.g.,
different orientation and training
programs) and the impact of exter-
nal events (e.g., a global pandemic)
on ramp-up times. In short, our
ramp-up-time metrics are intended
to provide information about the
context of productivity, not produc-
tivity per se.

Constructing Ramp-Up-Time
Metrics
The idea of building an objective mea-
sure of ramp-up is not new. There is
previous work that measures ramp-up

Enhancing the new engineer
experience has the potential to
positively impact engineering

productivity, satisfaction, hiring,
and retention.

DEVELOPER PRODUCTIVITY FOR HUMANS

 SEPTEMBER/OCTOBER 2023 | IEEE SOFTWARE 15

speed using the first time to code
change, frequency of code changes,
and size of code changes.4,9,10 (We
use historically similar metrics at
Google: our own onboarding train-
ing regularly uses “time to first
code change” as a means to evaluate
whether the new training program
is a success.) In the previous studies
on ramp-up, researchers calculated
how long it took for new developers’
activity metrics to be comparable to
those of their already-ramped-up col-
leagues. That is, they used more ten-
ured engineers’ metrics to develop a
benchmark against which new engi-
neers’ metrics were compared.

We took a different approach,
seeking to avoid scenarios where
developers might be individually as-
sessed or compared to each other.
Such scenarios might incentivize de-
velopers to rush their onboarding or
deliberately “game” our metrics.11,12
We also wanted the ability to con-
trol for intrinsic individual differ-
ences and differences in the nature,
complexity, and requirements of dif-
ferent engineering roles. So, rather
than use measurements of tenured
developers as a benchmark to evalu-
ate new developers, we validated our
metrics against engineers’ own per-
ceptions of the extent to which they
were ramped-up on a variety of key
engineering tasks and normalized
progress to each individual engineer,
rather than to his or her colleagues.
That is, we created ramp-up metrics
based on the time required for new
developers to reach their own stable
“cruising speed.”

First, we reviewed a set of can-
didate metrics that might be use-
ful proxies for engineers’ ramp-up
speed. We built upon our developer
logging system, InSession,13 which
ingests logs from multiple devel-
oper tools to build a picture of a

developer’s behavior during his or
her workday. We initially evaluated
a set of nine different metrics that
could be useful in understanding
ramp-up time for engineers. Prelimi-
nary analyses showed some of these
metrics had a clear progressive im-
provement over time and also stabi-
lized around the same time, which
increased our confidence that these
measures reflect, in general, devel-
opers’ overall comfort in their new
roles, i.e., their “ramp-up.” Ulti-
mately, we selected three metrics
[active coding time per line of code
(LOC), reviewed LOC, and submit-
ted LOC] to further evaluate for
their utility in capturing ramp-up.

We created individually normal-
ized versions of the candidate met-
rics. We looked at each engineer’s
weekly aggregated metrics, and then
normalized each week’s value by
converting it to a percentage of the
stable value it eventually reached
(the engineer’s “cruising speed”). We
then aggregated all new engineers
who started within the same cohort
and designated the ramp-up time for
the cohort as the number of weeks
required for the aggregate metric
to be (approximately) 0%, different
from the cruising velocity, with the
requirement that it remain so for at
least four consecutive weeks.

Validating Metrics
Against Experience
These logs-based metrics compare
developers to themselves rather than
some generic threshold, thereby con-
trolling for effects that result from
language, team, and individual dif-
ferences. Although we knew they
had the shape we might expect, we
still needed to know the extent to
which the metrics reflected new de-
velopers’ larger holistic experience of
ramping up.

To validate these metrics, we in-
vited every developer who started at
Google in a 40-week time period to
complete a survey about his or her
onboarding experience. We used
a cross-sectional design to under-
stand the progress of onboarding:
developers’ hire date was used to
specify cohorts of developers that
were at different time points (by
week) in their ramp-up trajectory.
We ended up with a sample of more
than 3,000 developers, which was
representative of the population of
new engineers.

