
12	 May/June 2022	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/22©2022IEEE

Editors: Bob Blakley, bob.blakley@gmail.com | Lorrie Cranor, lorrie@cmu.edu

OVER THE RAINBOW: 21ST-CENTURY SECURITY AND PRIVACY

B ob Blakley: Welcome, every-
body, to episode three of the 

IEEE Over the Rainbow podcast. I 
am your host Bob Blakley, and we’re 
here today with one of the found-
ers of the field of information secu-
rity, Roger Schell. Roger, back in the 
early 1980s, was one of the leaders of 
the production of a U.S. government 
standard called the Orange Book [for-
mally titled the Trusted Computer Sys-
tem Evaluation Criteria, (TCSEC)], 
which essentially defined the model 
for a secure computer system. I have a 
copy of it here. Roger, you’ll be happy 
to see that I used it heavily enough 
that I had to take the staples out. I 
think it’s probably a good time to be 
having this conversation because this 
year is the 50th anniversary of the 
reference monitor model. Nineteen 
seventy-two saw the publication of 
the Anderson report, which intro-
duced the concept, as far as I’m aware, 
in the public literature—and that’ll 
be 50 years ago this year. And—as I 
think you’re aware, Roger—the title 
of our podcast is a sort of multilayered 
pun, and one of the aspects of the pun 
is a reference to the Rainbow Series, 
which the Orange Book was the inau-
gural volume of. One of the sly sug-
gestions we were hinting at in the title 
was that, in some sense, the computer 
security industry is over the Rainbow 
Series—over in the sense of sort of 
wanting to leave it in the past. But I 
think one of the things that we’re go-
ing to talk about today is that it’s not 
easy to leave the Orange Book in the 
past and also possibly not wise. So, 

with that introduction, Lorrie, I’ll 
hand it to you to start our questions.

Lorrie Cranor: Roger, can we start 
by having you introduce yourself and 
tell us what you’re working on now?

Roger Schell: I’m president of Aesec 
Corporation and its subsidiary Gemi-
ni Computers Inc. Its Gemini Multi-
processing Secure Operating System 
(GEMSOS) security kernel was one 
of the early Orange Book National 
Security Agency (NSA)-evaluated, 
high-assurance (class A1) commercial 
products. Since acquiring that tech-
nology in 2003, Aesec has worked 
to find ways to apply it to modern 
environments, things like program-
mable logic controllers (PLCs) used 

in industrial control systems that cur-
rently have a lot of emphasis. We re-
cently ported the OpenPLC project 
to GEMSOS for a high-assurance 
PLC prototype and delivered that in 
August 2020 to Matt Bishop’s Univer-
sity of California, Davis Computer Se-
curity Lab. We’ve also created a Linux 
interface to GEMSOS and demon-
strated that by taking an open source 
network file service (NFS) and im-
plementing that on top of GEMSOS. 
We delivered this multidomain, ex-
ternally accessible NFS, again as a 
prototype, in March 2013 for a gov-
ernment customer. So, that’s the sort 
of things that we’re doing. We recog-
nize that it’s scientifically impossible 
to create a secure system without a 
trustworthy operating system, so, as a 
business, we’re obviously looking for 
customers for our trustworthy oper-
ating system who would like to create 
secure systems.

Blakley: Along those lines, Roger, in 
your writings and speeches over the 
last 40 years but, in particular lately, 
you have talked about verifiable secu-
rity and how that relates to the trust-
worthiness of systems. And I’m not 
certain that 100% of our audience is 
going to be familiar with verifiable 
security, so could you talk a little bit 
about it and, in particular, talk about 
how it differs from most of what we’re 

High Assurance in the Twenty-First  
Century With Roger Schell

Digital Object Identifier 10.1109/MSEC.2022.3159044
Date of current version: 26 May 2022

Roger Schell.

Editor’s Note: This article is an edited version of an oral interview. 
The full audio of the interview is available at the IEEE Security & Privacy 
homepage (https://www.computer.org/security) and via major 
podcast platforms.



doing in the information security 
space today?

Schell: Traditionally, what verifiable 
security meant was reflected in the 
term verified protection we took from 
that title for class A1 in division A of 
the TCSEC. What that has meant to 
me is basically to verify that a system 
would enforce the security policy 
established for the system’s informa-
tion; that was what was being verified. 
Today, the term is often used in rath-
er aberrant ways and doesn’t mean 
anything like that—one verifies little 
about the information security policy.

Blakley: If I could follow up on that 
a little bit, say a few words about what 
you think people mean by verifiably 
secure when they don’t mean that the 
system can verifiably enforce the pol-
icy, and also maybe a little bit about 
why it’s so important for a system to 
verifiably enforce a carefully speci-
fied policy.

Schell: The notion of software veri-
fication in a general sense—verifica-
tion tools and such—predated the 
Orange Book. That has continued as 
a research area primarily concerned 
with verifying the functionality of a 
program. So, when people talk about 
a verifiable operating system, what 
they usually mean is that they have 
some added confidence the function-
ality is there, and you can take that to 
various degrees.

The Orange Book pointed out for a 
highly secure system (called class A1) 
the minimum set of things that one 
should do to have reasonable trust in 
the system. That, for example, spelled 
out: I need to verify I’ve got a repre-
sentation (what Anderson called a 
“model”) of the policy that is con-
sistent, I have a specification of the 
operating system’s application pro-
gramming interface (API) that is con-
sistent, and I need to do that in a way 
which is very precise, using formal 
verification tools and things like that. 
And it spells out specifically where 

those kinds of formal methods are im-
portant to verification.

The Orange Book also notes, for 
example, that for future development 
(what they call beyond class A1), one 
would look to actually verify the code 
that implemented that verifiable spec-
ification (but not for class A1) and 
similarly potentially verify the hard-
ware. Those are mentioned as things 
that were considered reasonable re-
search goals for the future, but all of 
them focused around verifying that I 
had access control policy that was en-
forced by the system, not just verify-
ing the program for sake of verifying 
the program.

