
4	 January/February 2022	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/22©2022IEEE

FROM THE EDITORS

Unsafe at Any Clock
Speed: The Insecurity of
Computer System Design,
Implementation, and
Operation

It appears that there are enormous differences
of opinion as to the probability of a [system
failure]. The higher figures come from the
working engineers, and the very low figures
from management. When playing Russian
roulette the fact that the first shot got off
safely is little comfort for the next. [T]here
have been recent suggestions by manage-
ment to curtail elaborate and expensive tests
as being unnecessary. This must be resisted.
The proper way to save money is to curtail the
number of requested changes, not the quality
of testing for each.

Let us make recommendations to ensure
that [management deals] in a world of reality
in understanding technological weaknesses
and imperfections well enough to be actively
trying to eliminate them. They must live in
reality in comparing the costs and utility. Only
realistic schedules should be proposed, sched-
ules that have a reasonable chance of being
met. If in this way support [would not exist],
then so be it. For a successful technology, real-
ity must take precedence over public relations,
for nature cannot be fooled. (Author’s Note:
ellipses omitted for readability.)

O ne could be forgiven for thinking
that this text came from a critique of

SolarWinds Orion, Adobe Flash, or Micro-
soft Office or Internet Explorer, or from
a recent report that led to a set of strong

recommendations contained in a recent White
House Executive Order on Cybersecurity. As
most readers of this magazine likely recog-
nize, that would be wrong, as this is of course
excerpted and edited text written by Richard
Feynman, in his appendix to the 1986 Rog-
ers Commission report studying the Challenger
disaster, “Personal Observations on Reli-
ability of Shuttle.”1

I quoted portions of Feynman’s report
here because I believe that we have a simi-
lar problem in computer software for simi-
lar reasons: companies developing software
prioritize maximum shareholder profit and
productivity over software safety, robust-
ness, and security. It is not unreasonable or
unexpected that companies prioritize profit.
At the same time, many companies have
embraced “corporate social responsibility,”
having recognized that supporting employ-
ees, customers, and the broader world can
positively impact both reputation and profit.
As just one example, we see health care orga-
nizations balance profit with patient safety,
because not doing so would lead to public
outrage, which in turn would impact profits.
However, with only rare exceptions do we
see a similar effort to balance shareholder
primacy with software security. The conse-
quences of this lack of balance range from
events like the major breaches, ransomware,
and attacks against critical systems like hos-
pitals and utilities—the NotPetya attacks
affecting Maersk’s shipping and port opera-
tions worldwide, the WannaCry ransomware
attacks against U.K. National Health Service

Digital Object Identifier 10.1109/MSEC.2021.3127086
Date of current version: 25 January 2022

Sean Peisert
Editor in Chief

www.computer.org/security 5

hospitals, and the Colonial Pipe-
line attack in the United States.

So where is the public out-
rage? And how did we get to this
state, and why it is acceptable to
so many organizations to live with
this level of vulnerability and com-
promise? These incidents are not
mere annoyances. Real people are
affected in real ways. Given this,
how is it possible that this is not
a virtually identical moment to
automobile safety before Ralph
Nader’s Unsafe at Any Speed2 dem-
onstrated the need for and barriers
to mandating safety improvements
in cars, and led directly to seat
belts and other safety advances?
Or public and agricultural safety
before R achel Carson’s Silent
Spring3 exposed the toxicity of the
chemical DDT and led directly to
its ban? Or medical safety before
John Snow’s On the Mode of Com-
munication of Cholera4 exposing
that germs, not “miasma,” cause
disease, which led directly to water
safety and sewage improvements
in London and beyond? Or the
Flexner Report’s5 impact on bring-
ing mainstream scientific protocols
to medical education? Or the Insti-
tute of Medicine’s To Err is Human6

exposing that the same number of
daily deaths from medical errors in
the United States is equivalent to
the number of deaths from a jumbo
jet crashing each day, leading
directly to a fundamental change
in the approach to quality of care,
and the renaming of an agency to
the “U.S. Agency for Healthcare
Research and Quality”? It is an
inconvenient truth that software

and hardware engineers make mis-
takes, those mistakes can become
“bugs,” some of those bugs rep-
resent vulnerabilities that can be
attacked, and that, at times that are
unpredictable, some of those vul-
nerabilities are attacked. So where
is the equivalent response for soft-
ware quality?