Critically, the survey asked re-
spondents to review the following set
of 17 common developer tasks per-
formed by new engineers:

1. writing code
2. reviewing other people’s code
3. running builds and tests
4. finding examples of application

programming interface (API) use
by others at Google

5. searching for and using devel-
oper documentation (not API
examples in code)

6. working with dependent change-
lists (a chain of changelists)

7. investigating the cause for the
code/product behaving in a
way you did not expect prior to
release

8. creating or maintaining unit
tests

9. reviewing other people’s soft-
ware design/architecture

10. tracking bugs and product issues
11. writing documentation for other

engineers (e.g., tool, API, and
service)

12. tracking your work items/devel-
opment tasks

13. triaging or prioritizing feature
requests or bugs

14. documenting decisions and the
rationale for those decisions

DEVELOPER PRODUCTIVITY FOR HUMANS

16 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

15. finding the right person or team
to contact for relevant expertise

16. feeling proficient with the
developer tools

17. needing minimal assistance from
other engineers to complete work.

For each task, respondents answered
the question, “Thinking about your
experience during the past week,
which statement best describes how
you feel about each of the following
tasks?”

• “I haven’t done this task.”
• “I expect to get much more effi-

cient at performing this task.”
• “I expect to get somewhat more

efficient at performing this
task.”

• “I expect to get slightly more ef-
ficient at performing this task.”

• “I already perform this task as
efficiently as I expect to.”

Similar to the logs-based metrics we
examined, the survey data display
a pattern where engineers reported
ramping up quickly at first, with
progress slowing down and gradu-
ally reaching a plateau. To validate
our candidate ramp-up efficiency
metrics, we calculated how closely
the survey-based ramp-up curves
for each engineering task correlated
with our logs-based ramp-up curves.

There were significant negative
correlations between normalized
active coding time per LOC and 15
of the 17 key engineering tasks that
were included in the survey; that is,
developers were coding faster and
rating themselves as more ramped-
up on these tasks as they gained
tenure. Skills related to coding and
documentation had the strongest
correlations with active coding time
per LOC, while skills around project
management, knowledge discovery,

and code review had lower correla-
tions (but were still correlated). This
result indicates that normalized ac-
tive coding time per LOC is a rea-
sonable proxy metric for engineers’
ramp-up on most of the key engi-
neering tasks.

Although this is a great result, it’s
not one that’s useful for most soft-
ware organizations as the ability
to measure active coding time per
LOC is somewhat unique. However,
we did find that a simpler metric
also performed decently: normal-
ized submitted LOC was positively
correlated with six of the 17 engi-
neering tasks. That is, as engineers
self-reported being able to complete
the task as efficiently as they thought
they could, they were also submit-
ting more LOC to the codebase.
The six tasks it was correlated with
were reviewing others peoples’ code,
creating or maintaining unit tests,
tracking bugs and product issues,
writing documentation for other en-
gineers, tracking development tasks,
and triaging or prioritizing feature
requests or bugs.

In brief, the following two met-
rics were reasonable proxies for en-
gineers’ ramp-up in general:

1. normalized active coding time
per LOC

2. normalized submitted LOC.

Given that both metrics correlate
with engineers’ self-reported ramp-
up across multiple engineering tasks,
it might seem prudent to rely solely
on the stronger metric (normalized
active coding time per LOC). There
are several reasons we chose to re-
tain normalized submitted LOC as
a second metric for ramp-up time.
First, it is convenient to have two
different metrics for ramp-up time
that can agree (or not) on the impact

of events or interventions that af-
fect onboarding. Second, the previ-
ous research examined both the rate
and volume of development work
as ways of measuring ramp-up, and
the two metrics roughly correspond
to these constructs. Finally, many
organizations might find it inconve-
nient to calculate active coding time.
Calculating normalized submitted
LOC per engineer is likely to be sim-
pler and faster for others seeking to
adopt our approach.

But a word of warning before
adopting these metrics: we’ve found
these metrics to be highly erratic and
noisy on an individual level. These
metrics should not be used to eval-
uate individual ramp-up speed as
they’re only valid for evaluating the
quality of a training program across
a cohort of developers.

