
4	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 2 3 © 2 0 2 3 I E E E

IEEE Software 	 To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement	 the developers and managers who want to keep up with rapid technology change.

WE ARE AT a point where AI-based
approaches to software development
automation are expected to speed up
progress on several fronts, including
reducing development errors and
making changes at scale and with
reduced effort. As the initial excite-
ment over generative AI tools has
waned, there is a growing aware-
ness of the many potential risks
and pitfalls that need to be consid-
ered when using them for develop-
ment, from security to unexpected
failures to trust issues. In addition,
preliminary empirical findings from
analyzing the use of AI-based devel-
opment assistants indicate that the
desired ideal improvement in pro-
ductivity and quality will not be a
result of better tools, even if they
are helpful; significant improvement
will be the result of understanding
and redesigning task flows1 and

ensuring expert judgment in the use
of these tools.2

Developers and researchers have
focused much attention on the use
of generative AI tools to improve
implementation activities. However,
there has been little attention on
how design and architecture tasks
can be effectively accomplished with
generative AI-based software de-
velopment tools. Some things never
change! Hasn’t it always been the
case that deliberate design and its
value are assumed to emerge from
code, which is an afterthought when
things don’t work, or that essential
complexity is assumed to be a reality
of long-lived systems?

Analyzing developer use data to
date demonstrates that expertise
will be essential to assess not only
the correctness of the tool recom-
mendations but also the fitness
for the purpose of code developed
with AI-augmented tools.2 As local
changes are made with the help of

AI-assistants, there are likely impli-
cations of the changes to the over-
all structure and behavior of the
systems. In other words, we need
to think about how we will design
and build systems in the future
given that AI-augmented tools will
be playing a more significant role.
We need to make sure that these
systems are safe, reliable, and fit
for purpose while ensuring that the
process of designing, developing,
and deploying them takes into ac-
count solving issues at different lev-
els of abstraction.

There are several questions to ex-
plore when incorporating design and
architectural concerns into the use of
generative AI-based system develop-
ment explorations, especially with
generative AI tools.

•	 What are the specific design and
architectural concerns that need
to be addressed when using gen-
erative AI?

Digital Object Identifier 10.1109/MS.2023.3306641
Date of current version: 13 October 2023

FROM THE EDITOR
Editor in Chief: Ipek Ozkaya
Carnegie Mellon Software Engineering Institute
ipek.ozkaya@computer.org

Can Architecture
Knowledge Guide
Software Development
With Generative AI?
Ipek Ozkaya

mailto:ipek.ozkaya@computer.org
https://orcid.org/0000-0002-7336-4775

FROM THE EDITOR

	 SEPTEMBER/OCTOER 2023 | IEEE SOFTWARE � 5

•	 Can generative AI tools be used
to improve the design and archi-
tecture of systems?

•	 Can these tools provide new fea-
tures and capabilities that can be
used to support the architectural
design process?

•	 Could generative AI tools be used
to generate design patterns and
tactics, which could then be used
to guide the code generation or
evolution of tools?

•	 Can these tools accelerate the
generation of alternative designs
and their comparison?

•	 Can they be used to provide feed-
back on designs, such as identify-
ing potential risks and issues?

Overall, the use of AI-augmented
and generative AI tools has the po-
tential to revolutionize the way in
which systems are designed and ar-
chitected. At least this is how we
may want to envision the future of
software development. However, a
key underlying assumption in an-
swering all of these questions is that
sufficient architecture knowledge is
available to reliably develop under-
lying large language models (LLMs)
and they can be encoded and de-
coded to guide aspects of system
development with tools. These ques-
tions all point to the need to focus
on architecture knowledge manage-
ment and to perhaps consider how or
if it can even be shared through gen-
erative AI tools.

Architecture Knowledge
Software architecture knowledge can
be considered as the union of the fol-
lowing elements:3

•	 Architecture design: The overall
structure of the software system,
including its components, their
relationships, and the data that

they exchange, makes up archi-
tecture design.

•	 Design decisions: These are the
choices that were made during
the architecture design process,
such as the choice of program-
ming language, the choice of
data model, and the choice of
architectural patterns.

•	 Assumptions: Architects and
developers make choices in attri-
butes that were assumed to be true
during the architecture design pro-
cess, such as the size of the system,
the performance requirements,
and the security requirements.

•	 Context: The environment in
which the software system will
be used, such as the hardware
platform, the operating system,
and the network infrastructure,
influences design decisions, as-
sumptions, and tradeoffs.

•	 Other factors: There are other
factors that were considered
during the architecture design
process, such as cost of develop-
ment, the cost of maintenance,
and time to market.

