
4	 March/April 2022	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/22©2022IEEE

FROM THE EDITORS

Pseudo Ground-Truth
Generators and
Large-Scale Studies

Y ou have found out that 123,456,789
Android/Java/C applications have some

vulnerability, and you can automatically fix
123,454,321 of them (and not one fewer). Before
you rush to a top security conference, let me
cast the seed of doubt: “How can you be sure?”

Large-scale studies are becoming more
common and, increasingly, require a macho
showing of gazillions of analyzed malware
samples, Android applications, and software
libraries—you name it—that lazy or inept
developers, administrators, and users aren’t
doing enough about. Isn’t this a good trend
toward a quantitative security science? Well,
read again Herley and van Oorschot1 on the
perils of unstated assumptions and uncontex-
tualized solutions.

So, what’s the problem? If you must scan a
gazillion Xs to make it to the top conferences,
then how can you be sure that 93% (or 57%,
or 21%, and so on) of them have a vulnerabil-
ity, can be fixed/updated, and so on?

The short answer is “You can’t.” The long
answer is that you cannot manually and
thoroughly check a gazillion Xs, so you need
a tool to check for correctness, and, there-
fore, you must use an automatic ground-truth
generator (GTG).

Most papers give us the nice part of the
story, which I illustrate in Figure 1: Pipe
your Xs (Android apps, websites, libraries,
malware samples, and so on) through the
first GTG box, which determines that some
Xs have a problem (for example, Xs that are
Android applications with a vulnerability,
malware samples that escape detection, and
so on). Then, pipe all found unsecure Xs
through another box, which fixes them into
secure Ys (or more precisely detects them,

and so forth). This box is a “diagnose and fix”
tool (D&FT). Finally, pass the surfacing Ys
through another box, the second GTG, which
checks that they are OK. The outcome of an
algorithm has become the “ground truth”:
whether you needed fixing beforehand or
whether you are “fixed” afterward.

Lather, rinse, and repeat for a gazillion times,
and you have an A* paper with 123,454,321 (and
not one fewer) automatically fixed you-name-its.
How can we be sure?

In theory, the tool chain could make us
sure, but, in practice, that’s a superbad assump-
tion.1 The GTG is a tool, and, as with any tool,
it makes errors by either bugs or abstraction,
and these accumulate.

Those who studied cryptographic random
number generators might remember von
Neumann’s quote that “Anyone who attempts
to generate random numbers by deterministic
means is, of course, living in a state of sin.” Let
me give similar advice: anyone who attempts
to generate ground truths by algorithmic means
is, of course, living in a state of sin.

Don’t get me wrong: I also use GTGs,4,5
and I believe they are the only way to scale.
Still, while there are great papers,2 there are
also sinners.3 What is (badly) wrong is that
we don’t report how error prone they can be,
and we set forth our own generated pseudo-
truth as the “truth” or a “proof.” (To avoid this
pitfall, Dashevskyi et al.5 deliberately used the
word “evidence.”)

However, in the same way that pseudoran-
dom number generators can be useful, so can
a pseudo-GTG. We just need a (scientific)
way to assess the errors of our pseudo-GTGs
and understand how these they are propa-
gated across our pipeline.

Let me illustrate the problems with some
papers. I read the 16,837-Android-apps paper3
at the Association for Computing Machinery

Digital Object Identifier 10.1109/MSEC.2021.3137674
Date of current version: 21 March 2022

Fabio Massacci
Associate Editor in Chief

www.computer.org/security 5

Conference on Computer and Com-
munications Security 2017, and I
was fascinated: all if these 16,837
vulnerable libraries (and not one
less) could be fixed just by updat-
ing to the next version, an “updat-
ability rate” of more than 93%.
Another group identified 412,288
Java dependencies (and not one
less) that were not used (a “bloated
dependencies” study) and could be
automatically and safely removed,
thus decreasing the attack surface of
a library.6

A moment of reckoning arrived
for me at the IEEE European Sym-
posium on Security and Privacy
2019 in Stockholm. A Ph.D. stu-
dent presented a framework for the
dynamic testing of Android appli-
cations,2 which essentially revis-
ited the work of Derr et al.3 with
a masterpiece of understatement:
“Prior reported updatability rate
is, under real conditions, overesti-
mated.” Well, inside the paper, she
showed that the updatability may be
reduced from 93% to 47%. My sum-
mary would have been, “The prior
report3 is utterly misleading.”

