
108	 May/June 2022	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/22©2022IEEE

LAST WORD

The Persistent Problem
of Software Insecurity

S oftware is increasingly playing a key
role in all infrastructure and applica-

tion domains we may think of. One notable
example is represented by the increased “soft-
warization” of computer networks, including
wireless communications networks—see, for
example, the various initiatives toward open
radio access networks (RANs) to disaggregate
the various components of a RAN and stan-
dardize the interface of these components to
run them on the cloud. Or, there is the notion
of “network programs”1 as an approach to bet-
ter control and manage networks and possibly
even enhance their security.

Unfortunately, as we all know, software
systems are still often insecure despite the fact
that the “problem of software security” has
been known to the industry and research com-
munities for decades. One would have at least
expected that, given the increased awareness of
the need for better software security, recently
developed applications would be more secure.
However, this does not seem to always be the
case. Take, for example, mobile applications.
A relatively recent analysis of over 13,000 such
applications using login and password authen-
tication2 has shown that about 18% of these
applications did not correctly check the cer-
tificate sent by the server or did not even check
the certificate at all. On the other hand, one
might expect that applications would today be
free of long-known defects that make them vul-
nerable to attacks, e.g., Structured Query Lan-
guage (SQL) injection. However, the number
of SQL vulnerabilities accepted as common
vulnerabilities and exposures remains high
even in recent years.

The landscape of software security is
today further complicated by new applica-
tion domains with their own specific vulner-
abilities. One notable example is represented
by control applications that typically have to

configure combinations of large numbers of
parameters. For example, control software for
drones, such as ArduPilot and PX4, has to man-
age 247 configurable control parameters. Not
only does the value assigned to each parameter
have to be validated but even combinations of
parameter values have to be checked, as certain
parameter values combinations are unsafe, even
when each parameter value by itself is correct.
To all the preceding we need to add attacks to
the software supply chain that target not only
software by companies—an example of which
is the SolarWinds attack—but also exploit flaws
of open source software—an example of which
is the recent case of Log4j. The risk with open
source software is not only the vulnerabilities
that a piece of code may have but also malicious
changes that can be introduced into the code.

One obvious question is why software
is still insecure. Reasons that are often men-
tioned include the lack of vendor liability,
the lack of training of software engineers and
developers, the use of insecure languages, and
so on. However, it can also be argued that the
benefit of software, even if insecure, outweighs
its lack of security. After all, could we imagine
our society today without software? On the
other hand, software security is increasingly
a critical need. So, what would it take to con-
vince decision makers at various levels and
organizations that software security must be
a priority? As argued by Bruce Schneier in his
“Last Word” column “What Will It Take?” in
the May/June 2021 issue of IEEE Security &
Privacy,4 it is critical that decision makers and
the public “not only need to believe that the
present situation is intolerable, they also need
to believe that an alternative is possible.”

We need systematic approaches to soft-
ware security. Such an approach would
need to include a comprehensive taxonomy
of software vulnerabilities, such as mem-
ory, cryptography and authentication, and

Digital Object Identifier 10.1109/MSEC.2022.3158841
Date of current version: 26 May 2022

Elisa Bertino
Purdue University

continued on p. 107

www.computer.org/security 107

corresponding automatic detec-
tion and patching techniques. For
example, whereas fuzzing is use-
ful for detecting memory vulner-
abilities, it may not be suitable for
detecting vulnerabilities such as
a lack of proper certificate valida-
tion and input validation. We need
techniques that are highly accurate
and time efficient; to this end, one
may combine different techniques
and perhaps leverage artificial intel-
ligence/machine learning techniques.
Formal methods could also be use-
ful tools for enhancing software
security, provided, however, that
they are scalable. In addition, moni-
toring tools for software would be
invaluable, as they would allow one
to check at runtime if software is
behaving as expected. Such tools

may not be easy to design, as soft-
ware may behave in different ways
depending on input parameters and
context. However, I believe that this
could be doable, at least for moni-
toring behavior with respect to
specific sensitive actions (see Bossi
et al. 3 for a simple early approach).
And also, we need to work on effec-
tive solutions for secure software
supply chains.

References
1. N. Foster, N. McKeown, J. Rex-

ford, G. Parulkar, L. Peterson, and
O. Sunay, “Using deep program-
mability to put network owners in
control,” ACM SIGCOMM Comput.
Commun. Rev., vol. 50, no. 4, pp. 82–
88, 2020, doi: 10.1145/3431832.
3431842.

2. S. Ma et al., “Finding flaws from pass-
word authentication code in Android
apps,” in Proc. Eur. Symp. Res. Com-
put. Security, 2019, pp. 619–637, doi:
10.1007/978-3-030-29959-0_30.

3. L. Bossi, E. Bertino, and S. R. Hus-
sain, “A system for profiling and
monitoring database access patterns
by application programs for anom-
aly detection,” IEEE Trans. Softw. Eng.,
vol. 43, no. 5, pp. 415–431, 2017,
doi: 10.1109/TSE.2016.2598336.

4. B. Schneier, “What will it take?,”
IEEE Secur Priv, vol. 19, no. 3,
pp. 63–64, May/June 2021. doi:
10.1109/MSEC.2021.3063800.

Elisa Bertino is a professor with
Purdue University, West Lafay-
ette, Indiana, 47907, USA. Con-
tact her at bertino@purdue.edu.

For more information on paper submission, featured articles, calls for
papers, and subscription links visit: www.computer.org/tsusc

SUBSCRIBE AND SUBMIT

IEEE TRANSACTIONS ON

SUSTAINABLE COMPUTING
SUBMIT
TODAY

Digital Object Identifier 10.1109/MSEC.2022.3172000

continued from p. 108Last Word

