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FROM THE EDITORS

Pseudo Ground-Truth 
Generators and  
Large-Scale Studies

Y ou have found out that 123,456,789 
Android/Java/C applications have some 

vulnerability, and you can automatically fix 
123,454,321 of them (and not one fewer). Before 
you rush to a top security conference, let me 
cast the seed of doubt: “How can you be sure?”

Large-scale studies are becoming more 
common and, increasingly, require a macho 
showing of gazillions of analyzed malware 
samples, Android applications, and software 
libraries—you name it—that lazy or inept 
developers, administrators, and users aren’t 
doing enough about. Isn’t this a good trend 
toward a quantitative security science? Well, 
read again Herley and van Oorschot1 on the 
perils of unstated assumptions and uncontex-
tualized solutions. 

So, what’s the problem? If you must scan a 
gazillion Xs to make it to the top conferences, 
then how can you be sure that 93% (or 57%, 
or 21%, and so on) of them have a vulnerabil-
ity, can be fixed/updated, and so on?

The short answer is “You can’t.” The long 
answer is that you cannot manually and 
thoroughly check a gazillion Xs, so you need 
a tool to check for correctness, and, there-
fore, you must use an automatic ground-truth 
generator (GTG).

Most papers give us the nice part of the 
story, which I illustrate in Figure 1: Pipe 
your Xs (Android apps, websites, libraries, 
malware samples, and so on) through the 
first GTG box, which determines that some 
Xs have a problem (for example, Xs that are 
Android applications with a vulnerability, 
malware samples that escape detection, and 
so on). Then, pipe all found unsecure Xs 
through another box, which fixes them into 
secure Ys (or more precisely detects them, 

and so forth). This box is a “diagnose and fix” 
tool (D&FT). Finally, pass the surfacing Ys 
through another box, the second GTG, which 
checks that they are OK. The outcome of an 
algorithm has become the “ground truth”: 
whether you needed fixing beforehand or 
whether you are “fixed” afterward.

Lather, rinse, and repeat for a gazillion times, 
and you have an A* paper with 123,454,321 (and 
not one fewer) automatically fixed you-name-its. 
How can we be sure?

In theory, the tool chain could make us 
sure, but, in practice, that’s a superbad assump-
tion.1 The GTG is a tool, and, as with any tool, 
it makes errors by either bugs or abstraction, 
and these accumulate.

Those who studied cryptographic random 
number generators might remember von 
Neumann’s quote that “Anyone who attempts 
to generate random numbers by deterministic 
means is, of course, living in a state of sin.” Let 
me give similar advice: anyone who attempts 
to generate ground truths by algorithmic means 
is, of course, living in a state of sin.

Don’t get me wrong: I also use GTGs,4,5 
and I believe they are the only way to scale. 
Still, while there are great papers,2 there are 
also sinners.3 What is (badly) wrong is that 
we don’t report how error prone they can be, 
and we set forth our own generated pseudo-
truth as the “truth” or a “proof.” (To avoid this 
pitfall, Dashevskyi et al.5 deliberately used the 
word “evidence.”)

However, in the same way that pseudoran-
dom number generators can be useful, so can 
a pseudo-GTG. We just need a (scientific) 
way to assess the errors of our pseudo-GTGs 
and understand how these they are propa-
gated across our pipeline.

Let me illustrate the problems with some 
papers. I read the 16,837-Android-apps paper3 
at the Association for Computing Machinery 
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Conference on Computer and Com-
munications Security 2017, and I 
was fascinated: all if these 16,837 
vulnerable libraries (and not one 
less) could be fixed just by updat-
ing to the next version, an “updat-
ability rate” of more than 93%. 
Another group identified 412,288 
Java dependencies (and not one 
less) that were not used (a “bloated 
dependencies” study) and could be 
automatically and safely removed, 
thus decreasing the attack surface of 
a library.6

A moment of reckoning arrived 
for me at the IEEE European Sym-
posium on Security and Privacy 
2019 in Stockholm. A Ph.D. stu-
dent presented a framework for the 
dynamic testing of Android appli-
cations,2 which essentially revis-
ited the work of Derr et al.3 with 
a masterpiece of understatement: 
“Prior reported updatability rate 
is, under real conditions, overesti-
mated.” Well, inside the paper, she 
showed that the updatability may be 
reduced from 93% to 47%. My sum-
mary would have been, “The prior 
report3 is utterly misleading.”

At a Dagstuhl seminar, I asked 
one of the authors of the 16,837-apps 
paper,3 “How can we be sure they are 
16,837 (and not one less)?” I wasn’t 
asking for a retraction; I really wanted 
to know if they had thought about 
the problem after the work by Huang 
et al.2 He didn’t have an answer 
besides “Our tool chain says so.”

A few weeks ago, the same col-
league of the “bloated dependencies”6

sent me a paper7 in which the authors 
showed that, to increase diversity 
(and, thus, robustness against attacks), 

one can automatically replace a 
library with a different version of the 
same library: 169 libraries can be 
replaced, not by just one different 
version, but interchangeably with 
15 of them, for a total of 2,535 com-
binations. Again, I asked, “How can 
we be sure?”; again, the answer was, 
“Our tool chain says so.”

Can we do something better? 
There are techniques to compute 
some errors, such as using Agresti–
Coull manual interval analysis for 
the probability error of a proportion 
(the proportion of correct answers 
of each pseudo-GTG).

