
Software Engineering Education

SOBO: A Feedback Bot to Nudge Code Quality
in Programming Courses
Sofia Bobadilla, KTH Royal Institute of Technology

Richard Glassey, KTH Royal Institute of Technology

Alexandre Bergel, RelationalAI

Martin Monperrus, KTH Royal Institute of Technology

Abstract—Recent research has shown the great potential of automatic feedback
in education. This paper presents SOBO, a bot we designed to automatically
provide feedback on code quality to undergraduate students. SOBO has
been deployed in a course at the KTH Royal Institute of Technology in Sweden
with 130+ students. Overall, SOBO has analyzed 1687 GitHub repositories
and produced 8443 tailored code quality feedback messages to students. The
quantitative and qualitative results indicate that SOBO effectively nudges students
into adopting code quality best practices, without interfering with pedagogical
objectives or adding a teaching burden. From this experience, we provide
guidelines into how to design and deploy teaching bots in programming courses.

Introduction
It is generally accepted that code quality should be
taught early and often throughout a computer science
(CS) curriculum. Yet, Jansen et al. [5] showed that
feedback related to code quality tends to be delivered
far too late to have any meaningful impact, typically at
the very end of an assignment. Furthermore, Östlund
et al. [12] demonstrated in a longitudinal study that
code quality is not seriously considered by students.
However, it is unreasonable to expect busy teachers
and teaching assistants to devote significant time de-
livering targeted feedback on code quality to every
student when resources are already stretched.

Whilst tools exist to discover code quality violations,
it is challenging to integrate such professional tools
into a student working environment without creating
confusion. Our key insight is to encapsulate such a
code quality tool into a friendly bot that automates
the production of tailored, helpful feedback on code
quality. In this paper, we present SOBO, an automatic
feedback tool, whose aim is to nudge students towards
understanding and applying code quality best practices
early in their software engineering journey.

XXXX-XXX © 2023 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

Nudging and Automatic Feedback
At the highest level, SOBO brings together the ideas
of nudging and automation in education. Nudging is a
concept that has emerged from behavioral economics.
We adopt the definition by Thaler and Sunstein [10] of
nudging being “any aspect of the choice architecture
that alters people’s behavior in a predictable way”. In
their review on nudging in education, Dammgaard and
Nielcen [2] show that nudge techniques can gently
guide students, parents, and teachers toward better
educational decisions and attainment. In light of this,
we want students to be more aware of code quality by
communicating violations, their meaning and solution,
and we hope to alter their behavior towards code
quality positively.

Automation in education has become increasingly
important to manage ever-growing enrollments. Within
computer science, introductory courses such as CS1
(programming) and CS2 (algorithms and datastruc-
tures) are very popular and as such must find ways
to manage large numbers of students, whilst not com-
promising on quality. For example, Paiva et al. [8]
finds that manual assessment is a bottleneck task for
instructors. As a potential solution, automatic feedback
allows for instant and detailed feedback on student
attempts without ever overloading the instructor - a rare
win-win situation.

Month Published by the IEEE Computer Society IEEE Software 1

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3298729

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Software Engineering Education

FIGURE 1. An overview of SOBO, KTH’s automatic feedback bot that nudges undergraduate students towards adopting code
quality best practices.

In the last decade, several projects related to au-
tomatic feedback have been implemented. Studies like
Jansen et al. [5] show that it is a hard task to extract
meaningful statistics from experiments related to the
usage and impact of automation bots. Haug, Markus
et al. [4] address one common challenge among feed-
back tools, which is the fact that the content of the
feedback itself can be ignored by the user if the mes-
sage is not clear enough. To solve the problem, they
propose to add code examples of how to fix the error in
the feedback. A recent important study [11] highlights
the importance of clear and concise information in
automated feedback.

Another challenge among automatic feedback tools
is how it relates to grading. Zhang et al. [13] and Liu
et al. [7] have dealt with this problem: they categorize
1) bots that provide feedback directly related to the
grades and 2) bots that nudge better techniques but
do not affect the student’s grades. In this paper, we
take the non-grading, nudging philosophy.