Cranor: Let’s talk about another term 
you’ve written about: the cyberde-
fense triad. Could you describe that 
for our audience?

Schell: I first introduced it in the class-
room at the University of Southern 
California, where I was on the faculty 
for several years. My November 2016 
invited Communications of the ACM 
(CACM) piece summarized three 
things—and you have to do all three in 
order—to provide “dramatically more 
trustworthy cybersecurity.” You have 
to have a fundamental representation, 
of the system—a reference monitor. 
You have to mitigate subversion of the 
system, as well. I took the principles 
from the Anderson report, which was 
mentioned by Bob, and mapped those 
three principles to “three legs of a stool” 
illustrating the triad.

Blakley: I think Lorrie’s going to get 
back to more conversation about 
subversion in a minute, but I wanted 
to talk about the third leg of the tri-
ad as you describe it, which is man-
datory access control. I think when 
a lot of people in the field think 
about mandatory access control, 
they instinctively go to the Bell and 
LaPadula model for confidentiality 
protection using mandatory access 
control. But I think, if I’m under-
standing what you’ve written recently 

correctly, you’re more focused these 
days on what you are calling “integ-
rity mandatory access control,” which 
I guess means an integrity-based lat-
tice model, like the Biba model or 
something. Am I right about that, 
and would you like to say anything 
about it?

Schell: You’re basically right. Bell and 
LaPadula is one model which one 
could to use to represent mandatory 
access control, which of course, at the 
time, was called nondiscretionary access 
control. Saltzer and Schroeder, in their 
1975 Proceedings of the IEEE paper 
about security, talked about nondis-
cretionary policy. They reflected that 
all access control policies can be parti-
tioned into discretionary and nondis-
cretionary; there’s not a continuum, 
there’s a partitioning of policies be-
tween them. Both were represented 
by Bell and LaPadula. And, if you look 
at the model carefully in Bell and La-
Padula, it’s a mathematical model. It 
actually doesn’t interpret the terms, so 
whether it’s confidentiality or integ-
rity it doesn’t really say.

I think you used the term the Biba 
model—there isn’t a Biba model. 
If you go look at the Biba paper, it 
doesn’t claim to be a Biba model. It 
claims to be an interpretation of Bell 
and LaPadula in terms of integrity. 
And it came about when the need was 
there to provide certain functional-
ity. And at the root, for example, even 
during the Anderson panel, there was 
some discussion of “well, what really 
are we talking about in terms of access 
control?” The observation was, pick 
up a memory chip. What are the oper-
ations you can perform on a memory 
chip? It has basically a read cycle and 
a write cycle, full stop. So that was the 
basis of what we mean by access. Ei-
ther read or write access comes from 
the basic technology we have in the 
memory chip. Also, at the time the 
Anderson report was written, it was 
responding to the Ware report, which 
defined the problem but not the so-
lution. And it couched its problem 

www.computer.org/security� 13



statement almost entirely in terms of 
confidentiality.

However, when it came to the first 
people after Anderson saying “I really 
need to deploy something that is high-
ly secure,” it turned out the first opera-
tional need we encountered was not 
for confidentiality. It was for integrity, 
specifically in the Strategic Air Com-
mand Digital Network (SACDIN) 
Minuteman missile control system. 
The Biba interpretation was created 
specifically as part of our response to 
say, “In order to have this understand-
able in a way which people would be-
lieve in it for the control system, we 
will couch it in terms of mandatory 
integrity.” And that was the origin of 
the Biba interpretation.

Blakley: Just to follow up on that a 
little bit, I guess that in a lot of de-
ployments today we’re probably in 
that same situation as we were in 
the Minuteman days. If we’re talking 
about PLCs and embedded control-
lers and Internet of Things devices 
and what have you, we probably are 
in a situation where we’re looking 
more to concern ourselves about the 
integrity properties than about the 
confidentiality properties, at least at 
the base layer of the system today. 
Do you agree or disagree?

Schell: I don’t totally agree. I think 
that both are important, and they 
have different environments. For ex-
ample, I claim the Equifax breach and 
a lot of other massive data breaches 
are primarily concerned about con-
fidentiality. And yet certainly, our 
recent attention to control systems, 
including PLCs, is about integrity. 
So, they’re both equally important; 
they each have their customers that 
are concerned about them. The good 
news is that the same basic technol-
ogy exists and can be applied to both. 
In the case of our GEMSOS product, 
produced by Gemini originally, if you 
look at the June 1995 final evaluation 
report by NSA, they point out that the 
security kernel doesn’t know about 

confidentiality or integrity. It simply 
knows about enforcing mandatory 
access control policies for a lattice, 
and whether it is integrity or confi-
dentiality is syntactic sugaring added 
outside the kernel.

Cranor: So, getting back to subver-
sion, can you say a bit about sub-
version and insider attacks? How 
important are they, and how vulner-
able are we at the moment?

Schell: You’ve seen my perspective 
on that in the November 2016 CACM 
and elsewhere, which is basically 
starting with the Anderson report, 
and prior to that, the primary threat 
that we faced at the national level was 
subversion. The military understood 
subversion early on. My early work in 
the security area, long before the An-
derson report, was, in fact, on a system 
which was handling highly sensitive 
data. What the military did in those 
cases was to actually control the pro-
duction of special computers—every-
thing, hardware and software, from 
essentially the ground up. Probably 
the most widely known example was 
cryptographic devices. Cryptographic 
devices were built by a special com-
munity with highly cleared people, 
subject to lots of constraints. There’s 
really just one reason why you did it—
just one. That’s subversion. The prob-
lem that you were concerned with is if 
you went out and bought a computer 
off the shelf, even in the 1960s, you 
had to assume that it was subverted, 
and there were good and valid reasons 
why that was a proper concern.

So, the military understood sub-
version as the primary threat long 
before many other people did. On 
the other hand, many (most) instal-
lations used dominantly commercial 
items. Even at the level of Depart-
ment of Defense (DOD) policy for 
installations that were not highly sen-
sitive, when I would have discussions 
of the subversion topic in the 1970s, 
the most common reaction I got was 
that “nobody would ever do that.” 