Let me illustrate it with my own 
large-scale study. At some point, 
we wanted to replicate the milk-or-
wine study8 and check whether all 
browser vulnerabilities were foun-
dational (i.e., present since the very 
beginning of a software commit 
history). Ozment and Schechter8

or Meeneley and Williams9 lived in 
a different era and could go man-
ual, but, when I, Dashevskyi, and 
Nguyen started the research behind 
our 2016 article,4 it was already the 
dawn of the machos . . . so we built 
a structure similar to Figure 1, writ-
ing programs, integrating indus-
try databases, scanning gazillions 
of commits in minutes over open 
source repositories and—“Hooray! 
Chrome’s vulnerabilities are essen-
tially foundational.”

However, you wouldn’t find this 
“finding” in our papers on all major 
browsers4 and Java libraries.5 What 
happened? We were lucky enough 
that a stubborn reviewer of our jour-
nal submission asked us, “How can 
you be sure?” 
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Therefore, we went manual for a 
sufficiently significant sample for 
Agresti–Coull. Oops. We found out 
that the reliable industry sources we 
used to determine whether a version 
was vulnerable weren’t that reliable. 
In many allegedly vulnerable ver-
sions, the code fragment responsible 
for the vulnerability wasn’t in the ver-
sion’s codebase. It is just so easy (and 
way safer) for a security researcher 
reporting vulnerabilities to say, “Ver-
sion X is vulnerable, and so are all 
its previous versions.” Our paper 
mutated between revisions.

Are we heading toward the same 
crisis well described in Florencio and 
Herley’s famous paper10 on sex, lies, 
and cybercrime surveys—this time 
for large-scale studies? Look again 
at Figure 1. Subtle and yet practical 
issues lurk into the shadows:

1.	 The GTG correctly identified 
a secure X as secure, but you 
don’t make an A* conference 
paper by saying, “Hey, 84% of 
Xs aren’t obviously vulnerable, so 
you shouldn’t worry.” Free advice 
to Ph.D. students: academic 

reviewers don’t like it, and it 
takes ages to publish a paper. We 
tried that; don’t do it. Second 
thoughts: companies do like it, 
and you may end up in an indus-
try standard. We tried that; do it.

More serious problems accumu-
late as we move along the pipeline:

1.	 The vulnerable individual X 
was actually correctly fixed/
detected by the D&FT into Y. 
This is the good case and, alas, 
the only one.

2.	 The diagnosis was correct, and 
the individual in question might 
have well been “fixed,” but this 
fix mangled it. However, from 
the perspective of the second 
GTG, all was well. Given the 
evidence of Huang et al.2 and 
the comment by developers 
reported by Soto-Valero et al.,6 
I suspect this is the most fre-
quent case for all methods 
published so far that claimed to 
have a “proof.”

3.	 The first GTG might have actu-
ally been wrong (the perils of 

abstraction go both ways1) and 
sent a perfectly secure individ-
ual to the D&FT, which hacked 
the “malicious” parts and made 
another mangled to satisfy the 
second GTG. I also suspect that 
this frequently happens the far-
ther the GTG is from executing 
an actual exploit. This was our 
experience4 on versions “claimed 
to be vulnerable.”

We take for granted that the 
D&FT always fixes the result. We 
have no warranty about it.

4.	 The first GTG was right and 
sent a vulnerable individual to 
the surgery of the D&FT, which 
removed the “wrong” parts and, 
thus, not only made a mangled 
but also a vulnerable one, too; 
that, however, succeeded for 
the second GTG (wrong in the 
wrong direction).

To understand the last point, Table 1 
shows, side by side, a “correct” fix gen-
erated when Cuong Quang, a Ph.D. 
student at the Technical University of 

Figure 1. The pitfalls of large-scale studies. 
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Hamburg Harburg applied state-of-
the-art “automated program repair” 
(APR) tools11,12 to a real-life vulner-
able library and compared it to the fix 
by the developer. The problem is not 
that APR tools are wrong; the problem 
is that the state of the art labels those 
types of answers as “correct” when 
ranking tools.

We must learn to be skeptical of 
all studies that report no errors, no 
uncertainty, and no manual (sig-
nificant) validation and, yet, large 
numbers precise to the single digit. 
There is nothing bad about having 
big errors. We, as reviewers, must 
be willing to accept studies where 
such errors are reported—and, if you 
have one such paper, consider send-
ing it to us. Even in the government’s 
approved final title card in Not One 
Less, only 15% of the rural children 
make it back to school.13

Unless we start taking action 
as a community, there will be an 
increasingly widening gap between 
the claims in papers (93% in Derr 
et al.3—one’s algorithm failure is 
as rare as four heads in a row) and 
practical reality (47% in Huang 
et al.2—real failure is as common as 
a single coin toss). Let us know what 
you think. 
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Table 1. Automated program repair for vulnerabilities.

Developer’s fix of CVE-2018-1324 TBar’s “correct” fix Kali’s “correct” fix 

- for (int i = 0; i < this.rcount; i++) {
+ for (long i = 0; i < this.rcount; i++) {

- for (int i = 0; i < this.rcount; i++) {
+ for (int i = 0; i == this.rcount; i++) {

+ if (true)
+ return;

The table reports the fix according to two state-of-the-art automated program repair tools for Java programs, TBar11 and Kali.12 The vulnerability is 
CVE-2018-1324 for Apache Commons. The fix is “correct” according to the current evaluation practices, as it fixes all regression test cases, including those 
showing that there was a vulnerability. (In this case, the GTG is the tool test suite from Maven).


