
4	 May/June 2019	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/19©2019IEEE

FROM THE EDITORS

Paul C. van Oorschot
Associate Editor in Chief

Software Security and
Systematizing Knowledge

T he job of a university professor is an
interesting one. As far as I can tell, there

is no generally agreed upon job description. A
written description would be a vague approxi-
mation of what professors actually do anyway.
In general, though, two priority components
are always noted: research and teaching.
These aspects also are highly complementary,
in my experience, and both relate directly to
practice in computer security. The teaching
aspect brings interaction with bright young
students. They take courses in subject areas
that they have never studied before and then
proceed to ask obvious questions such as,
“What exactly is software security?” That one
turns out to be not very difficult to answer.
Until you try to do so.

I was asked this question back in January,
around the same time that Gary McGraw
announced he was officially retired from pro-
ducing monthly Silver Bullet Security pod-
casts, which he ran continuously from April
2006 through December 2018. (Thank you
Gary!) McGraw has played a large role in
moving software security from a collection
of unpleasant practical issues, ranging from
nuisance to crisis (the incidents—not Gary),
into a recognized subdiscipline of computer
security. Reaching over to my bookshelf, I
confirm that McGraw’s book Java Security1
begins by explaining the Java security model
and what a malicious applet is. His follow-up
book, Securing Java,2 includes a technical
discussion of code signing (digitally signing
Java byte code) and guidelines for mobile
code security. Why mention these books?
They were instrumental at a critical time,
setting us on a path.

In retrospect, without industry’s early over-
stated claims regarding Java security, which
drew the interest of a few researchers, the

entire field of software security and our col-
lective understanding of it may well have been
quite different. We may have never seen Build-
ing Secure Software,3 a landmark book that
gave many general readers their first detailed
treatment of buffer overflows in hardcover.
McGraw then teamed with Greg Hoglund
for Exploiting Software: How to Break Code,4
which offered a discussion of security attack
patterns, and Exploiting Online Games: Cheat-
ing Massively Distributed Systems.5 Between
these was Software Security: Building Security
In,6 which included an insightful annotated
bibliography.

In parallel, Michael Howard and David
LeBlanc, with a finer focus on helping Micro-
soft developers, delivered Writing Secure
Code7 and Writing Secure Code for Win-
dows Vista.8 They later teamed up with John
Viega, the first author of the landmark book
I mentioned previously and well known to
IEEE Security and Privacy readers as a for-
mer editor-in-chief. Their Deadly Sins in Soft-
ware Security series9,10 was aimed squarely at
developers. The early books inspired others
in software security. A favorite is the superb
(and hefty, at more than 1,000 pages) Art of
Software Security Assessment: Identifying and
Preventing Software Vulnerabilities.11

What distinguishes these books? Why do
they receive special attention? They were
written by experts who had first-hand exper-
tise, cared about real products, and wrote
about actual vulnerabilities they had seen.
More importantly, these books also began the
process of seriously consolidating and sharing
knowledge in this area, in a way that makes it
available to a wider audience including devel-
opers, beyond the narrow field of research
specialists. These authors conveyed their
experiences, included new ideas and obser-
vations, and began the process of organizing
what was known. Some would argue that this
is what science is about (but that is a separate,
and longer, discussion for another time).

Digital Object Identifier 10.1109/MSEC.2019.2904127
Date of publication: 14 May 2019

www.computer.org/security� 5

Meanwhile, countless practitio-
ners were dealing with software secu-
rity issues, many entirely independent
of other practitioners, putting out
fires on a daily basis, experiencing
and rediscovering similar things. On
yet another channel, experts revealed
details of seemingly impossible attacks
in a stream of one-off technical articles
that appeared online,12,13 on security
mailing lists,14–16 and in talks at events
such as the Chaos Communication
Congress and Black Hat.

Many of these indi-
v idual articles were
rich technical contribu-
tions, but they did not
attempt to consolidate
knowledge. They dem-
onstrated impressive
technical ideas (some
with more of a focus
on defense than oth-
ers). Some built on the ideas of
others, but the contributions were
often disjoint. Awareness of buf-
fer overflows existed already in the
1970s, albeit within a far narrower
audience. Knowledge had not pro-
gressed as much as we might have
hoped, so many years after the buf-
fer overflow experience in the 1988
Internet Worm.