To sum up, most of the educational effort is spent
on learning the fundamentals of programming and
using development environments, whilst not enough is
devoted towards code quality. Related to the lack of
code quality, previous research points to 1) automating
the code quality feedback and 2) nudging students
towards addressing it without any explicit grading de-
mand. This is what our new bot, called SOBO, does.

SOBO Design
Motivated by the research in nudging and automation,
we now present the design of SOBO by describing the
teaching context in which it is deployed, its workflow,

the choice of code quality rules, the feedback design,
and interaction with the students.

Teaching Context
We designed SOBO for a CS1 and CS2 course at KTH
Royal Institute of Technology, Stockholm, Sweden. The
course is part of the first-year program of the Computer
Science (CS) degree and the topics covered include
both an introduction to programming in Java (CS1),
and an introduction to algorithms and data structures
(CS2).

The course’s workflow is as follows: • At the be-
ginning of the year, the students receive instructions
about the course stack, and they immediately learn
about Git/GitHub as a version control and collabora-
tion technology. • Every week, the students receive a
unique repository per student group, containing all the
relevant task information. They are free to commit/push
as often as they like prior to the deadline. • At the end
of each week, they have a session with a Teaching
Assistant (TA) where they present their work. • After
each session, TAs grade the students’ submissions
and students have the opportunity to fix issues in case
they did not fulfill the requirements. TAs use the GitHub
issue tracker to communicate with the students. Per
task, the grades can be PASS, FAIL, or KOMPLËTER-
ING when the last one means there are a few mistakes
to be corrected.

The course has some features that are relevant to
the purpose of this work: Consistent course information
in one stack. The whole course happens on GitHub:
students receive repositories for the weekly tasks and
commit/push their solutions from the beginning to the
end. The GitHub issue tracker is the main channel of

2 Publication Title Month 2023

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3298729

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Software Engineering Education

communication for the whole course. As a result, this
is the natural choice for where the students should
interact with the bot.

Access to historical data. The course has been
delivered using the same workflow and stack since
2015. Therefore, there is access to data of each
previous offering (200 students working in 4000 task
repositories over seven years). Previous research has
analyzed the data between 2018 and 2022 showing
that students are not taking enough action in terms of
code quality in their programming assignments [12].

Bot Workflow
As summarized in Figure 1 SOBO’s automatic feed-
back workflow operates as follows:

1) When a new programming assignment is an-
nounced, a weekly repository is created for each
student group and added to SOBO’s monitoring
list.

2) Then, SOBO opens an issue to send feedback
messages via GitHub. The first post is a friendly
greeting text1.

3) Every time a student produces commits, SOBO
performs the following task:

a) It uses a state-of-the-art code quality tool called
SonarQube to list the code quality violations in
the students’ code, incl. the commit hash with
the file where the violation is found, the rule
violated, and the line of code in the respective
file.

b) Then, it filters each row to confirm the violation
comes from a student and not from the provided
template [12].

c) It selects the most prevalent violation types from
the last commit in order to give feedback on one
single code quality aspect (we cannot flood the
students, it would be counter-productive).

d) SOBO collects the template for the selected rule
and fills it up with a table indicating the location
of the violation(s) and pushes the feedback
to the corresponding issue. Figure 2 gives an
example of this feedback message.

e) If there are no violations at all, SOBO posts an
encouraging message indicating the submission
had no violations.

This design is per Wessel et al. [11], SOBO does
not need any configuration from the students. Also,
in case a student does not want to receive feedback,

1https://github.com/SOBO-bot/templates/blob/main/files/
greeting.md

TABLE 1. Code quality rules used by SOBO for providing
feedback.

Rule Description

S109 Magic numbers should not be used
S1481 Unused local variables should be removed
S1155 Collection.isEmpty() should be used to test

for emptiness
S1213 The members of an interface or class

declaration should appear in a pre-defined
order

S2119 ”Random” objects should be reused

we provide a simple opt-out option to stop receiving
automated feedback.

Code Quality Feedback
Violation Reports. SonarQube for Java [9] is used to
analyze students’ code quality. This tool indicates the
presence of code quality problems in code.