Occasionally, I found my perspective 
implicitly mocked. I remember one 
of the major, well-known government 
research agencies not particularly sup-
portive of the high-assurance effort 
in the Air Force. Their speaker got 
up in front of a rather large audience 
and made the point, “We’re worried 
about real people attacking real sys-
tems. We’re going to live in the real 
world; we want something that is ac-
ceptable risk.” He asserted, “In the real 
world, we’re not facing Massachusetts 
Institute of Technology (MIT) Ph.D.-
in-computer-science-graduates attack-
ing our system; that’s not what we’re 
worried about.” He recognized I was 
in the audience, so that was a thinly 
veiled poke. Subversion has been 
around for a long time, but it hasn’t 
been considered important to a very 
broad audience until more recently, 
where networks and other advances 
made it more practical for the attack-
ers to use, as illustrated by Stuxnet, 
Solar Winds, and Log4j, stunning (to 
many) supply chain attacks.

Blakley: So, you alluded there to 
high-assurance computing, and I 
think Lorrie’s next question is go-
ing to be about that, but before we 
get on to that, I wanted to go back to 
your earlier conversation about cat-
egory A1 systems from the TCSEC. 
I think, to the extent that that people 
still think about A1 systems outside 
of a specialized community, they of-
ten think, “Oh well, those weren’t re-
ally built, or they weren’t really sold 
and used.” So, I think a lot of people 
today maybe don’t have a full appre-
ciation of the history of A1 systems 
and just how effective they have 
been against attacks, and I know 
you’ve written and spoken about 
this and about how surprised people 
are about avoidance of vulnerabili-
ties and attacks in A1 systems, so I 
wanted to give you the chance to re-
count a little of that for us here.

Schell: From the government or mili-
tary point of view, it was only really 

14	 IEEE Security & Privacy� May/June 2022

OVER THE RAINBOW: 21ST-CENTURY SECURITY AND PRIVACY



high-assurance systems that were par-
ticularly important. Even in terms of 
the Orange Book, look at the way it is 
organized: it has three divisions. Those 
three divisions were put there spe-
cifically to reflect different classes of 
threat. Division C said, “You’re facing 
the normal casual hacker”; it is essen-
tially the environment that most of the 
world lives in today. It is one in which 
they could be interested in division C.

Division B said, “Well, you have 
situations in which somebody may 
actually be making attacks via sub-
version or otherwise from within the 
system.” Lorrie referred earlier to the 
question of insider threat. Division 
B was really the first division to deal 
with insider threat. I mean, after all, 
the so-called military multilevel secu-
rity (MLS) is all about insider threat. 
It’s really only about insider threat. It 
says, “Assume I have on my system 
more than one domain of security, 
and I have insiders meeting there on 
the system, but they’re not all autho-
rized to all the information.” That’s 
basically what the insider threat is 
about. MLS was about insider threat. 
So, division B says, “Yeah, I got insider 
threat. I need some kind of MLS since 
I need a way to separate these securi-
ty domains.” But division B assumed 
that, by some magic or otherwise, you 
provided a suitable platform. So, you 
regarded the operating system you ran 
on as not subverted, simply as a state-
ment of the context that you were in. 
And you could do various things, as 
the crypto world did, to make subver-
sion less likely to happen. They built 
all the software and the operating sys-
tem; they built all the hardware they 
ran on. Then they said, “OK, I’ll re-
gard that as sort of static.”

In contrast, division A said, “Well, 
the reason we’re here at that point in 
time, in the 1970s, is that we recog-
nize it’s not practical for the govern-
ment to build all the computers that 
they’re going to use.” I mean, there 
was little other reason. If you look at 
the basic October 1982 DOD Di-
rective 5215.1 that established the 

Computer Security Center (its char-
ter), it was charged with creating the 
Orange Book for evaluating the secu-
rity of “industry-developed trusted 
computer systems.” The directive 
reflected explicitly that it was be-
cause DOD components were going 
to have to procure commercial sys-
tems. And when we’re going to buy 
industry-developed systems, we can 
no longer live in this fantasy world 
in which we say, “Nobody subverted 
that operating system.” So, division A 
moved to the case in which you rec-
ognize that the trusted system is now 
subject to subversion—the total plat-
form which you are on. That is why 
you had the three divisions.

It was largely the military that lived 
with those situations where security 
was considered very important, as 
addressed by using government-built 
components like the operating sys-
tem. At the point in history of the An-
derson report, they were looking at 
commercial systems, and you could 
no longer make those assumptions. 
That led to the need for division A. I 
got drafted into a position as founding 
deputy director of the NSA Comput-
er Security Evaluation Center when 
the Orange Book was being put togeth-
er. One of my first policy encounters 
was when I asked, “Why are we doing 
anything other than just looking at 
where the problem is?” I was referring 
to what became known as division A. 
That resulted in a little sit-down with 
managers from the Pentagon who 
explained to me that having only di-
vision A is not a politically correct po-
sition. You can’t do that when you’re 
trying to talk to commercial comput-
er manufacturers, and we have to have 
these. So, the way the Orange Book 
was literally constructed was you first 
constructed division A and its class 
A1, and then you ask, “OK, what are 
the requirements I can drop to make 
it more palatable for the lower divi-
sions?” You didn’t have to answer the 
question “What is this really deal-
ing with in terms of the threat?” The 
question for lower classes is, “How 

can I make this look more like com-
mercial systems?” When it got to the 
lowest, class C1, you were dealing 
with basically any commercial operat-
ing system that was out there. So, the 
full range of classes was created by re-
peatedly selectively removing require-
ments from the next higher class.

Blakley: One other thing that I want-
ed you to bring up is, as I understand 
it, there are A1 systems that literally 
operated in production for years with-
out the discovery of a single vulner-
ability, which I think a lot of people 
would be shocked to hear.