At a Dagstuhl seminar, I asked
one of the authors of the 16,837-apps
paper,3 “How can we be sure they are
16,837 (and not one less)?” I wasn’t
asking for a retraction; I really wanted
to know if they had thought about
the problem after the work by Huang
et al.2 He didn’t have an answer
besides “Our tool chain says so.”

A few weeks ago, the same col-
league of the “bloated dependencies”6

sent me a paper7 in which the authors
showed that, to increase diversity
(and, thus, robustness against attacks),

one can automatically replace a
library with a different version of the
same library: 169 libraries can be
replaced, not by just one different
version, but interchangeably with
15 of them, for a total of 2,535 com-
binations. Again, I asked, “How can
we be sure?”; again, the answer was,
“Our tool chain says so.”

Can we do something better?
There are techniques to compute
some errors, such as using Agresti–
Coull manual interval analysis for
the probability error of a proportion
(the proportion of correct answers
of each pseudo-GTG).

Let me illustrate it with my own
large-scale study. At some point,
we wanted to replicate the milk-or-
wine study8 and check whether all
browser vulnerabilities were foun-
dational (i.e., present since the very
beginning of a software commit
history). Ozment and Schechter8

or Meeneley and Williams9 lived in
a different era and could go man-
ual, but, when I, Dashevskyi, and
Nguyen started the research behind
our 2016 article,4 it was already the
dawn of the machos . . . so we built
a structure similar to Figure 1, writ-
ing programs, integrating indus-
try databases, scanning gazillions
of commits in minutes over open
source repositories and—“Hooray!
Chrome’s vulnerabilities are essen-
tially foundational.”

However, you wouldn’t find this
“finding” in our papers on all major
browsers4 and Java libraries.5 What
happened? We were lucky enough
that a stubborn reviewer of our jour-
nal submission asked us, “How can
you be sure?”

http://rs.ieee.org

The IEEE Reliability Society (RS) is a technical Society within the
IEEE, which is the world’s leading professional association for the
advancement of technology. The RS is engaged in the engineering
disciplines of hardware, software, and human factors. Its focus on the
broad aspects of reliability allows the RS to be seen as the IEEE Specialty
Engineering organization. The IEEE Reliability Society is concerned
with attaining and sustaining these design attributes throughout
the total life cycle. The Reliability Society has the management,
resources, and administrative and technical structures to develop
and to provide technical information via publications, training,
conferences, and technical library (IEEE Xplore) data to its
members and the Specialty Engineering community. The IEEE
Reliability Society has 28 chapters and members in 60 countries
worldwide.

The Reliability Society is the IEEE professional society for
Reliability Engineering, along with other Specialty Engineering
disciplines. These disciplines are design engineering fields that apply
scientific knowledge so that their specific attributes are designed
into the system/product/device/process to assure that it will
perform its intended function for the required duration within
a given environment, including the ability to test and support it
throughout its total life cycle. This is accomplished concurrently
with other design disciplines by contributing to the planning
and selection of the system architecture, design implementation,
materials, processes, and components; followed by verifying
the selections made by thorough analysis and test and then
sustainment.

Visit the IEEE Reliability Society website as it is the gateway
to the many resources that the RS makes available to its members
and others interested in the broad aspects of Reliability and Specialty
Engineering.

Executive Committee (Excom) Members: Steven Li, President;
Jeffrey Voas, Sr. Past President; Lou Gullo, VP Technical Activities;
W. Eric Wong, VP Publications; Christian Hansen, VP Meetings and
Conferences; Loretta Arellano, VP Membership; Preeti Chauhan,
Secretary; Jason Rupe, Secretary

Administrative Committee (AdCom) Members: Loretta Arellano,
Preeti Chauhan, Alex Dely, Pierre Dersin, Donald Dzedzy, Ruizhi
(Ricky) Gao, Lou Gullo, Christian Hansen, Steven Li, Yan-Fu Li, Janet
Lin, Farnoosh Naderkahani, Charles H. Recchia, Nihal Sinnadurai,
Daniel Sniezek, Robert Stoddard, Scott Tamashiro, Eric Wong