Measuring the Impact of
an Unplanned Change
(COVID-19)
All of our data validation took place
during the time period impacted by
the COVID-19 pandemic and re-
mote onboarding policies; all the
engineers in our survey joined and
onboarded in a fully remote set-
ting. However, relevant logs data
are available extending back several
years, so this allows us to calculate
ramp-up-time metrics for cohorts of
engineers who were hired well be-
fore the pandemic. To demonstrate
the sensitivity of these metrics to a
substantive change in onboarding
practices and ramp-up experience,
and to address a timely and interest-
ing problem, we examined the ques-
tion of whether engineering ramp-up
times were impacted by the shift to
remote onboarding practices im-
mediately following the beginning
of the COVID-19 pandemic. We
thus were able to evaluate whether

DEVELOPER PRODUCTIVITY FOR HUMANS

 SEPTEMBER/OCTOBER 2023 | IEEE SOFTWARE 17

the work-from-home (WFH) policies
and remote onboarding that started
in mid-March 2020 impacted engi-
neer ramp-up efficiency by compar-
ing ramp-up times for engineers who
joined Google in the three months
after WFH (April–June 2020) to
the corresponding months in 2018
and 2019.

Engineers who joined Google af-
ter the beginning of the pandemic
were distinct from those who joined
before the pandemic when we exam-
ined normalized active coding time
per LOC. For engineers who joined
prior to the pandemic, their eventual
cruising speeds were 2.5-times faster
than their initial values, but for engi-
neers who joined after, their eventual
cruising speed was only 1.5-times
faster than their initial speeds. Engi-
neers who joined after the pandemic
also took longer to ramp-up: their
ramp-up time was approximately 22
weeks compared to 19 weeks for en-
gineers who joined before the pan-
demic, a difference of three weeks.
We similarly saw a longer ramp-up
time when measured using submitted
LOC per week. New engineers who
joined before the pandemic ramped-
up to their stable rate of submitted
LOC per week in roughly 12 weeks,
six-weeks faster than new engineers
who joined after the pandemic, who
took 18 weeks to reach a stable rate.
Combined, these results provide con-
crete indicators that it was harder
for new engineers to ramp-up in the
pandemic environment.

In summary, our ramp-up-time
metrics were sensitive to the change
in onboarding practices that coin-
cided with the onset of COVID-19
and emergency WFH and suggest
that remote onboarding (at least
as implemented hastily in the early
days of the pandemic) resulted in
slower ramp-up for engineers on

the order of three to six weeks. The
slower pace of ramp-up during re-
mote onboarding is corroborated
by the respondents’ answers to our
open-ended survey question about
challenges and support for onboard-
ing, which described how WFH im-

pacted onboarding and what might
have improved their experience.

Future Applications
We didn’t set out to measure the im-
pact of the pandemic, of course. It
merely provided a large-scale change
to onboarding at Google that allowed
us to test out our ramp-up-time met-
rics. Our plans for employing our
metrics and the findings from our
other research are still forming, but
we’re thinking about applications
in concert with our colleagues who
run education and training for new
Google developers.

External research (ours and oth-
ers’) and our own survey data indi-
cated that the three top hindrances
to ramping up were learning a new
technology, poor or missing docu-
mentation, and finding expertise.
A qualitative analysis of open re-
sponses regarding challenges during
onboarding indicate that designing
on-team starter projects to better
facilitate learning key skills, offer-
ing a more structured curriculum,
and offering differentiated training
for teams, technical specialties, and

levels beyond the basics covered in
standard onboarding programs all
present opportunities to improve the
onboarding experience. The inter-
secting challenges related to ramping
up remotely were the most common
theme in open-ended responses, in-

cluding barriers to ask questions, a
need for much more live coding col-
laboration and mentoring, and a lack
of opportunities for casual interaction,
relationship building, and learning
through observation.

There are a few “easy wins” that
organizations can do right now to
address common onboarding hin-
drances. New developers described
barriers to asking questions, learn-
ing through observation, and build ing
rapport with their team, particularly
in remote or distributed team con-
texts. The teams that are onboarding
developers should encourage their ex-
isting team members to spend time
collaborating live with the new de-
velopers during their first months;
this could include screen-sharing code
or pair programming during video
or in-person meetings as well as
meeting face to face to discuss their
questions and projects.

Longer term, we think that orga-
nizations should evolve onboarding
to better address developer needs.
New developers are not a homog-
enous group, and a one-size-fits-all
approach to onboarding may be less

Combined, these results provide
concrete indicators that it was harder
for new engineers to ramp-up in the

pandemic environment.

