
SOCIOTECHNICAL SECURITY AND PRIVACY

76	 March/April 2022    Copublished by the IEEE Computer and Reliability Societies �

Editors: Jens Grossklags, jens.grossklags@in.tum.de | Heather Richter Lipford, richter@uncc.edu | Jessica Staddon, jessica.staddon@gmail.com

This work is licensed under a Creative Commons Attribution-Non
Commercial-NoDerivatives 4.0 License. For more information,

see https://creativecommons.org/ l icenses/by-nc-nd/4.0/.

The prevalence of insecure code is one of the main challenges security experts are trying to solve. We
study behavioral patterns among developers which largely contribute to insecure software—googling
and reusing code from the Web—and apply nudge theory to harness these behaviors and help developers
write more secure code.

P rogramming is not only a high­
ly difficult task; today it has

become utterly complex. There is a
vast and quickly growing amount of
languages and application program­
ming interfaces. Developers need to
be flexible and willing to learn how
to apply them in a very short time,
and, to deal with this sometimes
overwhelming task, they search
online for help. Very often they find
ready-to-use code examples or open
source software that solves the prob­
lem at hand. The reuse of these re­
sources provides a very efficient
and effective way out. However, it
becomes problematic if very popular
resources provide solutions that are
flawed security wise. Many solutions
end up in production software used
by billions of people. Some introduce
critical vulnerabilities that can be
exploited by attackers, for instance,
to steal credentials or credit card data
or to compromise a device.

We believe that we cannot keep
developers from reusing content
from the web as this behavior seems
to be deeply rooted today. There­
fore, we have opted for a different

approach that harnesses this obser­
vation and tries to guide develop­
ers toward content on the web that
is safe to reuse. We borrowed this
idea from nudge theory, which is
a concept from behavioral science
and economics. It does not expect
people to change their behavior but
redesigns things in a way such that
common behaviors lead to better
outcomes. We redesigned two very
fundamental resources—Google
Search and Stack Overflow—such
that developers can find advice that
is helpful and secure.

Insecure Coding Advice
on the Web
Stack Overflow is one of the most
popular resources. It is a Q&A site
that provides helpful advice for
almost any coding problem. How­
ever, in Fischer et al. 2017,2 we
showed that Stack Overflow pro­
vides a large amount of highly vul­
nerable code examples. Many of
them were reused in production
code; 15% of apps available on
Google Play contained at least one
of those insecure snippets.

Even though Stack Overflow
provides countless secure code
examples that are safe to apply

in code, we found that these were
hardly reused. In Chen et al.,5 we
compared the popularity of secure
and insecure code from Stack Over­
flow among users. We did this by
relying on Stack Overflow’s own
voting system, which provides a
community-given score for each
post. Interestingly, insecure code
had significantly more upvotes
and was more often duplicated
across discussion threads or indi­
cated as the top answer. We also
found that highly trusted Stack
Overflow users—users with a par­
ticularly high reputation score—
posted insecure code. In other
words, all of the very meaningful
indicators on Stack Overflow were
pointing in the wrong direction
security wise.

While Stack Overflow is part of
most developers’ journey through
the web, they typically begin with
Google Search. They type in a
query and usually follow one of
the top-ranked results. Depend­
ing on Google’s ranking algorithm,
developers end up on webpages
that provide either secure or inse­
cure advice. Therefore, we wanted
to know whether top-ranked results
are biased toward secure or insecure

Digital Object Identifier 10.1109/MSEC.2022.3142337
Date of current version: 21 March 2022

Nudging Software Developers
Toward Secure Code

Felix Fischer and Jens Grossklags | Technical University of Munich

www.computer.org/security� 77

code and whether this has a direct
effect on software security.

In an online study, we asked
192 developers to solve several
programming tasks.4 They were
instructed to use Google Search
to find help online. Afterward, we
analyzed the distribution of secure
and insecure advice among the top
search results of all participants.
The chance to receive at least one
insecure result among the top three
ranks was 23%—more than twice as
high as for secure code. Developers
who clicked on one of those links
ended up on a Stack Overflow page
that provides insecure code in the
top answer of the discussion thread.

In summary, not only are Stack
Overflow’s own content indica­
tors often misleading, but Google
Search’s ranking algorithm is too. The
two fundamental web mechanics that
developers rely on to find informa­
tion on the Internet are inadvertently
promoting insecure content.