Digital Object Identifier 10.1109/MSEC.2021.3130867

6	 IEEE Security & Privacy� March/April 2022

FROM THE EDITORS

Therefore, we went manual for a
sufficiently significant sample for
Agresti–Coull. Oops. We found out
that the reliable industry sources we
used to determine whether a version
was vulnerable weren’t that reliable.
In many allegedly vulnerable ver-
sions, the code fragment responsible
for the vulnerability wasn’t in the ver-
sion’s codebase. It is just so easy (and
way safer) for a security researcher
reporting vulnerabilities to say, “Ver-
sion X is vulnerable, and so are all
its previous versions.” Our paper
mutated between revisions.

Are we heading toward the same
crisis well described in Florencio and
Herley’s famous paper10 on sex, lies,
and cybercrime surveys—this time
for large-scale studies? Look again
at Figure 1. Subtle and yet practical
issues lurk into the shadows:

1.	 The GTG correctly identified
a secure X as secure, but you
don’t make an A* conference
paper by saying, “Hey, 84% of
Xs aren’t obviously vulnerable, so
you shouldn’t worry.” Free advice
to Ph.D. students: academic

reviewers don’t like it, and it
takes ages to publish a paper. We
tried that; don’t do it. Second
thoughts: companies do like it,
and you may end up in an indus-
try standard. We tried that; do it.

More serious problems accumu-
late as we move along the pipeline:

1.	 The vulnerable individual X
was actually correctly fixed/
detected by the D&FT into Y.
This is the good case and, alas,
the only one.

2.	 The diagnosis was correct, and
the individual in question might
have well been “fixed,” but this
fix mangled it. However, from
the perspective of the second
GTG, all was well. Given the
evidence of Huang et al.2 and
the comment by developers
reported by Soto-Valero et al.,6
I suspect this is the most fre-
quent case for all methods
published so far that claimed to
have a “proof.”

3.	 The first GTG might have actu-
ally been wrong (the perils of

abstraction go both ways1) and
sent a perfectly secure individ-
ual to the D&FT, which hacked
the “malicious” parts and made
another mangled to satisfy the
second GTG. I also suspect that
this frequently happens the far-
ther the GTG is from executing
an actual exploit. This was our
experience4 on versions “claimed
to be vulnerable.”

We take for granted that the
D&FT always fixes the result. We
have no warranty about it.

4.	 The first GTG was right and
sent a vulnerable individual to
the surgery of the D&FT, which
removed the “wrong” parts and,
thus, not only made a mangled
but also a vulnerable one, too;
that, however, succeeded for
the second GTG (wrong in the
wrong direction).

To understand the last point, Table 1
shows, side by side, a “correct” fix gen-
erated when Cuong Quang, a Ph.D.
student at the Technical University of

Figure 1. The pitfalls of large-scale studies.

www.computer.org/security� 7

Hamburg Harburg applied state-of-
the-art “automated program repair”
(APR) tools11,12 to a real-life vulner-
able library and compared it to the fix
by the developer. The problem is not
that APR tools are wrong; the problem
is that the state of the art labels those
types of answers as “correct” when
ranking tools.

We must learn to be skeptical of
all studies that report no errors, no
uncertainty, and no manual (sig-
nificant) validation and, yet, large
numbers precise to the single digit.
There is nothing bad about having
big errors. We, as reviewers, must
be willing to accept studies where
such errors are reported—and, if you
have one such paper, consider send-
ing it to us. Even in the government’s
approved final title card in Not One
Less, only 15% of the rural children
make it back to school.13

Unless we start taking action
as a community, there will be an
increasingly widening gap between
the claims in papers (93% in Derr
et al.3—one’s algorithm failure is
as rare as four heads in a row) and
practical reality (47% in Huang
et al.2—real failure is as common as
a single coin toss). Let us know what
you think.

Acknowledgments
I am thankful to Cuong Bui Quang
for showing me the example men-
tioned in Table 1, Antonino Sabetta for
many discussions on what really mat-
ters in industry, and Sean Peisert and
Paul van Oorschot for helping me
to sharpen my point. This work was

supported by the European Union
H2020 program under grant 952647
(AssureMOSS). Any opinion (possi-
bly right only 47–93% of the time) is,
of course, mine.

