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FROM THE EDITORS

Unsafe at Any Clock 
Speed: The Insecurity of 
Computer System Design, 
Implementation, and 
Operation

It appears that there are enormous differences 
of opinion as to the probability of a [system 
failure]. The higher figures come from the 
working engineers, and the very low figures 
from management. When playing Russian 
roulette the fact that the first shot got off 
safely is little comfort for the next. [T]here 
have been recent suggestions by manage-
ment to curtail elaborate and expensive tests 
as being unnecessary. This must be resisted. 
The proper way to save money is to curtail the 
number of requested changes, not the quality 
of testing for each.

Let us make recommendations to ensure 
that [management deals] in a world of reality 
in understanding technological weaknesses 
and imperfections well enough to be actively 
trying to eliminate them. They must live in 
reality in comparing the costs and utility. Only 
realistic schedules should be proposed, sched-
ules that have a reasonable chance of being 
met. If in this way support [would not exist], 
then so be it. For a successful technology, real-
ity must take precedence over public relations, 
for nature cannot be fooled. (Author’s Note: 
ellipses omitted for readability.)

O ne could be forgiven for thinking 
that this text came from a critique of 

SolarWinds Orion, Adobe Flash, or Micro-
soft Office or Internet Explorer, or from 
a recent report that led to a set of strong 

recommendations contained in a recent White 
House Executive Order on Cybersecurity. As 
most readers of this magazine likely recog-
nize, that would be wrong, as this is of course 
excerpted and edited text written by Richard 
Feynman, in his appendix to the 1986 Rog-
ers Commission report studying the Challenger 
disaster, “Personal Observations on Reli-
ability of Shuttle.”1

I quoted portions of Feynman’s report 
here because I believe that we have a simi-
lar problem in computer software for simi-
lar reasons: companies developing software 
prioritize maximum shareholder profit and 
productivity over software safety, robust-
ness, and security. It is not unreasonable or 
unexpected that companies prioritize profit. 
At the same time, many companies have 
embraced “corporate social responsibility,” 
having recognized that supporting employ-
ees, customers, and the broader world can 
positively impact both reputation and profit. 
As just one example, we see health care orga-
nizations balance profit with patient safety, 
because not doing so would lead to public 
outrage, which in turn would impact profits. 
However, with only rare exceptions do we 
see a similar effort to balance shareholder 
primacy with software security. The conse-
quences of this lack of balance range from 
events like the major breaches, ransomware, 
and attacks against critical systems like hos-
pitals and utilities—the NotPetya attacks 
affecting Maersk’s shipping and port opera-
tions worldwide, the WannaCry ransomware 
attacks against U.K. National Health Service 
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hospitals, and the Colonial Pipe-
line attack in the United States.

So where is the public out-
rage? And how did we get to this 
state, and why it is acceptable to 
so many organizations to live with 
this level of vulnerability and com-
promise? These incidents are not 
mere annoyances. Real people are 
affected in real ways. Given this, 
how is it possible that this is not 
a virtually identical moment to 
automobile safety before Ralph 
Nader’s Unsafe at Any Speed2 dem-
onstrated the need for and barriers 
to mandating safety improvements 
in cars, and led directly to seat 
belts and other safety advances? 
Or public and agricultural safety 
before R achel  Carson’s  Silent 
Spring3 exposed the toxicity of the 
chemical DDT and led directly to 
its ban? Or medical safety before 
John Snow’s On the Mode of Com-
munication of Cholera4 exposing 
that germs, not “miasma,” cause 
disease, which led directly to water 
safety and sewage improvements 
in London and beyond? Or the 
Flexner Report’s5 impact on bring-
ing mainstream scientific protocols 
to medical education? Or the Insti-
tute of Medicine’s To Err is Human6

exposing that the same number of 
daily deaths from medical errors in 
the United States is equivalent to 
the number of deaths from a jumbo 
jet  crashing each day,  leading 
directly to a fundamental change 
in the approach to quality of care, 
and the renaming of an agency to 
the “U.S. Agency for Healthcare 
Research and Quality”? It is an 
inconvenient truth that software 

and hardware engineers make mis-
takes, those mistakes can become 
“bugs,” some of those bugs rep-
resent vulnerabilities that can be 
attacked, and that, at times that are 
unpredictable, some of those vul-
nerabilities are attacked. So where 
is the equivalent response for soft-
ware quality?