Curation of Rules. To select the relevant code quality
rules for students, we categorized all SonarQube rules
by using the following criteria:

1) Actionable. A clear example of how to fix a prob-
lem can be extracted from the rule.

2) Knowledge gap. The information is understand-
able by undergraduate students in an introductory
programming course.

3) Actual problem. The prevalence of violations from
previous course iterations is used as a relevance
indicator (see Östlund, et al. [12] for details).

The curation process was done in collaboration
with TAs and the course responsible. All rules currently
supported by SOBO are described in Table 1.

Feedback Design
Relevance of Rules. As a nudge tool, SOBO must
filter the information in order to successfully alter the
student behavior, and in order to not being perceived
as a negative element in the course [10], [11]. Fol-
lowing Guideline #2 from Wessel et al. [11], the infor-
mation needs to be centralized to avoid overwhelming
the user. Thus, SOBO focuses on the most common
rule, as the rule that presents the largest amount of
violations in a commit, the rule that requires most at-
tention by students. Each individual feedback provides
information related to the most common rule only.

Feedback Template. Wessel et al. [11] mentions “If
[feedback] is not actionable, it is not usable”. We make

Month 2023 Publication Title 3

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3298729

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/SOBO-bot/templates/blob/main/files/greeting.md
https://github.com/SOBO-bot/templates/blob/main/files/greeting.md


Software Engineering Education

FIGURE 2. Example of automatic feedback provided by
SOBO for code quality rule S1155 by SonarQube [9].

sure that the feedback is clear and self-contained
so that there is no need for extra search needed
to understand it. Inspired by Paiva et al. [8], SOBO
messages present knowledge following a template with
1) a presentation of the rule 2) the actual problem
in the student’s code, 3) and a code example that is
actionable. An example is shown in Fig 2

Frequency of Feedback. Students require timely feed-
back during the process of their assignments [5], [13].
Since we want students to have feedback as soon as
they push to the repository, SOBO analyzes students’
code every 5 seconds.

Distribution Channel. SOBO gives feedback by post-
ing on a dedicated GitHub issue, named “SOBO -
Commit Analyzer”. This has two advantages: 1) stu-
dents always know where to find the analysis of the
latest version of the code; 2) they can activate or
deactivate notifications for a particular task by ‘unsub-
scribing’ to the issue;

Command Language
Following recommendation #2 from Wessel et al. [11],
we bake in SOBO a direct communication channel
with the students. A second GitHub issue is created to
interact with the teaching bot. In this issue, the students
receive a help message with a list of commands to
use and interact with SOBO. To send a command, the
students write a comment on this issue. The available
commands are:
• <help>: to get more information about the avail-

able commands.
• <stop>: to stop all automatic feedback messages

on the repository where the command is executed.
• <go>: to restart SOBO on the repository where

the command is executed.
• <more commit-id>: to receive information

about a specific commit on the repository where
the command is executed.

• <rule rule-id>: to get all violations of a spe-
cific rule among the ones used in the project on
the repository’s latest version.

In addition, SOBO contains an Easter egg [1]: if
an SQL injection command is detected, SOBO fakes a
successful hack, in order to maximize student engage-
ment.

Data Collection
Automatic Message. To keep track of the influence
of SOBO, each time a commit is analyzed, a tuple
is stored for each violation made by the student. To

4 Publication Title Month 2023

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3298729

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Software Engineering Education

identify violations the key of the tuple is the GitHub
user, the assignment number, rule, file, line of code,
and the commit hash.

Command Language. For the command language,
every command sent by the student and resolved by
SOBO is stored for further analysis of user interactions.
The key pair in this case is the student, the timestamp,
and the task.

Implementation
Technical implementation. SOBO is implemented in
Java and runs as a daemon on a university server.

Platform support. SOBO assumes that students’
repositories are hosted on GitHub, and it supports both
public GitHub and enterprise GitHub (KTH uses the
latter). SOBO has its own identity, hence its own KTH
GitHub account to interact with the students.

Configuration The main configuration of SOBO is
a file with a list of student repositories and a file of
feedback templates. Per the course workflow, each
week, new repositories are added to the bot monitoring
list for the new assignments (one assignment = one
repository). SOBO is publicly available as open-source
and can be used by other universities: https://github.
com/eclipse/repairnator/tree/master/doc/sobo.