In fact, the reason for this situa-
tion is essentially identical as what
Feynman indicated more than three
decades ago: profit, expediency,
and succumbing to the requests for
“changes” (usually “features”). The
answer as to why there isn’t public
outrage surely cannot be because
we accept that shareholder profit
should be prioritized over software
quality. In fact, I would argue that
it even does a disservice in the long
term to shareholder value to priori-
tize short-term profit over software
quality. At some point, companies
that allow enough vulnerability
will see the impact in their prof-
its. At the same time, it isn’t like
we haven’t advocated substantially
more secure systems, and even
“clean slate” solutions before—cer-
tainly, with Multics7 and the aspira-
tions for Orange Book A1-certified
computer systems,8 there were
goals to meet provably secure
operational requirements. Indeed,
46 years ago, in 1974, Karger and
Schell pointed out “Multics is not
Now Secure” but went on to sug-
gest essentially that it could be
made secure if we worked just a lit-
tle bit harder.9 However, writing in
2002 on their observations in the
28 years since the original paper,
they note:10

http://rs.ieee.org

The IEEE Reliability Society (RS) is a technical Society within the
IEEE, which is the world’s leading professional association for the
advancement of technology. The RS is engaged in the engineering
disciplines of hardware, software, and human factors. Its focus on the
broad aspects of reliability allows the RS to be seen as the IEEE Specialty
Engineering organization. The IEEE Reliability Society is concerned
with attaining and sustaining these design attributes throughout
the total life cycle. The Reliability Society has the management,
resources, and administrative and technical structures to develop
and to provide technical information via publications, training,
conferences, and technical library (IEEE Xplore) data to its
members and the Specialty Engineering community. The IEEE
Reliability Society has 28 chapters and members in 60 countries
worldwide.

The Reliability Society is the IEEE professional society for
Reliability Engineering, along with other Specialty Engineering
disciplines. These disciplines are design engineering fields that apply
scientific knowledge so that their specific attributes are designed
into the system/product/device/process to assure that it will
perform its intended function for the required duration within
a given environment, including the ability to test and support it
throughout its total life cycle. This is accomplished concurrently
with other design disciplines by contributing to the planning
and selection of the system architecture, design implementation,
materials, processes, and components; followed by verifying
the selections made by thorough analysis and test and then
sustainment.

Visit the IEEE Reliability Society website as it is the gateway
to the many resources that the RS makes available to its members
and others interested in the broad aspects of Reliability and Specialty
Engineering.

Executive Committee (ExCom) Members: Carole Graas,
President; Christian Hansen, Sr. Past President; Jeffrey Voas, Jr. Past
President; Lou Gullo, VP Technical Activities; Carole Graas, VP
 Publications; Jason Rupe, VP Meetings and Conferences; Qiang
Miao, VP Membership; Preeti Chauhan, Secretary; Steven Li,
Treasurer

Administrative Committee (AdCom) Members:
Carole Graas, Evelyn Hirt, Qiang Miao, J. Bret Michael, Jason Rupe,
Daniel Sniezek, Loretta Arellano, Pierre Dersin, Lou Gullo, Yan-Fu
Li, Nihal Sinnadurai, Robert Stoddard, Alex Dely, Donald Dzedzy,
Ruizhi (Ricky) Gao, Z. Steven Li, Farnoosh Naderkhani, Charles H.
Recchia

Digital Object Identifier 10.1109/MSEC.2021.3118955

6	 IEEE Security & Privacy� January/February 2022

FROM THE EDITORS

In the nearly thirty years since the
report, it has been demonstrated
that the technology direction that
was speculative at the time can
actually be implemented and pro-
vides an effective solution to the
problem of malicious software
employed by well-motivated pro-
fessionals. Unfortunately, the
mainstream products of major
vendors largely ignore these dem-
onstrated technologies.

A decade later, beginning in
2012, two DARPA programs run by
Howie Shrobe, “Clean-Slate Design
of Resilient, Adaptive, Secure Hosts”
(CRASH) and “Mission-Oriented
Resilient Clouds” (MRC)11 sought
to draw inspiration from “vision-
ary ideas of the past” to develop
and demonstrate secure and resil-
ient systems. The “Turtles All the
Way Down” piece that my col-
leagues Matt Bishop, Ed Talbot, and
I wrote in 2012, advocated build-
ing and rebuilding systems with
pervasive use of formal methods,
diversity, and Byzantine fault toler-
ance12 “from atoms to eyeballs” in a
13-level stack.