DEVELOPER PRODUCTIVITY FOR HUMANS

18 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

effective than a differentiated ap-
proach to onboarding. Tailoring de-
veloper onboarding to the level of the
engineer, his or her years of previous
experience, type of previous profes-
sional experience as a software de-

veloper, and development specialties
may support their ramp-up. This
could take several forms, such as

• a structured consideration of
developers’ previous experience
(both amount and nature) and
matching them with appropri-
ate mentors. It’s possible that
they would benefit most from
being connected with those
who have navigated transitions
similar to them (for example,
from a small company to an
enterprise company, or among
certain development special-
ties), or that they would benefit
most from particular pairings
(for example, being mentored
by a developer one level above
their own).

• creating cohort groups for these
varied previous experiences,
or creating documentation-
compiling tips and resources
aimed at these groups.

• constructing a survey, chatbot,
or 1:1 conversation guide to take
previous experience and other
factors into account and route

developers to courses or pro-
grams accordingly.

New developers sometimes ex-
perience a lack of structure and a
sense of being overwhelmed while

 onboarding. They also sometimes
feel that the initial tasks they are
assigned are not correctly sized given
their goals and knowledge of the
company or team practices. To ad-
dress this, consider,

• streamlining developer onboard-
ing documentation so that more
of it lives in a centralized land-
ing page, which is outlined and
sequenced in such a way that
developers feel empowered to
browse what’s available and
make strategic choices about
what to prioritize in the near
term, what to return to in the fu-
ture, and what is not relevant to
their role. This resource should
provide a sufficient summary of
various topics so that it acts as a
self-contained curriculum, rather
than a series of links routing de-
velopers to other documentation
that was not written with new
developers in mind.

• developing, publishing, and
disseminating more guidance
for teams on how to design and
implement an appropriately

scoped and leveled starter
project for new developers that
provides them with opportuni-
ties to practice the breadth of
key skills they’re most interested
in acquiring when joining a new
team (for example, pushing their
first change to production or
orienting themselves with the
 architecture of their codebase).

Onboarding new developers effectively
and efficiently is important, especially
for growing organizations. Surveys
and qualitative research provide use-
ful information about what works and
what doesn’t and provides ideas for
what to change about onboarding
and ramp-up processes. Quantifying
the impact of improvements isn’t re-
quired but can inform decision mak-
ing about how to augment or refine
onboarding. We developed quan-
titative measures of ramp-up time
at Google, but when we apply them
we’re careful to reinforce the idea
that these are merely good proxies for
ramp-up (i.e., they correlate with self-
reported ramp-up on key engineering
tasks) and should be complemented
by other evidence that indicates edu-
cation, training, mentorship, and on-
boarding are effective. In our view,
this is a sensible, human-centered ap-
proach to building a better onboard-
ing experience.

References
1. C. Jaspan and C. Green, “A human-

centered approach to developer

productivity,” IEEE Softw., vol. 40,

no. 1, pp. 23–28, Jan./Feb. 2023, doi:

10.1109/MS.2022.3212165.

2. C. Jaspan and C. Green, “Devel-

oper productivity for humans, part

2: Hybrid productivity,” IEEE

Softw., vol. 40, no. 2, pp. 13–18,

Mar./Apr. 2023, doi: 10.1109/

MS.2022.3229418.

New developers are not a
homogenous group, and a one-size-
fits-all approach to onboarding may

be less effective than a differentiated
approach to onboarding.

DEVELOPER PRODUCTIVITY FOR HUMANS

 SEPTEMBER/OCTOBER 2023 | IEEE SOFTWARE 19

3. A. Begel and B. Simon, “Novice

software developers, all over again,”

in Proc. 4th Int. Workshop Comput.

Educ. Res., 2008, pp. 3–14, doi:

10.1145/1404520.1404522.

4. A. Rastogi et al., “Ramp-up journey

of new hires: Tug of war of aids and

impediments,” in Proc. ACM/IEEE

Int. Symp. Empirical Softw. Eng.

Meas. (ESEM), Oct. 2015, pp. 1–10,

doi: 10.1109/ESEM.2015.7321212.