Evaluation & Results
SOBO is an end-to-end project, we have deployed it in
class at KTH with 130+ undergraduate students. Below
are the results.

Preparation
Before deploying SOBO, we waited for the students
to have already been taught about object-oriented
programming with fields, classes, and collections. This
means the bot was actually deployed in the 6th week
of the course. The week the bot started operating,
a presentation was made in the classroom and an
informative email was sent, to explain the project, how
it would affect and benefit them, and how to turn it off
in case they did not want to use it.

Measuring Effectiveness
We want to study the number of code quality violations
in students’ code, for each user, rule, and repository.
For each repository, we split the number of violations
per rule. To track the evolution of each user, we sort
the violations by timestamp and compare the amount
between two consecutive commits. If the number of
violations for the same rule is reduced, then some have

FIGURE 3. Introduced and fixed violations during the 2022-
2023 edition of the course at KTH Royal Institute of Technol-
ogy for three code quality rules

been fixed [3]. We assume that the violations have
been fixed thanks to SOBO’s actions. In the opposite
scenario, if the number increases for the same rule
between two commits, we consider that new violations
have been added.

Capturing Students’ Opinions
Following the guidelines of Jansen et al. [5], we made
a survey to study the users’ reception of the bot. This
survey was made and sent 10 weeks after the SOBO
integration on the course. The survey was divided into
four parts starting with an evaluation of the automatic
feedback message, the effectiveness of the provided
information, the use of the command language, and the
general perception of automatic bots for teaching. The
survey questions are: 1) How clear was the explanation
of the rule? 2) How concise was the explanation of the
rule? 3) How clear was the example of what to do?
4) How concise was the example of what to do? 5) The
explanation section helps me to understand how to
fix the violation. 6) The example section helps me to
understand how to fix the violation. 7) I would like to
have SOBO integrated on my personal projects. 8) I
would like to have teaching bots in my other courses.

Results
Quantitative. Figure 3 shows the number of added
and removed code quality violations overall student
groups for the three most prevalent rules (S109,
S1155, S1481). On the negative side, students add
more violations than they remove. This means that the
nudging is not perfectly effective, which is as expected

Month 2023 Publication Title 5

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3298729

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/eclipse/repairnator/tree/master/doc/sobo
https://github.com/eclipse/repairnator/tree/master/doc/sobo


Software Engineering Education

FIGURE 4. Survey results: students’ evaluation of the auto-
matic feedback in terms of clarity, conciseness, and useful-
ness.

because improving code quality is not part of the
grading criteria.

On the positive side, we do see 513 code quality
violations fixed by students. We cannot affirm that this
is causally related to SOBO’s feedback messages, but
we have good reasons to believe so. First, there are
19 commits messages explicitly mentioning that the
changes were triggered by SOBO feedback. Second,
the qualitative survey further provides solid evidence,
as discussed in the next section.

Qualitative. From a total of 131 students, we got
57 answers, reaching 43% of the users. The results of
the survey are presented in Figure 4. The student’s
responses on the survey show that the automatic
feedback was clear (Q1, Q3) and contained enough
information for them to fix the violation (Q5, Q6). The
survey also shows that the template is probably too
verbose (Q2, Q4). A future iteration of the course will
fix that aspect.

In the free comments, students mentioned a lot of
messages were related to rule S109 (“Magic Number”).
We believe that this is due to the fact that it is the
rule SOBO reports the most. For this rule in particular,
students found the “Instead of doing this” part of

the template to be very explicit, and that the whole
example section allows them to: “learn how to make
the code better”.

Impact of the Bot on Pedagogical Objectives
The bot did not intrude in the main course workflow.
Whilst some initial classroom time was used to explain
the presence and purpose of SOBO to students, little
further effort was required. Neither the teacher respon-
sible for the course nor teaching assistants reported
extra negative burdens related to SOBO and could
focus on the normal delivery of the course content. To
that extent, the code quality aspect of the course was
entirely delegated to the SOBO bot. Consequently, we
envision expanding its scope to more aspects of code
quality and supporting more pedagogically relevant
rules.