This brings us back to teach-
ing. And practice. And moving the
industry forward. A driving moti-
vation behind the first software
security books in the late 1990s and
early 2000s was the lack of organized
material to help developers improve
the security of (or, equivalently,
reduce the vulnerabilities in) the
software they wrote, not to mention
helping students learn these same
things. Large corporations (includ-
ing one headquartered in Redmond,
Washington) whose core business
was Internet software recognized
that this was critically important.
Software security services and con-
sulting firms (old giants and newer
firms including Cigital and Cov-
erity) whose mission was to help
a wide spectrum of clients in this

process recognized it also. Thus, it
is not surprising who the authors
of these early books were or from
where they arose.

In these ways, industry and non-
academic experts pioneered soft-
ware security, ahead of traditional
academic researchers. Those in
industry certainly experienced the
pain of security problems acutely.
After a long gap following the Mor-
ris Worm, the early 2000s saw a

resurgence in malware with Code
Red, Nimda, Sircam, Slammer,
Blaster, and the like. By a pleasant
coincidence, the academic com-
munity got a tremendous research
boost around this same time, as the
Internet bust resulted in a one-time,
massive migration of security exper-
tise from industry to academia,
headlined by the demise of AT&T
Bell Labs and the woes of the global
telecommunications industry.

This migration seeded large uni-
versities, the vast majority of which
had essentially no prior concentra-
tion of security researchers, with
a wave of senior global security
experts as well as young research-
ers who found the academic world
more enticing than an imploding
high-tech world. There was a defi-
nite (positive) effect, advancing
software security significantly—in
our capacity for individual research
contributions and our ability to con-
tribute to a collective understanding
of the field.

So, what is software security?
Perhaps the easiest path to an
answer is to ask how it differs from
security software. Security software

performs security-specific tasks and
implements security mechanisms.
Antivirus (antimalware) software,
intrusion-detection tools, firewalls,
and cryptographic toolkits, proto-
cols, and algorithms—these all are
security software (products and
tools). In contrast, software secu-
rity focuses on the security of soft-
ware itself, software whose main
functionality is not necessarily secu-
rity (although it could be). In such

generic software, secu-
rity involves issues such
as buffer overruns and
related memory safety
violations, race condi-
tions, integer vulnerabili-
ties, improperly resolved
resource references, and
privilege escalation.

Therefore, software
security is not about

embedded security mechanisms
per se, or about network appliances
that help in security management,
but the properties of everyday soft-
ware and platforms. It leads to the
consideration of software tools,
the run-time support and training
needed—and to reconsidering the
base programming languages used
to write code—to reduce and miti-
gate software vulnerabilities.

A significant fraction of atten-
tion continues to go to legacy soft-
ware. The historical tools of choice
(hello, C programming language—
our best friend and worst enemy)
were designed for an environment
very different from today’s world.
They prioritized efficiency and
direct access over security and type
safety. The security issues related
to browser–server interactions
and web security more generally
(e.g., cross-site scripting, cross-site
request forgery, SQL injection) also
form a large subcategory of software
security. However, the main point
to highlight is that we now have a
much richer understanding of soft-
ware security as a discipline than we
did in the late 1990s. A multitude of

They were written by experts who

had first-hand expertise, cared about

real products, and wrote about actual

vulnerabilities they had seen.

6	 IEEE Security & Privacy� May/June 2019

FROM THE EDITORS

tools are available to help address
the many types of software vulner-
abilities that arise.

We have arrived at this point
in our understanding of software
security by pooling the expertise
and strengths of several subcom-
munities: software practitioners,
independent consultants, and secu-
rity researchers in both academia
and industry. In different ways,
each contributes toward the overall
advancement of knowledge, and it
is through the interaction of these
subcommunities that true prog-
ress is made. This mixed collection,
including the support of technical
managers, is also the target audi-
ence of IEEE Security & Privacy. We
look forward to your ongoing input
and guidance to ensure that each
subcommunity continues to be rep-
resented in the articles that appear
we publish.

References
1.	 G. McGraw and E. W. Felten, Java

Security: Hostile Applets, Holes, and
Antidotes. New York: Wiley, 1996.

2.	 G. McGraw and E. W. Felten, Secur-
ing Java: Getting Down to Business with
Mobile Code, 2nd ed. New York:
Wiley, Jan. 1999.

3.	 J. Viega and G. McGraw, Building
Secure Software: How to Avoid Secu-
rity Problems the Right Way. Boston:
Addison-Wesley, 2001.