Schell: In October 2013, I was asked 
to participate in the annual NSA 
Cryptologic History Symposium, on 
a “Roundtable on Cyberhistory” pan-
el, since cybersecurity is needed for 
cryptography. By 2013, of course, the 
Orange Book was largely gone, and few 
cared much about it or knew much 
about it. I presented a slide on the 
“Legacy of Class A1: Worked Exam-
ples,” where I listed a half a dozen class 
A1 security kernel-based systems that 
had been operationally deployed. As 
I mentioned earlier, the first one of 
these designed to meet class A1, al-
though the term didn’t exist then, was 
the SACDIN system for Minuteman 
missile control. Its operating system 
was designed to meet requirements 
for a class A1 security kernel. SAC-
DIN was initially fielded in 1988, and 
has only been shut down within the 
last decade. It only shut down because 
they couldn’t buy parts to run it any-
more. Over the years, I’ve watched 
with some amusement the way people 
talked about it in the press. There was 
a May 2016 article in the Washington 
Post that opined that a “major reason” 
that it was such a secure system was 
because it used obsolete, low-tech, 
8-in floppy disks. A decade or so ago, I 
was in a Minuteman missile hole, and, 
sure enough, there was the SACDIN 
system. I, of course, talked several 
times to the people at the U.S. Strate-
gic Command, which inherited it, and 

www.computer.org/security� 15



part of the difficulty is that the people 
that are there today have no idea what 
to ask for, and so the system they built 
to replace it, in my view, is highly like-
ly to be much less secure than the one 
they had in SACDIN because they 
aren’t imposing the class A1 security 
kernel requirements that would get 
them there.

Another “worked example” I pre-
sented was the BLACKER cryp-
tographic system, an effort to use 
cryptography in a packet-switched net-
work. It had been worked on for a couple 
of decades or more, and they had all 
the pieces to provide cryptographic 
security over a packet-switched net-
work except the problem of a trust-
worthy operating system. Several 
times during BLACKER they finally 
got down to “almost there!” but just 
couldn’t quite get where they’d be 
willing to trust their system to this 
operating system.

At the end of the day, under pressure 
to meet an urgent need, they decid-
ed to produce and field BLACKER, 
but it turned out they still faced the 
problem. They gave a major aero-
space company the job of produc-
ing highly secure (NSA type 1) 
packet-switched cryptographic de-
vices. As I understand it (I was not 
there), the company later came to the 
government and said, “Well, we’ve 
got two versions here; we’d like know 
which you’d like to use. On one hand, 
we’ve got this platform based on a 
very specialized operating system that 
we think meets your security require-
ments, but its performance is not 
anywhere close to what you’re asking 
for. On the other hand, we have this 
real-time UNIX-based platform that 
we think meets performance require-
ments, but if you really want your se-
curity requirements, it’s not really in 
the ballpark. Which do you want?” 
Well, if you’re a program manager for 
a critical program that’s been a couple 
of decades in the making and always 
stumbled at about this same place 
(high-assurance security), what are 
you going to do at this point?

What they did is say, “Well, at 
this point, a number of years after 
BLACKER started, NSA is in the 
process of evaluating commercial 
trusted operating systems. We don’t 
look at their performance; we have 
no idea what it is. But we do know it’s 
secure. There is a commercial class 
A1 system that we think can meet 
your security requirements, and you 
can decide whether or not its perfor-
mance meets your requirements.” 
Now, contrast that to decades of his-
tory in which they only use software 
for cryptography that was built by 
government-cleared people in cleared 
facilities. These commercial trusted 
systems were built in an uncleared, 
uncontrolled environment by un-
cleared people, and now you’re say-
ing, “You want us to look at that?” 
And NSA said, “That’s what class 
A1 is about! It’s about letting you 
do that.” And they did. It turned out 
that was the only viable choice they 
had. So, as summarized in the Clark 
Weissman May 1992 IEEE Sympo-
sium paper, both the access control 
and the key distribution devices for 
the BLACKER packet-switched net-
work were built on a commercial class 
A1 operating system. It was fielded as 
an NSA type 1 crypto product, and 
the January 1992  memo from the di-
rector of NSA certified “that the A-1 
assurance requirements specified for 
BLACKER have been met.”

Blakley: That’s a perfect transition. I 
think the answer to “How did they do 
that?” is “Assurance,” and I think that’s 
Lorrie’s next question.

Cranor: You mentioned high assur-
ance. Perhaps you could talk a bit 
more about assurance and tell us what 
it is and why it’s important.

Schell: The way I might say it in-
formally in the classroom is that a 
high-assurance system does the trust-
worthy functions it’s supposed to do 
and nothing else. Assurance is the 
confidence that it does nothing else. 

In contrast, if you look at a so-called 
verifiable operating system that’s out 
there today, it may ensure that it does 
the things is supposed to do. It has 
little assurance that it does nothing 
else. That is, in general, an unsolv-
able problem. And when the Ander-
son report put together this concept 
of a high-assurance security kernel, 
we said, “How can we possibly do 
this?” Of course, the initial reaction 
is, you can’t! It’s Turing noncomput-
able. You can’t say it does nothing else; 
just impossible to do. Ted Glaser, who 
was chairman of the Anderson panel, 
disagreed. Ted was previously part 
of the Ware panel, worked in Bur-
roughs Engineering, and was part of 
the Multics group at MIT. He said, 
“Well, you know, the way we address 
these problems of noncomputability 
is to find a restricted way of doing 
what we’re trying to do, and to know 
we’ve succeeded, we need a model.” 
But we don’t have a model of what 
we mean by assuring the enforcement 
of the security access control policy, 
so he says, “That’s the first step.” As 
they discussed it in the group, and 
with various people outside, they said, 
“We have no reason to believe such 
a model is possible,” but if you look 
at the Anderson report, the first step 
on their road map was to develop a 
“model” of what it means to have a se-
cure operating system enforce the ac-
cess control policy.

Since we were considering Multics 
as a candidate for following that road 
map, we said, “Let’s see if we can have 
Multics, from a functionality point of 
view, enforce the MLS policy that we 
need and if we can create a model that 
shows that it meets the policy.” We, 
in a joint project with DARPA, had 
access control functions added for 
nondiscretionary (i.e., mandatory) 
access control as part of the Multics 
commercial product. If we could, ob-
viously, that would meet military MLS 
requirements. Since such a model had 
never before been done and was a criti-
cal first step to reduce risk. In the Air 
Force, we went on two parallel paths. 