All of these elements together de-
termine why a particular software
solution is the way it is.4 While it is
possible to capture the design through
the code and other implementation
artifacts, capturing design decisions
and assumptions requires knowing
the context and the tradeoffs. These
tradeoffs also often involve decid-
ing between many competing and
ever so evolving technologies and
how they may be compared to each
other.4,5,6

The software engineering com-
munity has focused on architecture
knowledge management as a key as-
pect of system design since the early
2000s.3 There has also been consid-
erable progress in abstracting and

CONTACT
US

AUTHORS

For detailed information on submitting
articles, visit the “Write for Us” section at
www.computer.org/software

LETTERS TO THE EDITOR

Send letters to software@computer.org

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

address.change@ieee.org
(please specify IEEE Software.)

MEMBERSHIP
CHANGE OF ADDRESS

member.services@ieee.org

MISSING
OR DAMAGED COPIES

contactcenter@ieee.org

REPRINT PERMISSION

IEEE utilizes Rightslink for permissions
requests. For more information, visit www.
ieee.org/publications/rights/rights-link.html

http://www.computer.org/software
mailto:software@computer.org
http://www.computer.org/software
http://www.computer.org/subscribe
mailto:address.change@ieee.orgplease
mailto:address.change@ieee.orgplease
mailto:member.services@ieee.org
mailto:contactcenter@ieee.org
http://www.ieee.org/publications/rights/rights-link.html
http://www.ieee.org/publications/rights/rights-link.html

FROM THE EDITOR

6	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

encapsulating architectural knowl-
edge with the goal of generalizing
and sharing it. There is a vast body
of literature that documents repeat-
able solutions to repeatable problems
in the form of architecture patterns,
design patterns, and tactics.6 Yet,
the software engineering discipline
has always been challenged by the
static nature of architecture knowl-
edge capture in the face of rapid
technology change. There were at-
tempts at developing knowledge re-
positories to structure knowledge
about emerging technologies;5 how-
ever, since such repositories have not
been seamlessly integrated with the
design and implementation flow of
developers, they have not made it
into the toolchain of software engi-
neers effectively.

Architectural knowledge and the
ability to make meaningful trad-
eoffs are expert skills and imply
the experience of seeing similar ex-
amples over different situations. In
addition, architecture knowledge
management implies the ability to
see through the design decisions as
implementation constructs.

Martin Fowler illustrates the
design knowledge and the exper-
tise required to guide the develop-
ment process using a generative AI
tool quite vividly in an example
of a self-testing code demonstra-
tion during a conversation with
Xu Hao, Thoughtworks’s head of
technology in China.7 As shown
in “Self-Testing Code,” the initial
prompt that Hao uses to kick off
the code generation process with
ChatGPT is elaborate with design
and technology stack information.
The first prompt alone involves the
following components, which can
almost be perceived as an architec-
ture and design-driven prompt tem-
plate. It is easy to observe a number

of generalizable steps in the prompt
as follows:

[type of system]
[list of technologies in the tech
stack]

[framework used for compo-
nents] [architectural pattern
used for the system]

[elaboration on the architec-
ture pattern suggested with
alternatives]

[known implementation
strategies]

[recommended patterns for
tests required]

[requirements for a portion of
the design]

[required output format (for ex-
ample, code, explanation)]

This initial prompt to provide
all of this information takes about
400 words. Hao requests and re-
ceives a plan from ChatGPT, the
generative AI tool of his choice,
in this exercise. The plan includes
step-by-step instructions and pro-
vides recommended components
to include in the design and imple-
mentation. The recommended plan
also includes references to design
elements and constructs, such as
“create encapsulated view model
interface” or the use of architecture
pattern vocabulary like “layers.”

Design Prompts to Guide
Software Development
The importance of well-structured
prompts, most often referred to as
prompt engineering, has already been
established in the short time when
generative AI technologies have be-
come a part of software engineers’
toolkits. Prompt engineering is the
process of designing and crafting
prompts that are used to control gen-
erative AI tools. Prompt patterns

EDITORIAL
STAFF
IEEE SOFTWARE STAFF
Journals Production Manager: Peter Stavenick,
p.stavenick@ieee.org
Cover Design: Andrew Baker
Peer Review Administrator: software@computer.org
Periodicals Portfolio Specialist: Cathy Martin
Periodicals Operations Project Specialist:
Christine Shaughnessy
Content Quality Assurance Manager: Jennifer Carruth
Periodicals Portfolio Senior Manager: Carrie Clark
Director of Periodicals and Special Products:
Robin Baldwin
IEEE Computer Society Executive Director:
Melissa Russell
Senior Advertising Coordinator: Debbie Sims

