
 MARCH/APRIL 2024 | IEEE SOFTWARE 11
T h i s w o r k i s l i c e n s e d u n d e r a C r e a t i v e C o m m o n s
A t t r i b u t i o n 4 . 0 L i c e n s e . F o r m o r e i n f o r m a t i o n ,
s e e h t t p s : / / c r e a t i v e c o m m o n s . o r g / l i c e n s e s / b y / 4 . 0 /

Editor: Ciera Jaspan
Google
ciera@google.com

Editor: Collin Green
Google
colling@google.com

DEVELOPER PRODUCTIVITY
FOR HUMANS

SOFTWARE ENGINEERING RE-
SEARCH typically focuses on pro-
ductivity, such as measuring the
speed at which developers write code
or evaluating how tooling can make
workflows more efficient. But as we
have mentioned in this column be-
fore, software engineering is com-
plex and creative.

Introduction
Developer productivity is more than
just efficiency, so a focus on speed can
cause us to lose sight of other impor-
tant aspects, such as creativity. The
literature has shown that creative
thinking is essential to software engi-
neering and is a key quality of great
software developers.1,2 Creativity is
central to our ability to solve complex
problems, and software development
is, at its core, a form of problem-solv-
ing that, in turn, reinforces the impor-
tance of creativity.3 However, the word
“creative” is rarely used to describe

software. This is perhaps not because
software isn’t creative but because cre-
ativity in software engineering might
look different than in other domains.

With the recent changes in the
ways we work, from new hybrid
models to the rise of artificial intel-
ligence (AI), there is an increased
attention on creativity in the work-
place. As software engineering con-
tinues to evolve, it is essential that
we consider creativity as a core as-
pect of the developer experience and
ensure that we are building tooling
and processes to support it.

To better understand how soft-
ware development tools and processes
are impacting creativity, we need a
better understanding of how soft-
ware developers see creativity in their
work. When beginning to unpack an
ambiguous and complex topic such
as creativity, it’s important to start
with the human experience. Building
a definition for creativity in software
engineering based on the experiences
of individual developers will serve as
the foundation for future progress.

In this column, we describe our
approach and insights into under-
standing how a sample of software
developers at Google defines creativ-
ity in their work. We first discuss
the relevant literature in the space
that shaped our approach and then
outline our qualitative approach to
forming a definition. Our findings
suggest that creativity in software
engineering centers on the concept
of clever reuse rather than pure nov-
elty. Understanding this distinction
enables us to rethink how to better
support and measure creativity in
software engineering more broadly.

Understanding Creativity
To understand creativity in the con-
text of software engineering, we first
need to understand how creativity
has been defined in the past. Re-
searchers have been studying cre-
ativity for decades, and definitions
of creativity often describe ideation
with an emphasis on novelty and
usefulness.4 We leverage these defi-
nitions in our research to gather

Developer Productivity
for Humans, Part 8:
Creativity in Software
Engineering
Sarah Inman , Sarah D’Angelo , and Bogdan Vasilescu

Digital Object Identifier 10.1109/MS.2023.3340831
Date of current version: 22 February 2024

DEVELOPER PRODUCTIVITY
FOR HUMANS

https://orcid.org/0000-0002-0908-6926
https://orcid.org/0000-0001-9104-8365

DEVELOPER PRODUCTIVITY FOR HUMANS

12 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

examples of creative moments by us-
ing the words “useful,” “adaptable,”
and “elegant” in addition to “cre-
ative” to elicit responses. While these
attributes are helpful starting points,
they lack the depth and specificity
needed to better identify creativity in
software engineering workflows.

In the context of creativity in soft-
ware engineering, we mainly see a fo-
cus on creativity in products and in
people. To measure creative products,
researchers have used metrics such as
the number of new features compared
to bugs5 or the novel reuse of existing

libraries.6 Researchers have also ex-
plored how the individual character-
istics of software developers influence
creativity.7,8 However, the outcomes
of these studies vary in terms of what
individual characteristics might pre-
dict creativity. As researchers focused
on measuring and understanding the
developer experience, we are not seek-
ing to understand what characteristics
of a person make them more or less
creative or what aspects of a product
make it creative. Rather, we are inter-
ested in understanding what makes the
software development process creative
and what makes the underlying code
that contributes to products creative.