16	 IEEE Security & Privacy� May/June 2022

OVER THE RAINBOW: 21ST-CENTURY SECURITY AND PRIVACY



We had MITRE doing one model, 
which became widely known as Bell 
and LaPadula. At Case Western Uni-
versity, where Ted Glaser was chair, 
we had him doing the other model. 
We developed a model of what the 
MLS operating system would look 
like, so abstractly we knew it’s secure, 
and with that we could deal with veri-
fication in a computable fashion. We 
can prove that, even though with just a 
model we can’t prove the implementa-
tion is secure. An essential property of 
high-assurance systems that you asked 
about is that this model has a formal 
mathematical proof that the access 
control policy is enforced. It proves 
that for this operating system inter-
face, for all possible programs that you 
could run, there can never be infor-
mation flow in violation of the MLS 
policy. That’s the answer to your non-
computable question, and that proper-
ty is what was meant by high assurance.

So now, we had a precise model of 
a high-assurance operating system. 
If you can somehow show that what 
you actually built is represented by 
that model, then you have a secure 
system. You’ve got the proof of the 
Bell and LaPadula “basic security 
theorem.” The next step is to confirm 
that the abstract state machine of Bell 
and LaPadula is something that looks 
like an operating system, e.g., Multics. 
An operating system has an API. That 
led to the need for a specification that 
became known, in the Orange Book, 
as a formal top-level specification 
(FTLS), and you had to show that 
that specification was, in fact, a valid 
interpretation of the model. Then, 
you could say the FTLS, if it was faith-
fully implemented, was secure for all 
possible programs. But, of course, I 
still haven’t built it. I’m still left with 
the problem that I have to correctly 
write the code.

I introduced the security kernel no-
tion in a position paper for a June 1972 
IEEE workshop chaired by Stockton 
Gaines. I proposed “a compact secu-
rity ‘kernel’ such that an antagonist 
could provide the remainder of the 

system without compromising the 
protection provided.” And the reac-
tion was, “Yeah, that’s a pipe dream for 
the obvious reasons; it’s noncomput-
able.” So, in the summary of that work-
shop, at the August 1972 ACM annual 
conference, there was no mention of 
the security kernel. The question was: 
With this abstract specification of the 
operating system, how can you build 
one that has high assurance? You have 
to build it by construction. You have to 
construct it so that it can be shown to 
be a valid interpretation.

Edsger Dijkstra was at MIT as a 
visiting professor while I was a stu-
dent. His office was a couple doors 
down from mine, and I’d go have 
some discussions with him. One of the 
points he made was that you can’t test 
to show software has no bugs. So, he 
says, “I’ll give you the problem of the 
72-bit adder. I give you this black box 
and ask you to show me whether or 
not the black box is a high-assurance 
72-bit adder. I’ll bet my house against 
your house that you can’t tell me. If 
you say it’s not, to win, you have to 
show me a test case where it’s not ac-
curate. When, after extensive testing, 
you assure me it accurately does 72-bit 
adding, I will show you that it doesn’t.” 
What I do is build into the black box 
some circuitry that says when two 
particular numbers (known only to 
me) are added, I’ll produce a wrong 
answer. That’s what we mean by sub-
version. It fails even though all the tests 
say it does what it’s supposed to do. But 
tests can’t prove it does nothing else; 
how can I prevent that? We do it by 
construction. The way we build 72-bit  
adders is to combine 72 1-bit adders 
with a carry according to a proven ab-
stract specification for adders.

What can I learn from that 72-bit 
adder? For a verified design, I have to 
build essentially a proof sketch of the 
operating system implementation to 
show that it is a valid interpretation 
of the FTLS and nothing else. There 
are mature software engineering tech-
niques that we found were useful. 
The David Parnas May 1972 CACM 

paper and the June 1973 William 
Price Ph.D. thesis at Carnegie Mellon 
defined the notion of an “information 
hiding” module whose information is 
hidden from the rest of the modules. 
By constructing the operating system 
using such separate modules, I can, in 
fact, build a proof sketch. As in math-
ematics, the theorem for a module 
can build on corollaries and lemmas 
below it. That theorem becomes a 
lemma for the next layer of the proof. 
So, one of the things class A1 requires 
is that the operating system must be 
expressed at its API specification in 
Parnas’s form: inputs, outputs, ex-
ceptions, and effects (state). That is 
required for class A1 because it’s the 
only way we know how to go about 
making that kind of proof sketch. But, 
even if my interface meets the Parnas 
specification, if I build a monolith in-
side it, I can’t get there. So, class A1 
also requires modularity inside. You 
must have multiple independent mod-
ules and must have layering.

Paul Karger’s May 1990 IEEE 
symposium paper on the Virtual Ac-
cess Extension (VAX) security kernel 
designed to meet class A1 described 
the layering of Parnas modules. You 
could conceptually build each layer 
and run it as a mini microkernel itself; 
then, you build the next layer on top 
of it and the next layer on top of that. 
When we tried to apply that to com-
mercial operating systems, such as 
Multics, it turns out that’s not the way 
anybody builds an operating system. 
We simply didn’t know how to build 
an operating system that way. As part 
of the joint Air Force/DARPA research 
project, a September 1976 Ph.D. dis-
sertation by Philippe Janson, at MIT, 
addressed how to go about layering an 
operating system in a way that is prac-
tical. He solved the nub of the hard 
problem of doing that, so layering is 
also required for class A1. Then, the 
question was: You have all these tech-
niques, can you really do it? Following 
the Anderson road map, as the next 
step was, we had MITRE actually con-
struct a running security kernel proof 

www.computer.org/security� 17



of concept for what was later termed a 
class A1 operating system using those 
techniques. As reflected in the May 
1975 report on the PDP-11/45 secu-
rity kernel, by Lee Schiller, we con-
cluded, “Yes. We can.”