In fact, the reason for this situa-
tion is essentially identical as what 
Feynman indicated more than three 
decades ago: profit, expediency, 
and succumbing to the requests for 
“changes” (usually “features”). The 
answer as to why there isn’t public 
outrage surely cannot be because 
we accept that shareholder profit 
should be prioritized over software 
quality. In fact, I would argue that 
it even does a disservice in the long 
term to shareholder value to priori-
tize short-term profit over software 
quality. At some point, companies 
that allow enough vulnerability 
will see the impact in their prof-
its. At the same time, it isn’t like 
we haven’t advocated substantially 
more secure systems, and even 
“clean slate” solutions before—cer-
tainly, with Multics7 and the aspira-
tions for Orange Book A1-certified 
computer systems,8 there were 
goals to meet provably secure 
operational requirements. Indeed, 
46 years ago, in 1974, Karger and 
Schell pointed out “Multics is not 
Now Secure” but went on to sug-
gest essentially that it could be 
made secure if we worked just a lit-
tle bit harder.9 However, writing in 
2002 on their observations in the 
28 years since the original paper, 
they note:10
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In the nearly thirty years since the 
report, it has been demonstrated 
that the technology direction that 
was speculative at the time can 
actually be implemented and pro-
vides an effective solution to the 
problem of malicious software 
employed by well-motivated pro-
fessionals. Unfortunately, the 
mainstream products of major 
vendors largely ignore these dem-
onstrated technologies.

A decade later, beginning in 
2012, two DARPA programs run by 
Howie Shrobe, “Clean-Slate Design 
of Resilient, Adaptive, Secure Hosts” 
(CRASH) and “Mission-Oriented 
Resilient Clouds” (MRC)11 sought 
to draw inspiration from “vision-
ary ideas of the past” to develop 
and demonstrate secure and resil-
ient systems. The “Turtles All the 
Way Down” piece that my col-
leagues Matt Bishop, Ed Talbot, and 
I wrote in 2012, advocated build-
ing and rebuilding systems with 
pervasive use of formal methods, 
diversity, and Byzantine fault toler-
ance12 “from atoms to eyeballs” in a 
13-level stack.

Fast forward to this past year 
when Paul van Oorschot noted in 
this magazine that the C language 
lacks type and memory safety, 
“… having learned our lesson from 
45 years of use, surely we do not still 
use C in new projects and in build-
ing brand new systems, do we? As 
it turns out, the evidence suggests 
we do.”13 Van Oorschot continued, 
noting that in the past, even though 
type-safe languages are available for 
use, such as Java, Go, and Apple’s 
Swift, the fact that those languages 
have not been appropriate for sys-
tems development may have pro-
longed the use of C and C++. As 
van Oorschot writes, performance 
languages appropriate for systems 
work now exist, but perhaps it will 
take something like requirements 
for government procurement to see 
languages like Rust adopted at scale. 

(As a side note, it is insufficient to 
leverage type-safe languages if the 
runtimes for those languages are 
also written in C/C++, as the run-
times for Java and Ruby are, for 
example.) The wonderful “Cyber 
Moonshot” piece in the very next 
issue of IEEE Security & Privacy by 
Hamed Okhravi, also advocates the 
use of semantically rich processors, 
type and memory-safe systems lan-
guages, and fine-grained operating 
system compartmentalization.14

It is probably unreasonable to 
expect that these examples that I 
have given of attempts to radically 
improve computer security would 
have the effects of the clarion calls in 
Silent Spring or Unsafe at Any Speed—
both books specifically aimed at 
the general public. However, schol-
arly writings in the medical domain, 
including On the Mode of Commu-
nication, To Err is Human, and the 
Flexner Report, have been transfor-
mative, whereas despite 46 years of 
efforts, from Karger and Schell to the 
present day, I don’t believe that we’ve 
seen similar effects in transforming 
computer security.