To define creativity as it emerges
throughout the software develop-
ment lifecycle, we took a qualitative
approach. Because we are interested
in defining creativity from a develop-
er’s perspective, we used qualitative

methods that can provide rich context
that is useful when exploring complex
concepts. Concretely, we used a feed-
back and photo elicitation methodol-
ogy,9,10 in the context of a diary study,
followed by a structured interview.

Feedback studies ask participants
to provide information in response to
prompts immediately after an event
occurs, while elicitation studies ask
participants to provide information
(in the form of an artifact, here a
screenshot) as a memory cue in fol-
low-up interviews.10 Elicitation stud-
ies are particularly useful for asking

questions about nebulous concepts
due to the known challenges of self-
report methods and people’s ability
to recall information accurately. The
prompts for the week-long diary study
focused on how developers expect
to be creative and what they saw
as creative upon reflection on their
week. The photo elicitation portion
asked developers to submit a screen-
shot of their work that they consid-
ered “creative.”

In the follow-up interviews, we
used photos to cue memory in the
moment and acquire further context
about what parts of daily life develop-
ers find creative. We asked engineers
to describe what made these artifacts
creative and what aspects of their
work they consider to be creative. This
approach also afforded a better under-
standing of the connection between
context and the creative process.

For analysis, we used a grounded
theory approach, applying “codes”
or descriptive labels to the week-long
feedback and elicitation portion of
the study and then to the interview
transcripts line by line. We then used
this information to identify com-
mon themes that emerged from the
data, such as reuse, infrastructure,
knowledge sharing, learning, novelty,
constraints that aid creativity, and
session. Finally, we connected the
reflection prompts to specific points
in the developer workflow, which
helped us gain a deeper understand-
ing of the participants’ experiences.

Defining Creativity in
Software Engineering
At a high level, our analysis of the
diary study and follow-up interviews
identified three key themes.

1. Collaboration and brainstorm-
ing foster creativity among
developers.

2. Regardless of working individu-
ally or in a group, problem-solv-
ing by exploring a solution space
through learning and explora-
tion sets the stage for creativity.

3. Ultimately, clever reuse and recom-
bination of existing code in useful
ways are the primary attributes of
creativity in software engineering.

Based on these findings, we con-
sider creativity in software engineer-
ing to include problem-solving that
emphasizes reusability and useful-
ness over originality. Next, we give
more details about each of the three
emerging themes.

Fostering Creativity Through
Collaboration and Brainstorming
Developers submitted screenshots of
planning and design stages, includ-
ing team communication, ideation,

Ultimately, clever reuse and
recombination of existing code in useful

ways are the primary attributes of
creativity in software engineering.

DEVELOPER PRODUCTIVITY FOR HUMANS

 MARCH/APRIL 2024 | IEEE SOFTWARE 13

and brainstorming, which aligns with
prior literature11 highlighting brain-
storming as a key practice that influ-
ences software developer creativity.

As one interviewee put it

“All of the discussion happens on
chat now, rather than in meetings
or just bantering in the office. This
has caused a lot more cross-
pollination in this brainstorming
phase because if it’s in chat, despite
being an ocean apart, we’re all
talking about the same problem.”

Participants identified creativity as
occurring primarily after a problem
has been defined but before a solution
has been decided on. It is the utility to
others that distinguishes the work as
creative. Enacting creativity requires
a creative process, which occurs dur-
ing moments of deep focus or flow
and in collaboration with others.

Facilitating Creative Thinking
Through Exploration
Not knowing where to find the
right information or expertise can
lead to problems in organizations.
Among our study participants, ex-
ploring a solution space emerged as
a key component of developers’ cre-
ative expression. Given that having
to learn something new can often be
perceived as a hindrance to getting
work done efficiently, it is important
to unpack what kinds of learning are
considered to enable creativity.

One interviewee mentioned the
following:

“I think the creative part in the
development stage is when you hit
snags that you’re maybe unaware
of when you’re first designing the
project. And then you have to figure
out ways to resolve those within the
framework that you’ve already set.”

Participants experienced creativity
in moments of learning new concepts,
tools, and languages but also when
learning simple fixes from colleagues.
This suggests that learning can be a
hindrance to getting work done when
the information is difficult to find but
that this is mitigated by having a cul-
ture of knowledge sharing. Gaining
a deeper knowledge of the system or
learning a new tool or technique was
a major area in which developers ex-
perienced creativity, as one partici-
pant exemplified.