References
1.	 C. Herley and P. C. Van Oorschot,

“Science of security: Combining
theory and measurement to reflect
the observable,” IEEE Security Pri-
vacy, vol. 16, no. 1, pp. 12–22, 2018,
doi: 10.1109/MSP.2018.1331028.

2.	 J. Huang, N. Borges, S. Bugiel, and
M. Backes, “Up-to-crash: Evaluat-
ing third-party library updatability
on Android,” in Proc. IEEE Eur. Symp.
Security Privacy (EuroS&P), 2019, pp.
15–30, doi: 10.1109/EuroSP.2019.
00012.

3.	 E. Derr, S. Bugiel, S. Fahl, Y. Acar,
and M. Backes, “Keep me updated:
An empirical study of third-party
library updatability on Android,”
in Proc. ACM Conf. Comput. Com-
mun. Security, 2017, pp. 2187–2200,
doi: 10.1145/3133956.3134059.

4.	 V. H. Nguyen, S. Dashevskyi, and F.
Massacci, “An automatic method for
assessing the versions affected by a
vulnerability,” Empirical Softw. Eng.,
vol. 21, no. 6, pp. 2268–2297, 2016,
doi: 10.1007/s10664-015-9408-2.

5.	 S. Dashevskyi, A. D. Brucker, and F.
Massacci, “A screening test for dis-
closed vulnerabilities in FOSS com-
ponents,” IEEE Trans. Softw. Eng., vol.
45, no. 10, pp. 945–966, 2018, doi:
10.1109/TSE.2018.2816033.

6.	 C. Soto-Valero, N. Harrand, M.
Monperrus, and B. Baudry, “A
comprehensive study of bloated

dependencies in the Maven ecosys-
tem,” Empirical Softw. Eng., vol. 26,
no. 3, pp. 1–44, 2021, doi: 10.1007/
s10664-020-09914-8.

7.	 N. Harrand, T. Durieux, D. Broman,
and B. Baudry, “Automatic diversity
in the software supply chain,” 2021,
arXiv:2111.03154.

8.	 A. Ozment and S. E. Schechter,
“Milk or wine: Does software secu-
rity improve with age?” in Proc. 15th
USENIX Security Symp., 2006, vol. 6,
pp. 10–5555.

9.	 A. Meneely and L. Williams, “Secure
open source collaboration: An
empirical study of Linus’ law,” in
Proc. ACM Conf. Comput. Commun.
Security, 2009, pp. 453–462, doi:
10.1145/1653662.1653717.

10.	 D. Florêncio and C. Herley, “Sex,
lies and cyber-crime surveys,” in
Economics of Information Security
and Privacy III, B. Schneier, Ed.
New York, NY, USA: Springer Sci-
ence & Business Media, 2013, pp.
35–53.

11.	 Z. Qi, F. Long, S. Achour, and M.
Rinard, “An analysis of patch plausibil-
ity and correctness for generate-and-
validate patch generation systems,”
in Proc. ACM Int. Symp. Softw. Test-
ing Analysis, 2015, pp. 24–36, doi:
10.1145/2771783.2771791.

12.	 K. Liu, A. Koyuncu, D. Kim, and
T. F. Bissyandé, “TBar: Revisiting
template-based automated program
repair,” in Proc. ACM Int. Symp. Softw.
Testing Analysis, 2019, pp. 31–42,
doi: 10.1145/3293882.3330577.

13.	 Z. Yimou, “Not One Less,” Wikipe-
dia, 1999. https://en.wikipedia.org/
wiki/Not_One_Less

Table 1. Automated program repair for vulnerabilities.

Developer’s fix of CVE-2018-1324 TBar’s “correct” fix Kali’s “correct” fix

- for (int i = 0; i < this.rcount; i++) {
+ for (long i = 0; i < this.rcount; i++) {

- for (int i = 0; i < this.rcount; i++) {
+ for (int i = 0; i == this.rcount; i++) {

+ if (true)
+ return;

The table reports the fix according to two state-of-the-art automated program repair tools for Java programs, TBar11 and Kali.12 The vulnerability is
CVE-2018-1324 for Apache Commons. The fix is “correct” according to the current evaluation practices, as it fixes all regression test cases, including those
showing that there was a vulnerability. (In this case, the GTG is the tool test suite from Maven).