Guidelines for Bots in Education
Based on our experience, here are important guide-
lines for educators who would like to integrate nudging
bots into their courses.

Focus on the Message: Previous work has men-
tioned that the key to automatic feedback in education
lies in the feedback message that will be delivered [5],
[8]. It is essential not to overestimate the knowledge of
students. SOBO messages were designed to be self-
contained and present all the information needed in
order to solve the code quality problem. Iterate over
the feedback design with focus groups gathering both
professors, teaching assistants, and students.

Delivering the Message: When selecting the dis-
tribution channel for the feedback, it is essential to be
very clear with the students about the location of the
feedback: which platform? which channel? In our case,
we had one single channel: a specific SOBO GitHub
issue, one per student repository. Avoid changes of ap-
plications and channels to deliver automated feedback.

Respect the Context: We suggest deploying a
teaching bot with careful consideration of the teaching
context. This concerns the workflow of the course(s):
when is the bot introduced? for which objectives? This
also concerns the platform: it is better to be integrated
into the platform already being used than to introduce
an additional one. Spend dedicated time explaining the
bot’s intention and scope in the classroom.

Lower the Configuration Barrier: Ideally, SOBO
can be reused by any other course with only a small
configuration at the beginning of the course. Extremely
custom tools are hard to deploy in new environments,
whereas good configurability improves the scalability
of automated feedback tools [6], [8]. Adopt software

6 Publication Title Month 2023

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3298729

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Software Engineering Education

engineering reuse best practices when implementing
your own nudging bot.

Lifelong Learning in Industry Software engineer-
ing practices move at a very fast pace, and code
quality is no exception. Practitioners with decades of
experience might not always be up-to-date with best
practices in code quality. We believe that SOBO would
be useful in this context, to support lifelong software
engineering learning in industry. However, the format
and template of the feedback might have to be adapted
in order to be more engaging with experienced devel-
opers, themselves more likely to accurately grasp the
implication of code quality.

Conclusion & Future Work
It has been shown that there is a lack of feedback
related to code quality in CS1 & CS2 courses. Leaving
code quality unaddressed simply delays incurring the
cost, which manifests itself as technical debt in future
projects. In this paper, we have presented SOBO, a
nudging bot that helps students to understand and
adopt good code quality practices by generating feed-
back at the right place and the right time for maximum
nudging impact.

In future iterations, SOBO will track previous stu-
dent submissions in order to personalize the provided
feedback. By tracking previous attempts, the feedback
can mention specific ways to help the problem faced
by the student. Also, since not all CS1 & CS2 courses
are taught using Java, an interesting community effort
is to extend SOBO to other programming languages
(e.g. Python), increasing the impact and relevance
of the whole nudging bot project. We also hope to
see SOBO rolled out in multiple institutions to further
assess effectiveness.

Acknowledgments
This work was supported by the Wallenberg Artificial
Intelligence, Autonomous Systems and Software Pro-
gram (WASP) funded by Knut and Alice Wallenberg
Foundation, and by the Swedish Foundation for Strate-
gic Research (SSF).

References
1. Benoit Baudry, Tim Toady, and Martin Monperrus.

Long live software easter eggs! Queue, 20(2):31–
42, 2022.

2. Mette Trier Damgaard and Helena Skyt Nielsen.
Nudging in education. Economics of Education Re-
view, 64:313–342, 2018.

3. Khashayar Etemadi Someoliayi, Nicolas Yves Mau-
rice Harrand, Simon Larsén, Haris Adzemovic, Henry
Luong Phu, Ashutosh Verma, Fernanda Madeiral,
Douglas Wikstrom, and Martin Monperrus. Sorald:
Automatic patch suggestions for sonarqube static
analysis violations. IEEE Transactions on Depend-
able and Secure Computing, pages 1–1, 2022.

4. Markus Haug, Ana Cristina Franco da Silva, and
Stefan Wagner. Towards immediate feedback for se-
curity relevant code in development environments.
In Johanna Barzen, Frank Leymann, and Schahram
Dustdar, editors, Service-Oriented Computing, pages
68–75, Cham, 2022. Springer International Publish-
ing.