“For me, learning what the box
diagram looks like, like being able
to look at the system and then
go back and get a whiteboard
and draw a picture of how it fits
together and what talks to what …
that is always a super fascinating
adventure for my brain.”

In distinguishing what kinds of
learning are central to creativity,
the need for better documentation is
clear. Problem-solving without proper
documentation led to burdensome
knowledge requirements disconnected
from the bigger picture. However,
when developers are able to access
documentation and become immersed
in learning, it is considered a central
component of creativity. This study
suggests that addressing major ob-
stacles with respect to knowledge ac-
cess and documentation could lead to
the types of learning more associated
with creativity and potentially relieve
one of the primary hindrances to
productivity.

Another participant defined cre-
ativity as a process or as something
enjoyable, noting that mastery re-
quires more learning.

“It’s easier to get creative [with] art
even if you don’t know much. You

just let your mind wander until
you spot something you like. You
probably won’t make anything
‘genius’ without a deep dive, but
you will still create something new
and enjoy the process. For work,
though, you need to actually know
as many techniques, technologies,
approaches, or design solutions as
possible in order to be creative with
your solution.”

Defining Creativity as Clever Reuse
Most screenshots developers submit-
ted were in the implementation stage
of software development. These ex-
cerpts were largely focused on reuse
and developing improvised solu-
tions. While many of the screen-
shots included artifacts, such as
design documentation to better help
future developers or brainstorming
documents among teammates, in the
implementation stage, developers sub-
mitted screenshots of actual code, ei-
ther code they had written that was
helpful, reusable, or novel or code
that they had refactored. The fol-
lowing quote illustrates a common
theme around refactoring code as a
form of creativity:

“I feel satisfied when refactor-
ing code and making it cleaner.
Especially if I can come up with a
different data structure of the class
that makes everything easier.”

In follow-up interviews, partici-
pants discussed reuse as a primary
attribute of creativity and contrasted
their work to more classical creative
fields such as art. For example, one
participant noted the following:

“Code shouldn’t be creative because
it should be reusable. I think art
should be creative because it’s some-
thing new. Sure, we are also trying

DEVELOPER PRODUCTIVITY FOR HUMANS

14 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

to write something new, but it’s not
so new and unseen … Most novelty
or creativity is just using constructs
that are known.”

Overall, developers emphasize the
importance of future usage of their
designs when asked about creative
moments in their day. Thus, while
novelty plays into developers’ defi-
nitions of creativity, novel or clever
reuse is more critical. This includes
reuse by team members or envi-
sioned downstream usage of their
software products. This aspect of
reuse in a developer community is a
specific justification that developers
give for not considering themselves
to be “creative” according to more
mainstream definitions that empha-
size novelty. Many developers we in-
terviewed differentiated their work
from artists in that they—unlike
artists—were not focused on being
novel or original. On the contrary,
overemphasizing clever designs or
originality in code was seen as a neg-
ative, sometimes referred to as snow-
flake code.

Creativity in Software
Engineering
Reflecting on the themes emerging
from our study, our main finding is
that software practitioners at Google
view creativity as a form of problem-
solving that emphasizes reusability and
usefulness over originality and nov-
elty. Indeed, many of our informants
distinguish their work from that of
artists or “creatives” in that software
engineering creativity includes be-
ing able to know when to reuse code,
creating code or knowledge that can
contribute to future use, and produc-
ing output that is useful to their team
or future developers. This view tends
to differ from the mainstream defi-
nitions of creativity, which typically

highlight originality and novelty, and
instead aligns with Boden’s concept of
combinational creativity, that is, “the
combination of familiar ideas in unfa-
miliar ways.”12

So what does this mean for the
future of software engineering? The
clearer understanding of develop-
ers’ view of creativity that we pro-
vide suggests several new research
directions at the intersection of soft-
ware engineering, human–computer
interaction, and machine learning.
While surely not exhaustive, we out-
line a list of open research questions
around measurement, AI/large lan-
guage models (LLMs), and produc-
tivity that are informed by the work
we described previously.

Measuring Creativity in Software
Going beyond developers’ creative
processes and perceptions of creativ-
ity, it becomes natural to ask how
creativity might be operationalized
in software artifacts. What are the
characteristics of creativity and in-
novation in software? How can we
measure the degree of innovation in
software products and processes? The
emphasis on clever reuse over absolute
novelty revealed by our study offers
several possible ways forward given
prior work outside of software en-
gineering. For example, researchers
operationalize innovation as novel
combinations of existing concepts,13
novel combinations of citations of
prior work14 first co-occurring in a
research article, or the “disruption”15
of citations of prior work after the
article deemed innovative gets pub-
lished. To what extent do these op-
erationalizations have valid analogs
in software?