CS PUBLICATIONS BOARD
Greg Byrd (VP of Publications), Terry Benzel,
Irena Bojanova, David Ebert, Dan Katz, Shixia Liu,
Dimitrios Serpanos, Jaideep Vaidya; Ex officio:
Robin Baldwin, Nita Patel, Melissa Russell

CS MAGAZINE OPERATIONS
COMMITTEE
Irena Bojanova (Chair), Lorena Barba,
David Hemmendinger, Lizy K. John, Fahim Kawsar,
San Murugesan, Ipek Ozkaya, George Pallis,
Charalampos (Babis) Z. Patrikakis, Sean Peisert,
Balakrishnan (Prabha) Prabhakaran,
André Stork, Jeff Voas

IEEE PUBLICATIONS OPERATIONS
Senior Director, Publishing Operations: Dawn M. Melley
Director, Editorial Services: Kevin Lisankie
Director, Production Services: Peter M. Tuohy
Associate Director, Information Conversion and
Editorial Support: Neelam Khinvasara
Senior Manager, Journals Production: Katie Sullivan

Editorial: All submissions are subject to editing for clarity, style, and
space. Unless otherwise stated, bylined articles and departments,
as well as product and service descriptions, reflect the author’s
or firm’s opinion. Inclusion in IEEE Software does not necessarily
constitute endorsement by IEEE or the IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s Web-based
system, ScholarOne, at http://mc.manuscriptcentral.com/
sw-cs. Be sure to select the right manuscript type when
submitting. For complete submission information, please visit
the Author Information menu item under “Write for Us” on our
website: www.computer.org/software.

IEEE prohibits discrimination, harassment and bullying:
For more information, visit www.ieee.org
/web/aboutus/whatis/policies/p9-26.html.

Digital Object Identifier 10.1109/MS.2023.3311928

mailto:p.stavenick@ieee.org
mailto:software@computer.org
http://mc.manuscriptcentral.com/sw-cs
http://mc.manuscriptcentral.com/sw-cs
http://www.computer.org/software
http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html
http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html

FROM THE EDITOR

	 SEPTEMBER/OCTOER 2023 | IEEE SOFTWARE � 7

SELF-TESTING CODE

The following is an example of a self-testing code7
(Source: Reused with permission from Martin Fowler,
“An Example of LLM Prompting for Programming,” at
https://martinfowler.com/articles/2023-chatgpt-xu-hao.
html):

The current system is an online whiteboard system.
Tech stack: typescript, react, redux, konvajs and react-
konva. And vitest, react testing library for model, view model
and related hooks, cypress component tests for view.

All codes should be written in the tech stack mentioned
above. Requirements should be implemented as react com-
ponents in the MVVM architecture pattern.

There are 2 types of view model in the system.

1.	 Shared view model. View model that represents states
shared among local and remote users.

2.	 Local view model. View model that represents states only
applicable to local user

Here are the common implementation strategy:

1.	 Shared view model is implemented as Redux store
slice. Tested in vitest.

2.	 Local view model is implemented as React component
props or states(by useState hook), unless for global
local view model, which is also implemented as Redux
store slice. Tested in vitest.

3.	 Hooks are used as the major view helpers to re-
trieve data from shared view model. For most the
case, it will use ‘createSelector’ and ‘useSelector’
for memorization. Tested in vitest and react
testing library.

4.	 Don’t dispatch action directly to change the states of
shared view model, use an encapsulated view model
interface instead. In the interface, each redux action is
mapped to a method. Tested in vitest.

5.	 View is consist of konva shapes, and implemented as
react component via react-konva. Tested in cypress
component tests

Here are certain patterns should be followed when
implement and test the component

1.	 When write test, use describe instead of test.
2.	 Data-driven tests are preferred.
3.	 When test the view component, fake view model via the

view model interface

Awareness Layer
Requirement:
Display other users’ awareness info(cursor, name and

online information) on the whiteboard.

AC1: Don’t display local user
AC2: �When remote user changes cursor location, display

the change in animation.

Provide an overall solution following the guidance men-
tioned above. Hint, keep all awareness information in a
Konva layer, and an awareness info component to render
cursor, and name. Don’t generate code. Describe the solution,
and breaking the solution down as a task list based on the
guidance mentioned above. And we will refer this task list as
our master plan.

have become critical in leveraging
the power of LLMs and applications
built on them because they guide us-
ers to specify exactly what they want
the tool to do. This is important
because while generative AI tools can
be powerful, they are also very un-
predictable and inconsistent. Carefully
crafted prompts will not completely
improve the correctness of the solution

generated at all times, but it is one
powerful strategy to rely on when
working with generative AI tools.