What I believe has changed since 
Karger and Schell, and perhaps 
even since the DARPA CRASH 
and MRC programs is that technol-
ogy and techniques have improved 
to the point that we are now finally 
at a place where we can actually, 
practically do something about this 
situation. In fact, in the same Chal-
lenger report, Feynman again even 
gave us a portion of the solutions—
bottom-up engineering:

The software is checked very care-
fully in a bottom-up fashion. First, 
each new line of code is checked, 
then sections of code or modules 
with special functions are verified. 
The scope is increased step by step 
until the new changes are incor-
porated into a complete system 
and checked. But completely inde-
pendently there is an independent 
verification group, that takes an 

adversary attitude to the software 
development group, and tests and 
verifies the software as if it were a 
customer of the delivered product. 
A discovery of an error during veri-
fication testing is considered very 
serious, and its origin studied very 
carefully to avoid such mistakes 
in the future. The principle that is 
followed is that all the verification 
is a test of that safety, in a non-
catastrophic verification. A failure 
here generates considerable con-
cern. (Author’s Note: ellipses omit-
ted for readability.)

Yet, regardless of the actual 
approach—top-down, bottom-up, 
or some combination of the two—
in the past, we have found Feyn-
man’s prescription regarding the 
degree of assurance required utterly 
untenable for all but the most criti-
cal systems. Times have changed 
in at least two ways: one is that we 
have gone from a world in which 
computer-controlled systems were 
mostly only running commercial 
and military aircraft and NASA’s 
space shuttles to a world in which 
dozens or hundreds of processors 
exist in the modern automobile, 
building “control systems,” and 
numerous other domains in life in 
which humans are dependent. A 
second and vital change is that tech-
nology useful for safety and security 
has advanced profoundly in the past 
25 years since the Rogers Commis-
sion report was released. Let’s take a 
look at some of those advances:

Consider type-safe languages: 
buffer overruns have been the 
“most dangerous” software weak-
ness for years. Why should the pub-
lic put up with something that is 
exposed as public enemy number 
one year after year with little prog-
ress? In contrast, Rust has emerged 
as a type and memory-safe lan-
guage suitable for systems pro-
gramming. Mozilla’s Servo browser 
engine is being written in the Rust, 
and numerous Linux libraries and 
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utilities are being rewritten in Rust. 
Rewriting old code in Rust can be a 
tough sell although Google’s recent 
effort to implement site isolation 
in Chrome, and Mozilla’s develop-
ment and application of RLBox to 
Firefox—both significant manual 
efforts—show progress can be 
made when the needed resources 
are devoted. This will also become 
easier as more third-party libraries 
are developed for Rust and more 
new developers learn Rust in com-
puter science courses.

Consider formal methods today: 
there exist many software elements 
that underlie the modern Internet 
and its usage that have been revealed 
as substantially lacking in security 
rigor for years, such as the vulnera-
bilities that plagued OpenSSL until 
organizations like Google, Micro-
soft, and OpenBSD stepped in. Why 
is it that the public is so forgiving of 
the reliance on such blatantly prob-
lematic software by major compa-
nies? And many other examples of 
such software certainly still remain. 
In contrast, seL4 is a formally veri-
fied microkernel, CertiKOS is a 
formally verified kernel, the Linux 
KVM hypervisor has been formally 
verified, and DARPA’s “Little Bird” 
is a formally verified autonomous 
helicopter, having survived hack-
ing contests as part of the DARPA 
HACMS program,15 run by Kath-
leen Fisher, John Launchbury, and 
Raymond Richards, in 2017, and 
again at DEFCON this past year. 
this past year. In addition, numer-
ous key elements of Amazon Web 
Services have been formally veri-
fied, Facebook leverages the Infer 
system to continuously verify code, 
and Microsoft’s Project Everest is 
developing a formally verified stack 
to improve secure web communica-
tions. Not every formal verification 
is as useful as another and it may 
never be tenable to formally verify 
all code, but the DARPA exercises 
alone seem to have demonstrated 
considerable value. At the very least, 

