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On Bridges and Software

L ately, I have been thinking about how the 
lessons of traditional engineering dis-

ciplines may be leveraged to develop more 
secure software. In particular, I have been 
thinking about how designing bridges to 
avoid failure may help us to develop software 
in a manner that avoids introducing exploit-
able flaws.

I was inspired to consider bridges by 
my son’s visit to the city of Mostar in Bos-
nia and Herzegovina. Mostar is the site of a 
16th-century bridge (Stari Most, the “Old 
Bridge”) that spans high above the Neretva 
River. When my son visited, the most notable 
aspect of the bridge was how it has become 
a popular spot for high diving (not by my 
son). Historically, this bridge is famous for 
being the widest man-made arch of its time, 
designed by an apprentice under penalty of 
death if the bridge failed.

Two thoughts occurred to me. My first 
thought was the obvious notion that liabil-
ity penalties for 16th-century bridges were 
quite severe. In this case, the bridge designer 
arranged his own funeral, in the event that the 
bridge failed. The second thought was that 
perhaps bridge construction in the 16th cen-
tury may have more similarities to our current 
software development practices than we real-
ize. I will start with the second thought.

While safety in bridge construction is not 
the same as safe software development, there 
are some interesting parallels. For example, 
modern bridge designers group the forces on 
a bridge into two categories (e.g., per Bridges: 
The Science and Art of the World’s Most Inspir-
ing Structures by David Blockley1): perma-
nent and variable loads. While permanent 
forces are determined by the bridge compo-
nents themselves, variable loads try to cap-
ture the less predictable loads deriving from 
environmental factors and exceptional use 
cases, such as earthquakes and collisions with 
bridge piers. With respect to software, per-
manent loads are analogous to the expected 

functionality, and variable loads are analogous 
to unexpected (i.e., possibly malicious) uses 
that may lead to failures.

Bridge design now requires compliance 
with a range of regulations, which prescribe 
tests to perform, including ones to assess 
variable loads. Although I greatly oversim-
plify the bridge design process, the basic idea, 
as I understand it, is that the bridge design-
ers aim to construct a bridge whose strength 
is greater than the combination of loads (i.e., 
variable and permanent loads) with a high 
probability, as both the bridge’s strength and 
its loads are not known precisely. As a result, 
the strength required of a bridge is often sig-
nificantly greater than its expected loads.

How does the current approach to bridge 
design relate to safe software design? Con-
sider software failures due to memory errors. 
In many cases, these types of errors are anal-
ogous to variable loads in bridges, in that 
inputs that trigger memory errors are typically 
not expected uses. However, unlike modern 
bridge design, we lack techniques (i.e., corre-
sponding to tests for bridges) to estimate the 
impact of memory errors in a comprehen-
sive or at least systematic manner. As a result, 
exploits of these software flaws continue.

What does the current approach to bridge 
design tell us about how to proceed? Ideally, we 
want to strengthen our programs to withstand 
the impact of the variable loads introduced by 
unsafe memory operations that may lead to 
memory errors. In addition, for both bridges 
and software, the costs of strengthening must be 
managed. However, it seems apparent that the 
tradeoff between failure and cost differs greatly 
between bridges and software, where bridge 
failure is currently deemed to be much more 
catastrophic (i.e., deadly, expensive to fix, visible 
to end users, etc.) than software failures. As a 
result, various proposals for systematic defenses 
to prevent memory errors (and/or their exploita-
tion) and memory-safe programming languages 
free from such errors have not been adopted in 
software development for high-performance 
applications, leaving only incomplete, low-cost 
defenses in current systems.
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What are we missing to move 
forward? Software development still 
lacks techniques to assess the impact 
of memory errors or the costs of pre-
venting such errors. For example, 
at present, we do not compute how 
many memory access operations a 
program may contain that may vio-
late memory safety. If we do not 
even know the variable loads on our 
programs, how can we determine 
how much we need to strengthen 
our defenses against them? In addi-
tion, we lack systematic techniques 
to assess the cost of defenses, particu-
larly for a combination of defenses. 
Without such techniques, how can 
we make decisions to utilize the pro-
posed defenses wisely? That is, how 
can we start to assess the tradeoffs 
between strength and cost effectively?

Getting back to the issue of liability 
(the first thought), it seems apparent 
that without systematic techniques 
for strengthening software, we lack a 
foundation for establishing enforce-
able liability protections.  Security 
researchers have long argued for 
“secure-by-design” software, but it can 
be argued that we have not yet pro-
vided sufficiently practical develop-
ment techniques to achieve this goal. 
However, it can also be argued that the 
software industry has been content 
not to utilize systematic techniques 
to strengthen software. Pressure is 
mounting for change. For example, 
America’s Cybersecurity and Infra-
structure Agency Director Jen Easterly 
recently said that “the fact that we’ve 
accepted a monthly ‘Patch Tuesday’ 
as normal is further evidence of our 
willingness to operate dangerously at 
the accident boundary.”2 Systematic 
techniques to strengthen software 
automatically while accounting for 
cost may motivate a new mindset. 
Hopefully, we can develop and adopt 
such techniques before a really major 
disaster occurs.

Any discussion of memory safety 
in a security forum will naturally need 
to examine the question of why we 
do not simply switch to memory-safe 

languages. The options are certainly 
improving, so this question is becom-
ing more pertinent for software 
development at large. However, even 
(mostly) memory-safe languages like 
Rust can introduce strengthening 
costs (e.g., runtime bounds check-
ing), so they also inherently create a 
strength versus cost tradeoff.

Ideally, we would develop tech-
niques to measure these tradeoffs 
quantitatively, so that we can make 
educated decisions about how to 
strengthen our software and pro-
vide more effective hardware sup-
port for strengthening software, 
not just for memory errors but for 
all classes of unsafe operations 
in programs.

For more on the topic of mem-
ory safety, please see Paul van 
Oorschot’s two-part column on 
memory safety. A1,A2 In addition, 
readers are encouraged to  submit 
pieces on their efforts to the upcom-
ing special issue on “Memory Safety” 
announced in this issue.  
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