5. Julian Jansen, Ana Oprescu, and Magiel Bruntink.
The impact of automated code quality feedback in
programming education. In Post-proceedings of the
Tenth Seminar on Advanced Techniques and Tools
for Software Evolution (SATToSE), volume 210, 2017.

6. Stephan Krusche and Andreas Seitz. Artemis: An
automatic assessment management system for in-
teractive learning. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Edu-
cation, SIGCSE ’18, page 284–289. Association for
Computing Machinery, 2018.

7. Zikai Liu, Tingkai Liu, Qi Li, Wenqing Luo, and
Steven S. Lumetta. End-to-end automation of feed-
back on student assembly programs. In 2021 36th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 18–29, 2021.

8. José Carlos Paiva, José Paulo Leal, and Álvaro
Figueira. Automated assessment in computer sci-
ence education: A state-of-the-art review. ACM
Trans. Comput. Educ., 22(3), jun 2022.

9. SonarSource. Java code quality and code security,
2022.

10. R.H. Thaler and C.R. Sunstein. Nudge: Improving
Decisions About Health, Wealth, and Happiness.
Penguin Publishing Group, 2009.

11. Mairieli Wessel, Andy Zaidman, Marco A. Gerosa,
and Igor Steinmacher. Guidelines for developing bots
for github. IEEE Software, pages 1–8, 2022.

12. Niklas Wicklund and Linus Östlund. It is never too
early to learn about code quality: Analyzing code
quality of first-year programming students and the
difference between ta groups. In Proceedings of
the 54th ACM Technical Symposium on Computer
Science Education, SIGCSE 2023, New York, NY,
USA, 2023.

13. Jialu Zhang, De Li, John Charles Kolesar, Hanyuan
Shi, and Ruzica Piskac. Automated feedback gen-
eration for competition-level code. In Proceedings

Month 2023 Publication Title 7

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3298729

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Software Engineering Education

of the 37th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’22, 2023.

Sofia Bobadilla is a research en-
gineer at KTH Royal Institute of Technology, Stock-
holm, Sweden. Her research interest includes bots
in software development, software reliability, data sci-
ence, and multimedia information retrieval. Bobadilla
obtained her bachelor’s degree in Computer Science
from the University of Chile, Santiago, Chile. Contact
her at sofbob@kth.se.

Richard Glassey is a teacher at
KTH Royal Institute of Technology, Stockholm, Swe-
den. His current research interests include computer
science education, learning analytics, and sustainable
education. Glassey received his Ph.D. in computer
science from the University of Strathclyde, Glasgow,
Scotland. He is a member of ACM. Contact him at
glassey@kth.se.

Alexandre Bergel is a computer
scientist at RelationalAI, Switzerland. His current re-
searches are on designing tools and methodologies to
improve the overall performance and internal quality of
software systems and databases by employing profil-
ing, visualization, and artificial intelligence techniques.
Contact him at alexandre.bergel@me.com.

Martin Monperrus is Professor of
Software Technology at KTH Royal Institute of Technol-
ogy. His research lies in the field of software engineer-
ing with a current focus on automatic program repair, AI
on code and program hardening. He received a Ph.D.
from the University of Rennes, and a Master’s degree
from Compiègne University of Technology. Contact him
at monperrus@kth.se.

8 Publication Title Month 2023

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3298729

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	Introduction
	Nudging and Automatic Feedback
	SOBO Design
	Teaching Context
	Bot Workflow
	Code Quality Feedback
	Violation Reports.
	Curation of Rules.

	Feedback Design
	Relevance of Rules.
	Feedback Template.
	Frequency of Feedback.
	Distribution Channel.

	Command Language
	Data Collection
	Implementation

	Evaluation & Results
	Preparation
	Measuring Effectiveness
	Capturing Students' Opinions
	Results
	Impact of the Bot on Pedagogical Objectives

	Guidelines for Bots in Education
	Conclusion & Future Work
	References
	References
	Biographies
	[width=1.15in]img/bio/sofiabobadilla.jpg
	[width=1.15in]img/bio/ric-2.png
	[width=1.15in]img/bio/alex.png
	[width=1.15in]img/bio/martin-monperrus.jpg