there is strong evidence that building 
systems on top of formally verified 
elements that are now available and 
usable could substantially ameliorate 
a large swath of security problems. 
Having even more verified systems 
that provide support for additional 
functionality would help encourage 
broader adoption of assured systems.

Consider security-enhanced 
hardware today: as discussed ear-
lier, security weaknesses often 
result from the use of “unsafe” lan-
guages and shared infrastruc-
ture. In contrast, the University of 
Cambridge and SRI’s Capabil-
ity Hardware Enhanced RISC In-
structions (CHERI)16 provides a 
capability-based system that provides 
fine-grained memory protection and 
software compartmentalization, 
thereby protecting against a host 
of weaknesses exposed by the 
use of unsafe languages, code injec-
tion attacks, and more. This is par-
ticularly valuable protection when 
existing software cannot easily be re-
written in type and memory-safe lan-
guages, for example, due to the vast 
amount of existing libraries written 
in C/C++. CHERI also now has nu-
merous formally verified elements. 
In addition, Arm’s forthcoming 
CHERI-extended Morello proto-
type CPU, system-on-a-chip, and 
board will ship early next year, and 
will consist of a full industrial qual-
ity and high-performance adaptation 
of Arm’s Neoverse N1 CPU design. 
This prototype is in fact the culmina-
tion of a kind of “moonshot” that has 
been developed over 10 years and 
with US$250 million of DARPA, 
United Kingdom government, and 
in-kind industry funding, and seems 
like it could serve as a model for ad-
vancing other security techniques 
and technologies.

In  a d d i t i o n  t o  c a p a b i l i t y - 
enhanced hardware,  consider 
hardware trusted execution envi-
ronments (TEEs). Running on tra-
ditional servers, including those in 
the cloud, requires complete trust of 

the system administrator as well as 
the numerous levels of the stack that 
seek to mitigate attempts by one 
user to attack another. Who is really 
happy about putting complete and 
unquestioning trust regarding data 
and computation in giant corpora-
tions? In contrast, TEEs provide 
strong isolation properties, some-
times even from system adminis-
trators and physical attacks. they 
are available or announced from 
every major CPU platform, includ-
ing AMD’s SEV; ARM’s v9’s Confi-
dential Compute Architecture, and 
Intel’s SGX, alongside open source 
TEEs, such as the RISC-V-based 
Keystone. Further, some form of 
TEE-like “confidential computing” 
service is available from the three 
major commercial cloud providers: 
AWS Nitro Enclaves, GCP Con-
fidential Computing, and Azure 
Confidential  Computing. The 
Linux Foundation also hosts the 
Confidential Computing Consor-
tium. The cloud and community 
efforts provide the software model 
and cryptographic infrastructure to 
make the use of confidential com-
puting more straightforward. For 
usability and performance reasons, 
not all of these architectures are 
useful for general-purpose comput-
ing. However, for certain workloads 
running on single nodes, SEV can 
carry little overhead beyond that 
of virtualization itself and is readily 
available in cloud environments.