Fast forward to this past year
when Paul van Oorschot noted in
this magazine that the C language
lacks type and memory safety,
“… having learned our lesson from
45 years of use, surely we do not still
use C in new projects and in build-
ing brand new systems, do we? As
it turns out, the evidence suggests
we do.”13 Van Oorschot continued,
noting that in the past, even though
type-safe languages are available for
use, such as Java, Go, and Apple’s
Swift, the fact that those languages
have not been appropriate for sys-
tems development may have pro-
longed the use of C and C++. As
van Oorschot writes, performance
languages appropriate for systems
work now exist, but perhaps it will
take something like requirements
for government procurement to see
languages like Rust adopted at scale.

(As a side note, it is insufficient to
leverage type-safe languages if the
runtimes for those languages are
also written in C/C++, as the run-
times for Java and Ruby are, for
example.) The wonderful “Cyber
Moonshot” piece in the very next
issue of IEEE Security & Privacy by
Hamed Okhravi, also advocates the
use of semantically rich processors,
type and memory-safe systems lan-
guages, and fine-grained operating
system compartmentalization.14

It is probably unreasonable to
expect that these examples that I
have given of attempts to radically
improve computer security would
have the effects of the clarion calls in
Silent Spring or Unsafe at Any Speed—
both books specifically aimed at
the general public. However, schol-
arly writings in the medical domain,
including On the Mode of Commu-
nication, To Err is Human, and the
Flexner Report, have been transfor-
mative, whereas despite 46 years of
efforts, from Karger and Schell to the
present day, I don’t believe that we’ve
seen similar effects in transforming
computer security.

What I believe has changed since
Karger and Schell, and perhaps
even since the DARPA CRASH
and MRC programs is that technol-
ogy and techniques have improved
to the point that we are now finally
at a place where we can actually,
practically do something about this
situation. In fact, in the same Chal-
lenger report, Feynman again even
gave us a portion of the solutions—
bottom-up engineering:

The software is checked very care-
fully in a bottom-up fashion. First,
each new line of code is checked,
then sections of code or modules
with special functions are verified.
The scope is increased step by step
until the new changes are incor-
porated into a complete system
and checked. But completely inde-
pendently there is an independent
verification group, that takes an

adversary attitude to the software
development group, and tests and
verifies the software as if it were a
customer of the delivered product.
A discovery of an error during veri-
fication testing is considered very
serious, and its origin studied very
carefully to avoid such mistakes
in the future. The principle that is
followed is that all the verification
is a test of that safety, in a non-
catastrophic verification. A failure
here generates considerable con-
cern. (Author’s Note: ellipses omit-
ted for readability.)

Yet, regardless of the actual
approach—top-down, bottom-up,
or some combination of the two—
in the past, we have found Feyn-
man’s prescription regarding the
degree of assurance required utterly
untenable for all but the most criti-
cal systems. Times have changed
in at least two ways: one is that we
have gone from a world in which
computer-controlled systems were
mostly only running commercial
and military aircraft and NASA’s
space shuttles to a world in which
dozens or hundreds of processors
exist in the modern automobile,
building “control systems,” and
numerous other domains in life in
which humans are dependent. A
second and vital change is that tech-
nology useful for safety and security
has advanced profoundly in the past
25 years since the Rogers Commis-
sion report was released. Let’s take a
look at some of those advances:

Consider type-safe languages:
buffer overruns have been the
“most dangerous” software weak-
ness for years. Why should the pub-
lic put up with something that is
exposed as public enemy number
one year after year with little prog-
ress? In contrast, Rust has emerged
as a type and memory-safe lan-
guage suitable for systems pro-
gramming. Mozilla’s Servo browser
engine is being written in the Rust,
and numerous Linux libraries and

www.computer.org/security� 7

utilities are being rewritten in Rust.
Rewriting old code in Rust can be a
tough sell although Google’s recent
effort to implement site isolation
in Chrome, and Mozilla’s develop-
ment and application of RLBox to
Firefox—both significant manual
efforts—show progress can be
made when the needed resources
are devoted. This will also become
easier as more third-party libraries
are developed for Rust and more
new developers learn Rust in com-
puter science courses.