Nudge Theory
The paternalistic way to solve this
problem is to urge developers not to
use Stack Overflow or even Google
Search to look for help online but
rather advocate for established
resources that are safe. Of course,
we do not expect this idea to be
fruitful. Several studies explored
alternatives, such as formal docu­
mentation, books, simplified pro­
gramming interfaces, and code
analysis tools.1 Even though they
do help in improving code secu­
rity, developers still struggle to get
functional solutions out of them.
In this regard, the web seems to
provide better options. Since func­
tional code is the developers’ pri­
mary goal, it seems unrealistic
to convince developers not to use
popular web resources. Behavioral
science underpins this assump­
tion: changing people’s behavior is
very hard! Richard Thaler—one
of the inventors of nudge theory—
framed it the following way: “First,

never underestimate the power of
inertia. Second, that power can be
harnessed.”

Nudge theory attempts to design
around people’s default behavior
in a way that leads to better out­
comes for the individual and soci­
ety as a whole. People do not need
to change; the surrounding “choice
architecture” is changed. We build
upon this theory and rely on the
observation that developers often
make the easy choice. Copying and
pasting code examples from the
web is as simple as it gets. By ensur­
ing that people reuse secure exam­
ples instead of insecure ones, we
can keep this level of convenience.
Developers do not need to find
alternatives to Google Search and
Stack Overflow. We designed sev­
eral nudges that help them to make
safe choices. We applied the follow­
ing nudges in our work.6

The simplification nudge has
been applied to reduce the complex­
ity of measures related to education,
health, finance, and employment.
Undue complexity reduces the ben­
efits of measures, causes confusion,
and deters participation. We imple­
mented this nudge by moving secu­
rity advice to already-existing and
well-established resources that are
being used by almost all developers.

Warnings are nudges that are
already deployed in user communi­
cation of security issues on the web,
for instance, if users visit a mali­
cious webpage. It has been shown
that warnings are much more effec­
tive if they provide recommendations
that help people out of a potentially
dangerous situation. We designed
security warnings for insecure code
examples on Stack Overflow. They
inform developers why the exam­
ples were marked as being insecure
and what risks could result from
the reuse of the code. Below each
warning, we provided an ordered
list of recommended Stack Over­
flow posts that offer a very similar
but secure example. In the best case,

developers only have to make one
additional click to find a functional
and secure solution.

Reminders can have a significant
impact; however, timing greatly
matters. Therefore, whenever we
identified a copy attempt of inse­
cure code on Stack Overflow, we
showed a reminder nudge that
warns the user once more and dis­
plays recommendations.

Stack Overflow
We integrated these nudges on
Stack Overflow and performed a
developer study.3 Participants were
divided into two condition groups.
The treatment group used a modi­
fied Stack Overflow version that
applied nudging, while the con­
trol group used the original Stack
Overflow. Both had to solve several
security-related programming tasks
where we afterward evaluated the
security and functionality of the
submitted solutions.

The treatment group submit­
ted more secure solutions than the
control group with statistical sig­
nificance. Both groups achieved the
same high level of functional solu­
tions, which meant that our nudg­
ing interventions did not interfere
with the usability of Stack Over­
flow. This was also a very important
result since less functional solu­
tions in the treatment group would
result in developers being drawn
away from the website. We were
not able to isolate a specific nudge
being responsible for the effects.
It was rather a combination of the
displayed warnings, recommenda­
tions, and reminders.

Google Search
The most effective nudge from the lit­
erature is the so-called default nudge.6
It automatically preselects the most
beneficial choice by default, and peo­
ple only need to take action if they dis­
agree. Popular examples are automatic
enrollments in programs, including
education, health, and savings.

SOCIOTECHNICAL SECURITY AND PRIVACY

78	 IEEE Security & Privacy� March/April 2022

A web search generally tries to
optimize its ranking in a way that
presents the user with the most
relevant results. People want to
immediately find the information
they desire within the top ranks.
It is the same for software devel­
opers. When searching for code
examples, we found that they usu­
ally click on one of the top three
links. Currently, there is a much
higher chance to find insecure code
among those results.