The reluctance of organizations 
to adopt some of these techniques 
and technologies has echoes of 
the White Queen informing Alice 
about the (lack of) availability of 
jam today.17 However, despite past 
failures to make significant prog-
ress toward securing systems via 
Multics and the Orange Book, all 
of this recent progress has shown 
what is possible with the tools that 
we have today. Organizations can 
use type and memory safety (Rust), 
formal ly ver i f ied components 
(seL4, CertiKOS, Linux KVM), 
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and obtain strong hardware isola-
tion (AMD’s SEV) today. At least 
in the case of the Rust language as 
well as cloud environments that 
have broad frameworks supporting 
confidential computing on top of 
AMD’s SEV and related technolo-
gies, this can entail little extra effort. 
Organizations can use Facebook’s 
Infer automated reasoning system 
for static analysis today. Prototype 
hardware supporting CHERI will 
be available roughly at the time this 
piece goes to press and may well be 
in broader production in not too 
many more years.

I’ve enumerated a nonexhaustive 
list of numerous techniques and tech-
nologies here that could all represent 
elements of this improvement I speak 
of. Not all will be part of the final 
solutions, and undoubtedly there are 
others that I haven’t covered, such as 
the automated verification tools avail-
able that showed such success during 
DARPA’s Cyber Grand Challenge18 
and advances in the “grand chal-
lenges” of user-centered security that 
make it harder for users to make deci-
sions in a way that will lead to security 
failures.19 Furthermore, the solutions 
that I have discussed will also not solve 
all problems, and will not be adopted 
everywhere—for example, consider 
all of the software written by “citizen 
developers” or are outsourced to the 
lowest bidder. But if enough of the 
important software leverages these 
solutions, it would seem that doing 
so could solve a substantial number of 
problems, thereby enabling security 
researchers and engineers to focus on 
the problems for which we do not yet 
have solutions.

Portions of this cybersecurity 
vision likely are a “moonshot.” But 
I think it would be a misrepresen-
tation to characterize the entire 
endeavor as such. So, what’s in 
the way? We’ve already pointed to 
cost, so how do we lower that cost 
or overcome that barrier? Existing 
public sentiment about every new 
security breach that takes place 

clearly hasn’t been enough. Perhaps 
the public has just been convinced it 
has no choice but to accept the sta-
tus quo. In contrast, I think the pub-
lic has a right to be outraged about 
computer security. Further, even 
though the government itself suffers 
computer security failures large and 
small on an ongoing basis, the appe-
tite for significant regulation (e.g., 
liability for insecure software, sub-
stantially increasing requirements 
for software and hardware security 
in government procurement) in this 
space seems not to exist. Thus, in 
the face of evidence that there are 
in many cases relatively low bars to 
much safer systems, the reason for 
the continued prevalence of low 
adoption of the components that 
would could systems much safer 
remains something of a mystery, 
given that numerous key compo-
nents are here now, and the rest 
may well not be that far in the future 
from being deployed.

The barriers to large-scale adop-
tion of emerging security techniques 
and technologies urgently need to 
be investigated. This investigation 
should include a focus on techni-
cal issues, but should also include 
experts who can illuminate usabil-
ity, education, economic, policy, and 
social issues, and other systematic 
barriers to technology transition for 
innovation. At least on a technical 
level, there are few excuses not to be 
embracing many of the approaches 
that I’ve illustrated here. There are 
few excuses for not writing most or 
all new systems code in Rust; for sys-
tems, where appropriate, to be built 
using verified components and/or 
on top of security-enhanced hard-
ware, and for applications to be run 
on those systems wherever possible; 
and for the most important source 
code to leverage modern, automated 
program verification tools and possi-
bly formal methods.

In another passage from their 
2002 piece, Karger and Schell10 
write:

In our opinion this is an unstable 
state of affairs. It is unthinkable 
that another thirty years will go 
by without one of two occurrences: 
either there will be horrific cyber 
disasters that will deprive society 
of much of the value computers can 
provide, or the available technol-
ogy will be delivered, and hopefully 
enhanced, in products that provide 
effective security. We hope it will be 
the latter.

C omputer systems and net-
works have become “unsafe at 

any speed.” The time to change that 
is now. The future is here. There is 
no further room for excuse, igno-
rance of reality, or fooling of nature. 
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