Consider formal methods today:
there exist many software elements
that underlie the modern Internet
and its usage that have been revealed
as substantially lacking in security
rigor for years, such as the vulnera-
bilities that plagued OpenSSL until
organizations like Google, Micro-
soft, and OpenBSD stepped in. Why
is it that the public is so forgiving of
the reliance on such blatantly prob-
lematic software by major compa-
nies? And many other examples of
such software certainly still remain.
In contrast, seL4 is a formally veri-
fied microkernel, CertiKOS is a
formally verified kernel, the Linux
KVM hypervisor has been formally
verified, and DARPA’s “Little Bird”
is a formally verified autonomous
helicopter, having survived hack-
ing contests as part of the DARPA
HACMS program,15 run by Kath-
leen Fisher, John Launchbury, and
Raymond Richards, in 2017, and
again at DEFCON this past year.
this past year. In addition, numer-
ous key elements of Amazon Web
Services have been formally veri-
fied, Facebook leverages the Infer
system to continuously verify code,
and Microsoft’s Project Everest is
developing a formally verified stack
to improve secure web communica-
tions. Not every formal verification
is as useful as another and it may
never be tenable to formally verify
all code, but the DARPA exercises
alone seem to have demonstrated
considerable value. At the very least,

there is strong evidence that building
systems on top of formally verified
elements that are now available and
usable could substantially ameliorate
a large swath of security problems.
Having even more verified systems
that provide support for additional
functionality would help encourage
broader adoption of assured systems.

Consider security-enhanced
hardware today: as discussed ear-
lier, security weaknesses often
result from the use of “unsafe” lan-
guages and shared infrastruc-
ture. In contrast, the University of
Cambridge and SRI’s Capabil-
ity Hardware Enhanced RISC In-
structions (CHERI)16 provides a
capability-based system that provides
fine-grained memory protection and
software compartmentalization,
thereby protecting against a host
of weaknesses exposed by the
use of unsafe languages, code injec-
tion attacks, and more. This is par-
ticularly valuable protection when
existing software cannot easily be re-
written in type and memory-safe lan-
guages, for example, due to the vast
amount of existing libraries written
in C/C++. CHERI also now has nu-
merous formally verified elements.
In addition, Arm’s forthcoming
CHERI-extended Morello proto-
type CPU, system-on-a-chip, and
board will ship early next year, and
will consist of a full industrial qual-
ity and high-performance adaptation
of Arm’s Neoverse N1 CPU design.
This prototype is in fact the culmina-
tion of a kind of “moonshot” that has
been developed over 10 years and
with US$250 million of DARPA,
United Kingdom government, and
in-kind industry funding, and seems
like it could serve as a model for ad-
vancing other security techniques
and technologies.

In a d d i t i o n t o c a p a b i l i t y -
enhanced hardware, consider
hardware trusted execution envi-
ronments (TEEs). Running on tra-
ditional servers, including those in
the cloud, requires complete trust of

the system administrator as well as
the numerous levels of the stack that
seek to mitigate attempts by one
user to attack another. Who is really
happy about putting complete and
unquestioning trust regarding data
and computation in giant corpora-
tions? In contrast, TEEs provide
strong isolation properties, some-
times even from system adminis-
trators and physical attacks. they
are available or announced from
every major CPU platform, includ-
ing AMD’s SEV; ARM’s v9’s Confi-
dential Compute Architecture, and
Intel’s SGX, alongside open source
TEEs, such as the RISC-V-based
Keystone. Further, some form of
TEE-like “confidential computing”
service is available from the three
major commercial cloud providers:
AWS Nitro Enclaves, GCP Con-
fidential Computing, and Azure
Confidential Computing. The
Linux Foundation also hosts the
Confidential Computing Consor-
tium. The cloud and community
efforts provide the software model
and cryptographic infrastructure to
make the use of confidential com-
puting more straightforward. For
usability and performance reasons,
not all of these architectures are
useful for general-purpose comput-
ing. However, for certain workloads
running on single nodes, SEV can
carry little overhead beyond that
of virtualization itself and is readily
available in cloud environments.