That illustrates how, by high assur-
ance, we mean security by construc-
tion to meet a proven model. That’s 
a long answer, but maybe that gives 
you some flavor for why, at the end 
of the day, it’s not a surprise that it is 
unlikely to ever need patches. In to-
day’s vernacular, it is unlikely to have 
a zero-day vulnerability. It’s what you 
can reasonably expect. If you look at 
it from a practical point of view and 
you’re NSA in the 1980s, you say, 
“What is your most sensitive informa-
tion?” Well, it’s your crypto keys, right? 
Now, in order to build cryptography 
for a packet-switched network, I must 
have the power of a computer; I can’t 
just build my type 1 crypto device in 
hardware anymore—it’s too complex. 
You’re asking me to trust my crypto 
keys to a software operating system? 
That’s never been done, and anyone 
who would propose that would be 
thrown out. At the end of the day, they 
chose a commercial operating system 
protecting their crypto keys, but only 
because NSA evaluated it to confirm it 
met the class A1 requirements.

Blakley: And it did work.

Schell: It did work. It was a type 1 
crypto product. It got distributed 
around the world.

Blakley: Distributed around the world 
to handle the most sensitive function 
that the most secretive government 
intelligence agency handled?

Schell: Yes, by the United States and 
friendly nations.

Blakley: So, number 1, it was a long 
answer, but I don’t think I’ve ever heard 
anybody explain it that way, and that, 
all by itself, makes me happy that we 
did this. But it’s also the perfect intro 

to my next question, which—really, I 
reached out to you for this—which is 
we started in 1972 with this idea that 
was, at some level, kind of implausible, 
and a whole bunch of smart people fig-
ured out that there was, in fact, a way 
to do it, and they did it, and it worked. 
And we stopped doing it, and we don’t 
use the technique anymore.

Schell: Yes, we don’t use the secu-
rity kernel technique anymore, it’s 
fair to say.

Blakley: The question, obviously, is: 
What went wrong? And I guess my 
summary at this point is that the Or-
ange Book model failed for what I 
would call economic reasons, but ev-
erything else also failed, except it failed 
for technical reasons, and it’s pretty 
plausible, at this point, that the tech-
nical reasons that have caused every-
thing else to fail really can’t be fixed.

Schell: Yes, they are noncomputable.

Blakley: So, I guess the question is: 
Does going forward, at this point, 
also mean to some extent going back, 
and do we have to just accept that 
high-assurance systems are expensive 
but necessary? And what do you see 
the future as?

Schell: Well, yeah, the question is 
why it failed. As I’ve said to several 
people, you know, I’m not a sociolo-
gist, and I can’t tell you why other 
people do what they do. But let me 
observe that I did have an interview 
several years ago in which a ques-
tion came up of why do people say 
we aren’t using this. Although I can’t 
personally speak to this, I have iden-
tified some of the reasons people put 
forth, which may be worth noting 
(this was an interview Luke Muehl-
hauser, of the Machine Intelligence 
Research Institute, published in June 
2014). Near the top of the list was, in 
fact, government actions. I mentioned 
earlier that Digital Equipment Corp. 
(DEC) created what I think would 

have been a class A1 virtual machine 
monitor for VAX. Do you remember 
one significant reason they gave for 
why they didn’t ship it?

Blakley: My memory on this is hazy, 
but I think one of the reasons they 
gave was that they thought that the 
market was going to be really small.

Schell: Consistent with that, a major 
reason given in the May 1990 Karger 
paper was, “The export controls im-
posed on A1 systems can seriously re-
duce the potential market.” If you’re a 
global company like DEC, you don’t 
offer a product that you can’t export; 
not only is the market smaller, but it’s 
just business suicide to do that. That 
problem is one which will still loom. If 
I’m a class A1 PLC manufacturer and I 
want to sell to the U.S. power grid, that 
probably is not a problem to me. But 
there’s a lot of other markets I’d like to 
address. That’s a challenge. Now, it is, 
in my view, a rather significant abuse 
of government export provisions, and 
I have sat on both sides of that export 
decision process. The nominal story is 
you’ve got technology that’s “dual use,” 
i.e., it’s technology we’re using, and we 
don’t want other people to be able to 
use it. Well, I say, on the face of it, as 
you just pointed out, we’re not using 
it. When I talked to the people who 
inform those decisions, a decade ago, 
they denigrated the security kernel as, 
“That’s 30-year-old technology. We 
can’t possibly be interested in using it.” 
How could that possibly be subject to 
dual use export control?

Blakley: I think we’ve had a few cryp-
to policy discussions on the podcast 
already, and it’s likely that we’ll have 
more, and I think you already know 
that I agree with you that those poli-
cies have enormously distorted the se-
curity market in multiple ways.

Schell: And it was clearly, in my view, 
not the intended purpose. The sec-
ond issue that people point out is the 
so-called equities problem. Twenty 

18	 IEEE Security & Privacy� May/June 2022

OVER THE RAINBOW: 21ST-CENTURY SECURITY AND PRIVACY



years ago, I couldn’t have uttered those 
words publicly. Today, it has come out, 
but the way you hear about it, mostly 
in the press today, is for a cybervul-
nerability that the government knows 
about. They may choose, as a matter of 
“equities,” not to fix it or tell the manu-
facturer because they’re exploiting the 
flaw in their activities. And there’s a for-
mal Equities Review Board set up to 
decide whether a vulnerability should 
be fixed. Additionally, one of the chal-
lenges of a class A1 product is it’s built 
so a third party could evaluate it. It’s 
worse than the usual equity. It’s not 
just that you didn’t fix the problem; it’s 
that somebody else can systematically 
evaluate it to find the problem.

A third issue which people point-
ed out is that some parts of the gov-
ernment have an inclination toward 
a monopoly, and they don’t want to 
have security controls that aren’t by, 
for, and of them. You may recall that 
David Bell, in a December 2006 paper 
for the Annual Computer Security 
Applications Conference (ACSAC), 
addressed a report that “virtually over-
night, NSA put all the class A1 ven-
dors out of business.” In the October 
1982 secretary of defense charter for 
the NSA center, he explicitly directed, 
“It is DOD policy to encourage easy 
availability of trusted computer sys-
tems.” The objective was to stimulate 
the market, but those three examples 
of government actions seem contrary 
to that directive.