Creativity and LLMs
There has been an influx of AI-based
developer tooling aimed at improving

productivity. The introduction of
LLMs into developer tooling is start-
ing to change the way developers
think about writing code, with a fo-
cus on writing code faster and au-
tomating tasks.16 As we are at the
beginning stages of AI in developer
workflows, it is critical that we do
not lose sight of creativity in our ef-
forts to optimize for productivity. In-
deed, recent work outside of software
engineering17 examined how expe-
rienced authors interacted with AI
for creative writing tasks and found
that the authors enjoyed brainstorm-
ing and adding details while aided
by AI but did not want to “offload
the creative process” to it. Do soft-
ware developers feel similarly? If so,
how might we better support creative
software engineering while interact-
ing with AI-based tools?

Creativity Versus Productivity
Finally, we argue that creativity could
be at risk if we overoptimize for pro-
ductivity and efficiency. Some factors
that might be a hindrance to produc-
tivity in the short term could enable
creativity in the long term. In our
interviews, when developers moved
past the expectation that creativity
meant novelty, they noted that their
own work was most creative when
implementing code, refactoring, and
collaborating with colleagues to solve
a problem. Not all of these activities
are when developers are typically
considered at their most productive.
For example, refactoring is not with-
out controversy,18,19 and the coor-
dination challenges that come with
collaboration are well known.20 This
suggests perhaps a different tempo-
rality to creativity than there is for
productivity. To what extent does op-
timizing for creativity hinder produc-
tivity and vice versa? What are the
tradeoffs involved?

DEVELOPER PRODUCTIVITY FOR HUMANS

 MARCH/APRIL 2024 | IEEE SOFTWARE 15

T here remains a need to bet-
ter understand what creativ-
ity means in the context of

software engineering, how it affects
the whole software development pro-
cess, and how factors like work lo-
cation or AI tools might influence
it. We’re taking a step toward fill-
ing this knowledge gap by exploring
how professional developers at Google
think about creativity in their work.
Leveraging qualitative methods to
investigate this ambiguous topic, our
findings showed that their defini-
tions differ somewhat from the usual
ones. Software developers think of
creativity as making things reusable
and useful rather than simply being
original or new. Based on what we’ve
learned, we can start to imagine how
future software engineering research
might focus more on creativity. While
we’ve posed more questions than an-
swers, we hope this discussion sparks
new ideas and discussions about how
to make software engineering better
with creativity in mind.

References
1. P. L. Li, A. J. Ko, and A. Begel,

“What distinguishes great software

engineers?” Empirical Softw.

Eng., vol. 25, no. 1, pp. 322–352,

Jan. 2020, doi: 10.1007/s10664

-019-09773-y.

2. P. L. Li, A. J. Ko, and J. Zhu, “What

makes a great software engineer?” in

Proc. IEEE/ACM 37th IEEE Int.

Conf. Softw. Eng., 2015, pp. 700–

710, doi: 10.1109/ICSE.2015.335.

3. R. L. Glass, Software Creativity. Up-

per Saddle River, NJ, USA: Prentice-

Hall, 1994.

4. T. M. Amabile et al., “A model of

creativity and innovation in organi-

zations,” Res. Org. Behav., vol. 10,

no. 1, pp. 123–167, 1988.

5. J. W. Paulson, G. Succi, and

A. Eberlein, “An empirical study

of open-source and closed-source

software products,” IEEE Trans.

Softw. Eng., vol. 30, no. 4, pp.

246–256, Apr. 2004, doi: 10.1109/

TSE.2004.1274044.

6. H. Fang, J. Herbsleb, and B. Vasi-

lescu, “Novelty begets popularity,

but curbs participation – A macro-

scopic view of the Python open-

source ecosystem,” in Proc. IEEE/

ACM 46th Int. Conf. Softw. Eng.

(ICSE), New York, NY, USA: ACM,

2024, pp. 643–653.

7. A. Amin et al., “The impact of

personality traits and knowledge

collection behavior on programmer

creativity,” Inf. Softw. Technol.,

vol. 128, Dec. 2020, Art. no. 106405,

doi: 10.1016/j.infsof.2020.106405.