The reluctance of organizations
to adopt some of these techniques
and technologies has echoes of
the White Queen informing Alice
about the (lack of) availability of
jam today.17 However, despite past
failures to make significant prog-
ress toward securing systems via
Multics and the Orange Book, all
of this recent progress has shown
what is possible with the tools that
we have today. Organizations can
use type and memory safety (Rust),
formal ly ver i f ied components
(seL4, CertiKOS, Linux KVM),

8	 IEEE Security & Privacy� January/February 2022

FROM THE EDITORS

and obtain strong hardware isola-
tion (AMD’s SEV) today. At least
in the case of the Rust language as
well as cloud environments that
have broad frameworks supporting
confidential computing on top of
AMD’s SEV and related technolo-
gies, this can entail little extra effort.
Organizations can use Facebook’s
Infer automated reasoning system
for static analysis today. Prototype
hardware supporting CHERI will
be available roughly at the time this
piece goes to press and may well be
in broader production in not too
many more years.

I’ve enumerated a nonexhaustive
list of numerous techniques and tech-
nologies here that could all represent
elements of this improvement I speak
of. Not all will be part of the final
solutions, and undoubtedly there are
others that I haven’t covered, such as
the automated verification tools avail-
able that showed such success during
DARPA’s Cyber Grand Challenge18
and advances in the “grand chal-
lenges” of user-centered security that
make it harder for users to make deci-
sions in a way that will lead to security
failures.19 Furthermore, the solutions
that I have discussed will also not solve
all problems, and will not be adopted
everywhere—for example, consider
all of the software written by “citizen
developers” or are outsourced to the
lowest bidder. But if enough of the
important software leverages these
solutions, it would seem that doing
so could solve a substantial number of
problems, thereby enabling security
researchers and engineers to focus on
the problems for which we do not yet
have solutions.

Portions of this cybersecurity
vision likely are a “moonshot.” But
I think it would be a misrepresen-
tation to characterize the entire
endeavor as such. So, what’s in
the way? We’ve already pointed to
cost, so how do we lower that cost
or overcome that barrier? Existing
public sentiment about every new
security breach that takes place

clearly hasn’t been enough. Perhaps
the public has just been convinced it
has no choice but to accept the sta-
tus quo. In contrast, I think the pub-
lic has a right to be outraged about
computer security. Further, even
though the government itself suffers
computer security failures large and
small on an ongoing basis, the appe-
tite for significant regulation (e.g.,
liability for insecure software, sub-
stantially increasing requirements
for software and hardware security
in government procurement) in this
space seems not to exist. Thus, in
the face of evidence that there are
in many cases relatively low bars to
much safer systems, the reason for
the continued prevalence of low
adoption of the components that
would could systems much safer
remains something of a mystery,
given that numerous key compo-
nents are here now, and the rest
may well not be that far in the future
from being deployed.

The barriers to large-scale adop-
tion of emerging security techniques
and technologies urgently need to
be investigated. This investigation
should include a focus on techni-
cal issues, but should also include
experts who can illuminate usabil-
ity, education, economic, policy, and
social issues, and other systematic
barriers to technology transition for
innovation. At least on a technical
level, there are few excuses not to be
embracing many of the approaches
that I’ve illustrated here. There are
few excuses for not writing most or
all new systems code in Rust; for sys-
tems, where appropriate, to be built
using verified components and/or
on top of security-enhanced hard-
ware, and for applications to be run
on those systems wherever possible;
and for the most important source
code to leverage modern, automated
program verification tools and possi-
bly formal methods.

In another passage from their
2002 piece, Karger and Schell10
write:

In our opinion this is an unstable
state of affairs. It is unthinkable
that another thirty years will go
by without one of two occurrences:
either there will be horrific cyber
disasters that will deprive society
of much of the value computers can
provide, or the available technol-
ogy will be delivered, and hopefully
enhanced, in products that provide
effective security. We hope it will be
the latter.

C omputer systems and net-
works have become “unsafe at

any speed.” The time to change that
is now. The future is here. There is
no further room for excuse, igno-
rance of reality, or fooling of nature.

References
1.	 R. P. Feynman, “The presidential

commission on the space shuttle
challenger accident report,” Appen-
dix F, Personal Observations Rel.
Shuttle, vol. 2, Jun. 6, 1986.

2.	 R. Nader, Unsafe at Any Speed: The
Designed-In Dangers of the American
Automobile. New York, NY, USA:
Grossman Publishers, 1965.