Blakley: And actually, that is a per-
fect transition, I think, to Lorrie’s next 
question.

Cranor: I guess you’ve pointed to a 
few reasons as to why we don’t have 
high-assurance systems, and a lot of 
them have to do with regulation and 
economic incentives. What can we do 
about it, and how can we actually cre-
ate a market so that we can have effec-
tive high-assurance, secure systems?

Schell: Of course, Bob is more of the 
expert in marketing than I am. I do 

agree with his hypothesis that it is ba-
sically a problem of marketing. I’ve in-
teracted with major players out there 
who give advice to industry, and we’ve 
tried to sell the idea of high assurance. 
I had a senior member of one of these 
big companies say, “You know, you’ve 
been a technology success, and a 
market failure.” He continued, “I’m 
not going to recommend to my cus-
tomers anything that’s a market fail-
ure.” That’s a challenge. That sems a 
knee-jerk reaction some people have, 
and since I’m not a marketing guy, I 
don’t know the validity. You know, 
some people have observed rhetori-
cally, “Do you think there’d be seat 
belts in cars if it were just left to mar-
ket forces?”

Blakley: Well, right, and that’s actu-
ally the perfect transition to the ques-
tion that I was going to ask to follow 
this up. If you have something that’s a 
technical success but a market failure, 
that is literally the economist’s defi-
nition of a market failure, right? The 
market is not functioning in such a 
way that it produces an outcome that 
everybody agrees would be the desir-
able outcome. And the canonical ways 
that you solve that problem, a market 
failure problem, are either via regula-
tion or via liability. So basically, either 
you as the government say “This deci-
sion is not going to be subject to mar-
ket forces because we’re just going to 
tell you that you have to do it,” or you 
say, “Hey, we understand market forc-
es, and we’re going to create a market 
force that says if you screw this one up 
and it hurts somebody, we’re going to 
give you an enormous penalty, so that 
we recalibrate your thinking.” Is that 
sort of where you think we’re going 
on this one if we’re going to be a suc-
cess, or are there other options, or 
is it imponderable?

Schell: I think there are other op-
tions, but I think the first step is get-
ting to have that discussion about 
trustworthy operating systems with 
decision makers that matter. The reality 

is that we’ve repeatedly gone to senior 
government agencies mentioned as 
responsible in the cybersecurity ex-
ecutive orders and such, and they 
talked about things like a public–
private partnership. I have suggested, 
“Well, why don’t you go out and have 
a PLC manufacturer build a prototype 
high-assurance PLC, controlling some 
critical cyberphysical components in 
the power grid? And to do that, require 
that they will build it on a trustworthy 
operating system designed to meet 
class A1?” I’ve been told that you can’t 
say that, you can’t say “class A1.” With-
in the past few months, one senior 
technologist forcefully “recommended 
steering clear of any references to A1 
or the TCSEC.” The government will 
not have that conversation, simply will 
not have it.

My question is: If you don’t want 
to say “class A1,” what is your specifi-
cation? If you’re going to have a pub-
lic–private partnership, you must have 
a codified specification to put on con-
tract that a private partner can build to. 
The Orange Book was designed as an 
engineering specification you can put 
on contract. No answer. What you get 
is something like the December 2018 
Office of Management and Budget 
policy memorandum M-19-03 that 
says to “include requirements for de-
velopers, manufacturers, and vendors 
to employ systems security and pri-
vacy engineering concepts and meth-
ods” provided by “appendices F and G 
in National Institute of Standards and 
Technology (NIST) Special Publica-
tion 800-160” dated November 2016. 
Although this has well-written general 
conceptual, philosophical guidelines 
of a reference monitor, it is not at all an 
engineering specification for contract-
ing a manufacturer to build to.

Blakley: Well, anybody could build 
to it by using the A1 specifications if 
they chose to do it that way. It’s just 
that they don’t.

Schell: Well, yes, if a manufacturer 
chose to do it that way by building its 

www.computer.org/security� 19



application, e.g., a PLC, on an operat-
ing system designing to meet the TC-
SEC class A1 criteria. But the reality is 
that if the government contract only 
requires the general principles, the 
response of the private partner is, “I 
want to show that what I already have 
meets your requirements.”

Blakley: Because that’s the quickest 
way to a purchase order, right? If you 
can convince somebody to buy the 
off-the-shelf product.

Schell: As I pointed out, David Bell 
reported, “NSA put all the Class A1 
vendors out of business.” That may be 
not far wrong; the ironic point is, now 
I hear over and over again, “We can’t 
possibly require an operating system 
designed to meet class A1 because 
there’s only one commercial vendor 
that can deliver that.” So, the govern-
ment puts all the vendors out of busi-
ness and then says, “I can’t have a sole 
source because I don’t have competi-
tion.” Since I was in the system acqui-
sition business much of my career, I 
know that’s a completely bogus an-
swer; there are lots of components in 
systems for which there is only a single 
supplier. So, I think a first thing we can 
do is have the discussion as an honest 
discussion of substance and not just 
“you know you can’t say ‘class A1.’” I 
sat in a government conference where, 
three administrations back, we were 
asked to define what was needed to 
address cybersecurity on a national 
scale. Experts came together to define 
a whole road map for “how would you 
build a Manhattan project or whatever 
to do that?” And after having laid this 
out, including class A1, a major secu-
rity agency representative got up and 
said, “We’re simply not going to rec-
ommend, out of this conference, any-
thing that says TCSEC because it’s well 
known it doesn’t work.” He was so vo-
ciferous that other people referred to 
this as TCSEC phobia.

Blakley: In some ways, it’s sort of an 
accurate statement: It didn’t work in 

the market, right? And people have 
emotional wounds from it, and so 
they don’t want to talk about the ways 
in which it did work, which were, you 
know, technical.