8. W. Groeneveld, L. Luyten, J. Vennek-

ens, and K. Aerts, “Exploring the role

of creativity in software engineering,”

in Proc. Int. Conf. Softw. Eng.,

Softw. Eng. Soc. (ICSE-SEIS), Pis-

cataway, NJ, USA: IEEE Press, 2021,

pp. 1–9.

9. E. Bignante, “The use of photo-

elicitation in field research. Explor-

ing Maasai representations and use

of natural resources,” EchoGéo, vol.

11, no. 11, 2010, Art. no. 11622, doi:

10.4000/echogeo.11622.

10. S. Carter and J. Mankoff, “When

participants do the capturing: The

role of media in diary studies,”

in Proc. SIGCHI Conf. Human

Factors Comput. Syst. (CHI),

Apr. 2005, pp. 899–908, doi:

10.1145/1054972.1055098.

11. R. Mohanani, P. Ram, A. Lasisi,

P. Ralph, and B. Turhan, “Perceptions

of creativity in software engineering

research and practice,” in Proc. 43rd

Euromicro Conf. Softw. Eng. Adv.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

SARAH INMAN is a user experience researcher on Google Cloud’s

Storage team at Google, Seattle, WA 98103 USA. Please contact her

at icsarah@google.com.

SARAH D’ANGELO is a user experience researcher on the

Engineering Productivity Research team at Google, Canterbury

7999, New Zealand. Contact her at sdangelo@google.com.

BOGDAN VASILESCU is a visiting researcher at Google and an

Associate Professor at Carnegie Mellon University, Pittsburgh, PA

15213 USA. Please contact him at empirical@google.com.

mailto:icsarah@google.com
mailto:sdangelo@google.com
mailto:empirical@google.com

DEVELOPER PRODUCTIVITY FOR HUMANS

16 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Appl. (SEAA), Piscataway, NJ, USA:

IEEE Press, 2017, pp. 210–217.

12. M. A. Boden, The Creative Mind:

Myths and Mechanisms. Routledge,

London, U.K.: Psychology Press, 2004.

13. B. Hofstra, V. V. Kulkarni, S. Munoz-

Najar Galvez, B. He, D. Jurafsky,

and D. A. McFarland, “The diversity–

innovation paradox in science,” Proc.

Nat. Acad. Sci., vol. 117, no. 17, pp.

9284–9291, 2020, doi: 10.1073/

pnas.1915378117.

14. B. Uzzi, S. Mukherjee, M. Stringer,

and B. Jones, “Atypical combinations

and scientific impact,” Science, vol.

342, no. 6157, pp. 468–472, 2013,

doi: 10.1126/science.1240474.

15. R. J. Funk and J. Owen-Smith, “A

dynamic network measure of tech-

nological change,” Manage. Sci.,

vol. 63, no. 3, pp. 791–817, 2017, doi:

10.1287/mnsc.2015.2366.

16. S. Barke, M. B. James, and N.

Polikarpova, “Grounded copilot:

How programmers interact with

code-generating models,” 2022,

arXiv:2206.15000.

17. D. Ippolito, A. Yuan, A. Coenen,

and S. Burnam, “Creative writing

with an AI-powered writing assistant:

Perspectives from professional writ-

ers,” 2022, arXiv:2211.05030.

18. E. Ammerlaan, W. Veninga, and A.

Zaidman, “Old habits die hard: Why

refactoring for understandability does

not give immediate benefits,” in Proc.

Int. Conf. Softw. Anal., Evol., Reeng.

(SANER), Piscataway, NJ, USA: IEEE

Press, 2015, pp. 504–507.

19. M. Kim, T. Zimmermann, and N.

Nagappan, “A field study of refactor-

ing challenges and benefits,” in Proc.

Int. Symp. Found. Softw. Eng. (FSE),

2012, pp. 1–11.

20. M. Cataldo and J. D. Herbsleb,

“Coordination breakdowns and their

impact on development productiv-

ity and software failures,” IEEE

Trans. Softw. Eng., vol. 39, no. 3, pp.

343–360, Mar. 2013, doi: 10.1109/

TSE.2012.32.

Digital Object Identifier 10.1109/MS.2024.3358034

Write for the IEEE Computer
Society’s authoritative

computing publications
and conferences.

GET PUBLISHED
www.computer.org/cfp

IEEE COMPUTER SOCIETY

Call for Papers

	011_41ms02-developerprod-3340831.pdf