From Healthy Food to
Secure Code
We approached this problem with
an approach similar to the so-called
healthy food nudge. It has been observed
that people usually buy food that
is presented at eye level in grocery
stores. That means, to nudge people
toward eating healthy, one should
place healthy food at eye level.

We implemented this nudge in
Google Search by putting relevant
and secure results “at eye level.”
In other words, we modified the
search ranking in a way that it moves
secure and relevant advice to the top
three ranks in the results. Develop­
ers would then be presented with
a secure and relevant choice by
default. Since we simultaneously
down-ranked insecure results, it
becomes even more unlikely that
developers will click on one of them.

Ranking Signals
To rerank webpages based on security
and relevance, we had to find sig­
nals first that sufficiently informed
about these properties. In Fischer
et al. 2019,3 we developed a deep
learning model that is able to pre­
dict whether a Java code example
on Stack Overflow is insecure or
not. We applied this model to deter­
mine the security signal for Stack
Overflow pages that discussed ques­
tions related to Java. Further helpful
tools are publicly available to obtain
security signals for different pro­
gramming languages. For example,

LGTM performs large-scale analy­
ses on several popular open source
websites, such as GitHub, Git­
Lab, and Bitbucket. It is able to
detect the most dangerous known
vulnerabilities.

To find relevant results, we tried
three different approaches. First, we
simply relied on Google Search to
find relevant results. Since it is the
most popular search engine among
software developers, we expected it
to perform well in this task. Second,
we developed an additional method
that identifies the most relevant
code examples for a set of given use
cases, such as encrypting a message
or establishing a secure communi­
cation channel. Even though the
approach was largely automated, it
required manual labeling of a small
sample and was also restricted to a
programming language and specific
use cases. Third, we relied on Stack
Overflow’s voting system as a signal
to identify helpful examples. Both
signals—security and relevance—
were used to update the rank­
ing algorithm of a custom Google
Search engine.

Developer Study
We tested the updated Google
Search in comparison to the origi­
nal Google Search in another online
study where developers had to write
code to solve several program­
ming tasks.4 We divided the 218
participants into two groups. The
control group was provided with a
search bar that used original Google
Search. The treatment group used
the updated Google Search engine,
which applied security-based rerank­
ing. Our hypothesis was that the
more the treatment group used our
modified search engine, the more
functional and secure code they
would submit in comparison to the
control group.

After we evaluated the results
from the study, we found that par­
ticipants in the treatment group sub­
mitted more functional and secure

solutions than the control group—
with statistical significance—the
more they used the modif ied
search engine. This showed that the
reranking had a significant positive
effect on the security and function­
ality of the written code.

We performed an in-depth anal­
ysis of the retrieved and clicked
results. We found that 83% of the
results received by participants in
the treatment group were secure,
while 46% of the results were highly
relevant to the query. In contrast,
in the control group, 68% of the
results were insecure. A similar dis­
tribution was also present in the
clicks made by our participants.
Sixty-seven percent of the clicked
results were secure in the treat­
ment group—among those 26%
highly relevant—while the control
group predominantly clicked on
insecure results with 84% of clicks
made. These results provide a much
clearer picture of the causal chain:
a higher usage of search engines,
up-ranked relevant and secure results,
clicks predominantly made on the
top three results, and the reuse of
code examples found on the related
webpages ultimately led to more
functional and secure code.

Transparency Versus
Unobtrusiveness
Both interventions—on Stack Over­
flow and Google Search—follow the
design principles given by nudge the­
ory. They try to make it as easy and
convenient for developers to engage
in better security decision making.
They achieve this exactly by not
interfering with established behav­
ior, such as Googling or copying and
pasting code examples. They do not
try to restrict any options but rather
harness the status quo and lead to
better outcomes.

Both approaches do not require
developers to be aware of them to
use them. Developers do not need
to download, install, or learn how
to use these methods. They do not

www.computer.org/security� 79

have to cope with incomplete or
unhelpful documentation or gain
the advanced skills that are some­
times required to use security tools
such as code analysis.

However, both approaches differ
in certain aspects. Warnings and rec­
ommendations on Stack Overflow
allow developers to make informed
decisions on whether or not to reuse
insecure code. Security-based rerank­
ing of Google Search results provides
more secure options by default,
without user awareness. On the one
hand, the Google Search interven­
tion leads people to stay more or less
uninformed about which results are
secure and which are insecure and
why. On the other hand, developers
do not have to pay attention to and
follow security warnings, indicators,
or recommendations that are often
difficult to understand. Moreover,
people quickly become habituated
to these kinds of interventions. This
happens once they disagree with
a warning or find recommenda­
tions unhelpful.