5. A. Ju, H. Sajnani, S. Kelly, and K.

Herzig, “A case study of onboard-

ing in software teams: Tasks and

strategies,” in Proc. IEEE/ACM

43rd Int. Conf. Softw. Eng. (ICSE),

2021, pp. 613–623, doi: 10.1109/

ICSE43902.2021.00063.

6. E. Murphy-Hill et al., “What predicts

software developers’ productivity?”

IEEE Trans. Softw. Eng., vol. 47,

no. 3, pp. 582–594, Mar. 2021, doi:

10.1109/TSE.2019.2900308.

7. C. Jaspan and C. Sadowski, “No

single metric captures productiv-

ity,” in Rethinking Productivity

in Software Engineering, C.

Sadowski and T. Zimmermann,

Eds., Berkeley, CA, USA: Apress,

2019, pp. 13–20, doi: 10.1007/978-

1-4842-4221-6_2.

8. N. Forsgren et al., “The SPACE of de-

veloper productivity: There’s more to

it than you think,” ACM Queue, vol.

19, no. 1, pp. 20–48, Feb. 2021, doi:

10.1145/3454122.3454124.

9. A. Mockus, “Succession: Measur-

ing transfer of code and developer

productivity,” in Proc. IEEE 31st

Int. Conf. Softw. Eng., Vancouver,

BC, Canada, 2009, pp. 67–77, doi:

10.1109/ICSE.2009.5070509.

10. A. Rastogi et al., “Ramp-up journey

of new hires: Do strategic practices

of software companies influence

productivity?” in Proc. 10th In-

nov. Softw. Eng. Conf., 2017, pp.

107–111, doi: 10.1145/3021460.

3021471.

11. “Campbell’s law.” Wikipedia. [On-

line]. Available: https://en.wikipedia.

org/wiki/Campbell%27s_law

12. “Goodhart’s law.” Wikipedia. [On-

line]. Available: https://en.wikipedia.

org/wiki/Goodhart%27s_law

13. C. Jaspan et al., “Enabling the study of

software development behavior with

cross-tool logs,” IEEE Softw., vol. 37,

no. 6, pp. 44–51, Nov./Dec. 2020,

doi: 10.1109/MS.2020.3014573.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

COLLIN GREEN is the user experience

research lead for the Engineering Productivity

Research team at Google, Mountain View, CA

94043 USA. Contact him at https://research.

google/people/107023/ or colling@google.com.

LANTING HE is a software engineer for the

Engineering Productivity Research team at

Google, New York, NY 10011 USA. Contact her

at lantinghe@google.com.

CIERA JASPAN is the software engineering

lead for the Engineering Productivity Research

team at Google, Mountain View, CA 94043 USA.

Contact her at https://research.google/people/

CieraJaspan/ or ciera@google.com.

DEMEI SHEN is a senior data scientist and

product analyst at Google, Kirkland, WA 98033.

Contact her at demei@google.com.

MAGGIE HODGES is a user experience

researcher on the Engineering Productivity

Research team at Google, Mountain View, CA

94043 USA. Contact her at https://research.

google/people/108095/ or hodgesm@google.

com.

NAN ZHANG is the data scientist lead for

Google developer productivity at Google,

Mountain View, CA 94043 USA. Contact her at

nanzh@google.com

http://dx.doi.org/10.1145/1404520.1404522
http://dx.doi.org/10.1109/ESEM.2015.7321212
http://dx.doi.org/10.1109/TSE.2019.2900308
http://dx.doi.org/10.1145/3454122.3454124
https://en.wikipedia.org/wiki/Campbell%27s_law<AU
https://en.wikipedia.org/wiki/Campbell%27s_law<AU
https://en.wikipedia.org/wiki/Goodhart%27s_law<AU
https://en.wikipedia.org/wiki/Goodhart%27s_law<AU
http://dx.doi.org/10.1109/MS.2020.3014573
https://research.google/people/107023/
https://research.google/people/107023/
mailto:colling@google.com
mailto:lantinghe@google.com
https://research.google/people/CieraJaspan/
https://research.google/people/CieraJaspan/
mailto:ciera@google.com
https://research.google/people/108095/
https://research.google/people/108095/
mailto:hodgesm@google.com
mailto:hodgesm@google.com

	013_40ms05-developerprod-3291158