Crafting appropriate prompts re-
quires expertise in the problem at
hand and can be a complex and chal-
lenging task, but it is essential for
getting the most out of generative
AI tools. There are a number of fac-
tors that need to be considered when

crafting a prompt, such as the task
that the tool is being used for, the de-
sired output format, and the level of
detail that is required.8 It is also im-
portant to test the prompt with the
tool to make sure that it produces
the desired results. The generic ex-
ample presented by Fowler7 already
hints that architectural knowledge
will become a vital skill not only for

FROM THE EDITOR

8	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

assessing the results of code genera-
tion but most likely also for provid-
ing essential input to help iterate

development tasks using generative
AI tools.

LLMs can easily be trained on ge-
neric and public information such as
architecture patterns, tactics, technol-
ogies, and their attributes that are al-
ready available as book text and other
publications. These data, when ac-
cessed more easily with the assistance
of generative AI tools, can enable im-
proved design guidance in the devel-
opment process, which can reduce the
cognitive load and time of design ex-
ploration for developers.

Will Architecture Expertise Be
Fashionable Once More?
Software architecture has been mis-
conceptualized as not being the cool
kid on the software engineering block
before. Recall the miscommunica-
tions during the early years of agile
software development processes.9
These misconceptions have sometimes
resulted in software architecture
and design being discarded. Incor-
rect execution of the architect role
as an ivory tower architect, discon-
nected from the realities of imple-
menting and deploying systems, also

contributed to these misconceptions.
Architecture knowledge and design
decisions not only guide the structure

and behavior of systems, but they
guide how software is developed,
maintained, scaled, and adapted to
meet evolving requirements.

If we want to use generative AI
tools to assist in system develop-
ment beyond method or class-

level implementation tasks and toy
examples, we must embrace incor-
porating architectural knowledge
into the process. Using architec-
tural patterns, tactics, and design
constructs to direct code generation
in generative AI tools and apply-
ing this knowledge toward iterative
explorations could help make gen-
erative AI tools more applicable to
more complex activities in the soft-
ware development process. Incorpo-
rating architecture knowledge into
data that LLMs are trained on and
to tools that software engineers use
to solve large scoped development
problems ranging from technology
upgrades, language translation, to
software evolution is an unexplored
area with challenging problems, but
exciting applications if successful.

References
1.	I. Ozkaya, “The next frontier in

software development: AI-augmented

software development processes,” IEEE

Softw., vol. 40, no. 4, pp. 4–9, Jul./Aug.

2023, doi: 10.1109/MS.2023.3278056.

2.	C. Bird et al., “Taking flight with copi-

lot,” Commun. ACM, vol. 66, no. 6, pp.

56–62, Jun. 2023, doi: 10.1145/3589996.

3.	P. Kruchten, P. Lago, and H. van

Vliet, “Building up and reasoning

about architectural knowledge,” in

Quality of Software Architectures,

vol. 4214, C. Hofmeister, I. Crnkovic,

and R. Reussner, Eds., Berlin, Heidel-

berg: Springer, 2006, pp. 43–58.

4.	L. Bass, P. Clements, and R. Kazman,

Software Architecture in Practice, 3rd ed.

Reading, MA, USA: Addison-Wesley, 2012.

5.	I. Gorton, R. Xu, Y. Yang, H. Liu,

and G. Zheng, “Experiments in

curation: Towards machine-assisted

construction of software architecture

knowledge bases,” in Proc. IEEE Int.

Conf. Softw. Architecture (ICSA),

Gothenburg, Sweden, 2017, pp.

79–88, doi: 10.1109/ICSA.2017.27.

6.	F. Buschmann, K. Henney, and D. C.

Schmidt, Pattern-Oriented Software

Architecture, on Patterns and Pat-

tern Languages. Hoboken, NJ, USA:

Wiley, 2007.

7.	M. Fowler, “An example of LLM

prompting for programming,”

Martin Fowler, Apr. 2023. Ac-

cessed: Jul. 2023. [Online]. Avail-

able: https://martinfowler.com/

articles/2023-chatgpt-xu-hao.html

8.	J. White, S. Hays, Q. Fu, J. Spencer-

Smith, and D. C. Schmidt, “ChatGPT

prompt patterns for improving code

quality, refactoring, requirements

elicitation, and software design,”

Mar. 2023, arXiv:2303.07839.

9.	P. Abrahamsson, M. A. Babar, and

P. Kruchten, “Agility and architecture:

Can they coexist?” IEEE Softw.,

vol. 27, no. 2, pp. 16–22, Mar./Apr.

2010, doi: 10.1109/MS.2010.36.

If we want to use generative AI tools
to assist in system development

beyond method or class-level
implementation tasks and toy
examples, we must embrace

incorporating architectural knowledge
into the process.

http://dx.doi.org/10.1109/ICSA.2017.27

	004_40ms05-editorial-3306641