Schell: So, what are the opportuni-
ties where we can have this discus-
sion? The president nominated and 
the Senate recently confirmed Chris 
Inglis as the first national cyber direc-
tor. Chris Inglis was at the Computer 
Security Center when NSA was do-
ing TCSEC evaluations. Chris Inglis 
knows what class A1 is. He’s a very 
smart guy. It could be game-changing 
to have him participate in that discus-
sion. With billions of dollars being 
spent on cybersecurity, let’s discuss a 
public–private partnership like what 
a September 2020 LinkedIn post by 
Ron Ross, at NIST, described. The 
government owns a couple of power 
companies like The Tennessee Val-
ley Authority and Bonneville Power. 
The government can require the 
partnership to deliver a prototype 
commercial PLC built on a class A1 
operating system. By the way, Ross’s 
November 2016 NIST SP800-160 
document explicitly notes that “high-
ly assured, kernel-based operating 
systems in PLCs can help achieve 
a high degree of system integrity 
and availability” for the electric grid. 
Someone like Chris Inglis can decide 
to have that discussion.

As my chief financial officer, a Har-
vard Law School graduate, points out, 
there’s this notion of “raising the bar” 
as a way of changing a market via liabil-
ity, an approach you just mentioned. 
The one raising the bar sets a higher 
standard for others to follow, in this 
case, to limit their liability. Once the 
Tennessee Valley Authority (as part 
of the public–private partnership) dra-
matically reduces the huge cybersecu-
rity attack surface for its portion of the 
grid, people can no longer say “Well, 
this is best we can do,” which is what 
they say today. So, there are definitely 
practical things we realistically can do 
other than blanket regulation.

The other thing I would like to ad-
dress, Bob, is your “economic reasons.” 
Earlier, you suggested we may have to 
“just accept that high-assurance sys-
tems are expensive.” I want to challenge 
you a bit on that. At the time the Orange 
Book was written, those who wanted to 
build secure systems largely custom 
built their operating systems; therefore, 
they had to build a class A1 operating 
system for every type of system they 
wanted. No doubt, designing to meet 
class A1 is expensive. Literature esti-
mates are in the range of a minimum 
10–15 years and many millions of dol-
lars. At that time, yes, it was economi-
cally infeasible for many. Fast-forward 
to today. The huge majority of all the 
IT products in the world—the billions 
of them—run on a handful of operat-
ing systems. For embedded devices, 
there is Wind River, still Microsoft CE, 
and various variants of Linux. Then the 
list gets very sparse.

Blakley: And also, the operating sys-
tem isn’t where the primary value add 
is anymore, so it’s not as much of a 
competitive issue as it used to be.

Schell: Right, but the trick is, as shown 
in my September 2020 Purdue Center 
for Education and Research in Infor-
mation Assurance and Security vid-
eo on high-assurance PLCs, that the 
whole guts of that hard security work 
are in the class A1 operating system. 
So yes, the operating system vendor 
makes that investment once, but then 
many device manufacturers can reuse 
it. Within two years, we can dramatical-
ly improve our electric grid—and a lot 
of other things—by using a trustwor-
thy operating system that exists. Could 
a manufacturer build one? No. Not in 
two years. But it’s no longer the same 
economic issue: it doesn’t cost a manu-
facturer that much more to put its de-
vice on a trustworthy operating system 
than it does to use an insecure one.

Blakley: So, I’m going to wrap us here, 
but I am going to ask our last two ques-
tions, and the first one—and actually 

20	 IEEE Security & Privacy� May/June 2022

OVER THE RAINBOW: 21ST-CENTURY SECURITY AND PRIVACY



you were one of the people I had in 
mind when I formulated this question 
initially, before we started the whole 
thing—is: In the course of your ca-
reer so far, what are the three or fewer 
things that you’ve learned that you re-
ally think the next generation of practi-
tioners should remember?

 Schell: Well, I have three things, 
which I’ve said:

1. First, it’s scientifically impossible 
to build a secure cyber system 
without a trustworthy operating 
system, and by that, I mean one 
that’s very unlikely to ever have 
a zero day. We didn’t know that 
years ago. Now we know that.

2. Secondly, what wasn’t true years 
ago, but is today, is that we have 
proven and mature trustworthy 
operating system technology that 
is commercially available and has 

been successfully deployed. In 
other words, we know how to use 
that technology to construct se-
cure systems.

3. The third lesson is what I just dis-
cussed. Today, only a handful of 
core operating systems are used 
in the majority of the billions of 
information technology devices. 
You don’t create a new operating 
system for individual platforms, 
just leverage an available trust-
worthy operating system.

Cranor: Great! Alright, one more ques-
tion for you—we always like to end 
with this: What advice would you have 
for a young girl or boy who wants to 
grow up to be just like you?

 Schell: Get a life! But more seriously, 
when I look at myself—you say like 
me—well, I’m fundamentally a leader 
of those individuals on my team who 

are pursuing some common goal, 
which in the military is called the mis-
sion. So, that’s my place in life; that’s not 
where everybody is. But if that’s the 
case, and you’re going to be like me, 
my advice is, when you lead, regard-
less of the size of the group, make your 
first priority the well-being of the oth-
er members of your team and enable 
them to be the best they can be. Be an 
example they are proud to follow.

 Cranor: Thank you, that’s great.

 Blakley: It is great, and I can’t tell 
you how much of an honor and a 
pleasure it has been to have you on 
the show, Roger. I had hoped, from 
the beginning, that we’d be able to 
do this. I just want to thank you not 
just for talking to us today but for ev-
erything you’ve done for 50 years for 
the information security communi-
ty; it’s terrific. 

IEEE Computer Graphics and Applications bridges the theory 
and practice of computer graphics. Subscribe to CG&A and

• stay current on the latest tools and applications and gain
invaluable practical and research knowledge,

• discover cutting-edge applications and learn more about
the latest techniques, and

• benefi t from CG&A’s active and connected editorial board.

AA&&GGCC
www.computer.org/cga

Digital Object Identifier 10.1109/MSEC.2022.3171933

www.computer.org/security 21