4.	 G. Hoglund and G. McGraw, Exploit-
ing Software: How to Break Code. Bos-
ton: Addison-Wesley, 2004.

5.	 G. Hoglund and G. McGraw,
Exploiting Online Games: Cheating
Massively Distributed Systems. Boston:
Addison-Wesley, 2007.

6.	 G. McGraw, Software Security: Building
Security In. Boston: Addison-Wesley,
2006.

7.	 M. Howard and D. LeBlanc, Writing
Secure Code. Redmond, WA: Micro-
soft Press, Oct. 2002.

8.	 M. Howard and D. LeBlanc, Writ-
ing Secure Code for Windows Vista.
Redmond, WA: Microsoft Press,
2007.

9.	 M. Howard, D. LeBlanc, and J.
Viega, 19 Deadly Sins of Software Secu-
rity: Programming Flaws and How to
Fix Them. New York: McGraw-Hill,
2005.

10.	 M. Howard, D. LeBlanc, and J.
Viega, 24 Deadly Sins of Software Secu-
rity: Programming Flaws and How to
Fix Them. New York: McGraw-Hill,
2009.

11.	 M. Dowd, J. McDonald, and J.
Schuh, Art of Software Security
Assessment: Identifying and Prevent-
ing Software Vulnerabilities. Boston:
Addison-Wesley, 2006.

12.	 M. Conover and w00w00 Secu-
rity Development, “w00w00 on
heap overflows,” 1999. [Online].
Available: https://www.cs.utexas
.edu/~shmat/courses/cs361s
/w00w00.txt

13.	Scut and team teso, “Exploit-
ing format string vulnerabilities,”
2001. [Online]. Available: https://
www.win.tue.nl/~aeb/linux/hh
/formats-teso.html

14.	 Solar Designer, Bugtraq mailing
list, Aug. 1997.

15.	 Aleph One, “Smashing the stack
for fun and profit,” 1996. [Online].
Available: http://www-inst.eecs
.berkeley.edu/~cs161/fa08/papers
/stack_smashing.pdf

16.	 Anonymous, “Once upon a free(),”
Phrack Magazine, 2001. [Online].
Available: http://phrack.org/issues
/57/9.html

Access all your IEEE Computer
Society subscriptions at

computer.org/mysubscriptions

Executive Committee (ExCom) Members: Jeffrey Voas, President;

Dennis Hoffman, Sr. Past President, Christian Hansen, Jr. Past

President; Pierre Dersin, VP Technical Activities; Pradeep Lall, VP

Publications; Carole Graas, VP Meetings and Conferences; Joe Childs,

VP Membership; Alfred Stevens, Secretary; Bob Loomis, Treasurer

Administrative Committee (AdCom) Members:

Joseph A. Childs, Pierre Dersin, Lance Fiondella, Carole Graas, Samuel

J. Keene, W. Eric Wong, Scott Abrams, Evelyn H. Hirt, Charles H.

Recchia, Jason W. Rupe, Alfred M. Stevens, Jeffrey Voas, Marsha

Abramo, Loretta Arellano, Lon Chase, Pradeep Lall, Zhaojun (Steven)

Li, Shiuhpyng Shieh

http://rs.ieee.org

The IEEE Reliability Society (RS) is a technical society within the
IEEE, which is the world’s leading professional association for the
advancement of technology. The RS is engaged in the engineering
disciplines of hardware, software, and human factors. Its focus on the
broad aspects of reliability allows the RS to be seen as the IEEE Specialty
Engineering organization. The IEEE Reliability Society is concerned
with attaining and sustaining these design attributes throughout
the total life cycle. The Reliability Society has the management,
resources, and administrative and technical structures to develop
and to provide technical information via publications, training,
conferences, and technical library (IEEE Xplore) data to its
members and the Specialty Engineering community. The IEEE
Reliability Society has 28 chapters and members in 60 countries
worldwide.

The Reliability Society is the IEEE professional society for
Reliability Engineering, along with other Specialty Engineering
disciplines. These disciplines are design engineering fields that apply
scientific knowledge so that their specific attributes are designed
into the system / product / device / process to assure that it will
perform its intended function for the required duration within
a given environment, including the ability to test and support it
throughout its total life cycle. This is accomplished concurrently
with other design disciplines by contributing to the planning
and selection of the system architecture, design implementation,
materials, processes, and components; followed by verifying
the selections made by thorough analysis and test and then
sustainment.

Visit the IEEE Reliability Society website as it is the gateway
to the many resources that the RS makes available to its members
and others interested in the broad aspects of Reliability and Specialty
Engineering.