3.	 R. Carson, Silent Spring. Boston,
MA, USA: Houghton Mifflin, 1962.

4.	 J. Snow, On the Mode of Communica-
tion of Cholera. London, U.K.: John
Churchill, 1855.

5.	 A. Flexner, “Medical education in the
United States and Canada: A report
to the Carnegie foundation for the
advancement of teaching,” Bull. Carn-
egie Found. Adv. Teach., vol. 4, 1910.

6.	 Institute of Medicine, To Err Is
Human: Building a Safer Health
System. Washington, DC, USA:
National Academies Press, 2000.

7.	 E. Organick, The Multics System: An
Examination of Its Structure. Boston,
MA, USA: MIT Press, 1972.

8.	 “Trusted computer system evaluation
criteria [‘Orange Book’],” United
States Department of Defense,
Arlington, VA, USA, Tech. Rep. DoD
5200.28-STD, Dec. 26, 1985.

www.computer.org/security 9

9. P. A. Karger and R. R. Schell, “Mul-
tics security evaluation: Vulnerability
analysis,” Electronic Systems Division,
Hanscom, MA, USA, 1974. [Online].
Available: http://csrc.nist.gov/
publications/history/karg74.pdf

10. P. A . Karger and R . R . Schell,
“Thirty years later: Lessons from
the Multics security evaluation,”
in Proc. 18th Annu. Comput. Secu-
rity Appl. Conf. (ACSAC), 2002,
pp. 119–126, doi: 10.1109/CSAC.
2002.1176285.

11. H. Shrobe and D. Adams, “Suppose
we got a do-over: A revolution for
secure computing,” IEEE Security
Privacy, vol. 10, no. 6, pp. 36–39,
Nov./Dec. 2012, doi: 10.1109/
MSP.2012.84.

12. S. Peisert, E. Talbot, and M.
B i s h o p, “ Tu r t l e s a l l t h e w ay
down: A clean-slate, ground-up,

first-principles approach to secure
systems,” in Proc. New Security Para-
digms Workshop (NSPW), Bertinoro,
Italy, Sep. 19–21, 2012, pp. 15–26,
doi: 10.1145/2413296.2413299.

13. P. C. van Oorschot, “Toward
unseating the unsafe C program-
ming language,” IEEE Security Pri-
vacy, vol. 19, no. 2, pp. 4–6, Mar./
Apr. 2021, doi: 10.1109/MSEC.
2020.3048766.

14. H. Okhravi, “A cybersecurity moon-
shot,” IEEE Security Privacy, vol. 19,
no. 3, pp. 8–16, May/Jun. 2021, doi:
10.1109/MSEC.2021.3059438.

15. K. Fisher, J. Launchbury, and R.
Richards. The HACMS program:
Using formal methods to elimi-
nate exploitable bugs, Philos. Trans.
A Math. Phys. Eng. Sci. vol. 375,
no. 2014, Art no. 20150401. doi:
10.1098/rsta.2015.0401.

16. R. N. M. Watson et al., “CHERI: A
hybrid capability-system architecture
for scalable software compartmen-
talization,” in Proc. 36th IEEE Symp.
Security Privacy, 2015, pp. 20–37,
doi: 10.1109/SP.2015.9.

17. L. Carroll, “The rule is, jam to-morrow
and jam yesterday—But never jam
to-day… It’s jam every other day:
To-day isn’t any other day, you know,”
in Through the Looking-Glass, and
What Alice Found There. London,
U.K.: Macmillan, 1872 , p. 94.

18. M. Walker, “Machine vs. machine:
Lessons from the first year of cyber
grand challenge,” in Proc. 24th USENIX
Security Symp., Aug. 12, 2015.

19. M. E. Zurko, “User-centered security:
Stepping up to the grand challenge,” in
Proc. 21st Annu. Comput. Secur. Appl.
Conf. (ACSAC), 2005, pp. 14–202,
doi: 10.1109/CSAC.2005.60.

From the analytical engine to the supercomputer,
from Pascal to von Neumann, from punched
cards to CD-ROMs—IEEE Annals of the History
of Computing covers the breadth of computer
history. � e quarterly publication
is an active center for the collection and
dissemination of information on historical
projects and organizations, oral history activities,
and international conferences.

www.computer.org/annals

Digital Object Identifier 10.1109/MSEC.2021.3136968