With the Google Search inter­
vention, developers do not need
to evaluate whether vulnerabilities
reported by code analysis tools are
false positives. Moreover, there are
no disruptive effects on the main
programming task. The interven­
tion remains completely invisible
and does not require anything from
the user. Therefore, typical human
factors that need to be addressed in
the field of usable security may not
have any negative effects on security
in this approach.

F ollowing the defense-in-depth
principle, a combined approach

might provide the ideal solution.
While Google Search includes code
security as a signal in ranking, web­
sites, such as Stack Overflow and
GitHub inform and educate their
user base about insecure content.

This works best if all players are part
of the game. Alternatively, a scenario
that does not rely on Google and
other webpages would be one where
companies and institutions run our
interventions internally on top of
Stack Overflow and Google Search.

Based on the results of our
studies, we believe that designing
security interventions for develop­
ers—as well as for end users—must
consider behavioral aspects. In our
work, observed behavior formed
the basis upon which we designed
our interventions. It puts people
at the center of the design and
dramatically shifts responsibilities
away from developers who may be
laymen in security toward experts
in security and beyond. This way
of designing security interventions
shows that there is a potential for
fixing important security issues
in code on a very large scale. The
urgency to take action is high as the
problem is otherwise much likely to
worsen.

References
1.	 Y. Acar, M. Backes, S. Fahl, D. Kim,

M. Mazurek, and C. Stransky, “You
get where you’re looking for: The
impact of information sources on
code security,” in Proc. 2016 IEEE
Symp. Security Privacy (S&P), pp.
289–305, doi: 10.1109/SP.2016.25.

2.	 F. Fischer et al., “Stack overflow
considered harmful? The impact of
Copy&Paste on Android application
security,” in Proc. 2017 IEEE Symp.
Security Privacy (S&P), pp. 121–136,
doi: 10.1109/SP.2017.31.

3.	 F. Fischer et al., “Stack overflow
considered helpful! Deep learning
security nudges towards stronger
cryptography,” in Proc. 28th USE-
NIX Security Symp. (USENIX Secu-
rity), 2019, pp. 339–356.

4.	 F. Fischer, Y. Stachelscheid, and J.
Grossklags, “The effect of Google
search on software security: Unob­
trusive security interventions via

content re-ranking,” in Proc. 28th
ACM Conf. Comput. Commun. Secu-
rity (CCS), 2021, pp. 3070–3084,
doi: 10.1145/3460120.3484763.

5.	 M. Chen, F. Fischer, N. Meng, X.
Wang, and J. Grossklags, “How reli­
able is the crowdsourced knowledge
of security implementation?” in Proc.
41st ACM/IEEE Int. Conf. Softw. Eng.
(ICSE), 2019, pp. 536–547, doi:
10.1109/ICSE.2019.00065.

6.	 C. R. Sunstein, “Nudging: A very
short guide,” in The Handbook of
Privacy Studies. Amsterdam, The
Netherlands: Amsterdam Univ.
Press, 2018, pp. 173–180.

Felix Fischer is a Ph.D. student at the
Technical University of Munich,
Munich, 80333, Germany. He is
also a senior researcher at Avast.
His research studies include
the interaction of people with
information security and pri­
vacy technologies. His most
recent publications focus on soft­
ware engineers struggling with
getting cryptography right and
explore machine learning as a
tool for usable security and pri­
vacy. Fischer received a Diplom
in mathematics (with a focus on
computer science) from Leibniz
University Hannover, Germany,
in 2014. Contact him at flx.fischer
@tum.de.

Jens Grossklags is a professor of
Cyber Trust in the Department
of Informatics at the Technical
University of Munich, Munich,
80333, Germany. His research
and teaching activities focus on
interdisciplinary challenges in
the areas of security, privacy, and
technology policy. Grossklags
received a Ph.D. in informa­
tion management and systems
from the University of California,
Berkeley. He is a Senior Mem­
ber of IEEE. Contact him at jens.
grossklags@in.tum.de.

