
FROM THE EDITORSFROM THE EDITORS

4 May/June 2023 Copublished by the IEEE Computer and Reliability Societies 1540-7993/23©2023IEEE

On Bridges and Software

L ately, I have been thinking about how the
lessons of traditional engineering dis-

ciplines may be leveraged to develop more
secure software. In particular, I have been
thinking about how designing bridges to
avoid failure may help us to develop software
in a manner that avoids introducing exploit-
able flaws.

I was inspired to consider bridges by
my son’s visit to the city of Mostar in Bos-
nia and Herzegovina. Mostar is the site of a
16th-century bridge (Stari Most, the “Old
Bridge”) that spans high above the Neretva
River. When my son visited, the most notable
aspect of the bridge was how it has become
a popular spot for high diving (not by my
son). Historically, this bridge is famous for
being the widest man-made arch of its time,
designed by an apprentice under penalty of
death if the bridge failed.

Two thoughts occurred to me. My first
thought was the obvious notion that liabil-
ity penalties for 16th-century bridges were
quite severe. In this case, the bridge designer
arranged his own funeral, in the event that the
bridge failed. The second thought was that
perhaps bridge construction in the 16th cen-
tury may have more similarities to our current
software development practices than we real-
ize. I will start with the second thought.

While safety in bridge construction is not
the same as safe software development, there
are some interesting parallels. For example,
modern bridge designers group the forces on
a bridge into two categories (e.g., per Bridges:
The Science and Art of the World’s Most Inspir-
ing Structures by David Blockley1): perma-
nent and variable loads. While permanent
forces are determined by the bridge compo-
nents themselves, variable loads try to cap-
ture the less predictable loads deriving from
environmental factors and exceptional use
cases, such as earthquakes and collisions with
bridge piers. With respect to software, per-
manent loads are analogous to the expected

functionality, and variable loads are analogous
to unexpected (i.e., possibly malicious) uses
that may lead to failures.

Bridge design now requires compliance
with a range of regulations, which prescribe
tests to perform, including ones to assess
variable loads. Although I greatly oversim-
plify the bridge design process, the basic idea,
as I understand it, is that the bridge design-
ers aim to construct a bridge whose strength
is greater than the combination of loads (i.e.,
variable and permanent loads) with a high
probability, as both the bridge’s strength and
its loads are not known precisely. As a result,
the strength required of a bridge is often sig-
nificantly greater than its expected loads.

How does the current approach to bridge
design relate to safe software design? Con-
sider software failures due to memory errors.
In many cases, these types of errors are anal-
ogous to variable loads in bridges, in that
inputs that trigger memory errors are typically
not expected uses. However, unlike modern
bridge design, we lack techniques (i.e., corre-
sponding to tests for bridges) to estimate the
impact of memory errors in a comprehen-
sive or at least systematic manner. As a result,
exploits of these software flaws continue.

What does the current approach to bridge
design tell us about how to proceed? Ideally, we
want to strengthen our programs to withstand
the impact of the variable loads introduced by
unsafe memory operations that may lead to
memory errors. In addition, for both bridges
and software, the costs of strengthening must be
managed. However, it seems apparent that the
tradeoff between failure and cost differs greatly
between bridges and software, where bridge
failure is currently deemed to be much more
catastrophic (i.e., deadly, expensive to fix, visible
to end users, etc.) than software failures. As a
result, various proposals for systematic defenses
to prevent memory errors (and/or their exploita-
tion) and memory-safe programming languages
free from such errors have not been adopted in
software development for high-performance
applications, leaving only incomplete, low-cost
defenses in current systems.

Digital Object Identifier 10.1109/MSEC.2023.3258207
Date of current version: 12 May 2023

Trent Jaeger
Associate Editor in Chief

https://orcid.org/0000-0002-4964-1170

www.computer.org/security 5

What are we missing to move
forward? Software development still
lacks techniques to assess the impact
of memory errors or the costs of pre-
venting such errors. For example,
at present, we do not compute how
many memory access operations a
program may contain that may vio-
late memory safety. If we do not
even know the variable loads on our
programs, how can we determine
how much we need to strengthen
our defenses against them? In addi-
tion, we lack systematic techniques
to assess the cost of defenses, particu-
larly for a combination of defenses.
Without such techniques, how can
we make decisions to utilize the pro-
posed defenses wisely? That is, how
can we start to assess the tradeoffs
between strength and cost effectively?

Getting back to the issue of liability
(the first thought), it seems apparent
that without systematic techniques
for strengthening software, we lack a
foundation for establishing enforce-
able liability protections. Security
researchers have long argued for
“secure-by-design” software, but it can
be argued that we have not yet pro-
vided sufficiently practical develop-
ment techniques to achieve this goal.
However, it can also be argued that the
software industry has been content
not to utilize systematic techniques
to strengthen software. Pressure is
mounting for change. For example,
America’s Cybersecurity and Infra-
structure Agency Director Jen Easterly
recently said that “the fact that we’ve
accepted a monthly ‘Patch Tuesday’
as normal is further evidence of our
willingness to operate dangerously at
the accident boundary.”2 Systematic
techniques to strengthen software
automatically while accounting for
cost may motivate a new mindset.
Hopefully, we can develop and adopt
such techniques before a really major
disaster occurs.

Any discussion of memory safety
in a security forum will naturally need
to examine the question of why we
do not simply switch to memory-safe

languages. The options are certainly
improving, so this question is becom-
ing more pertinent for software
development at large. However, even
(mostly) memory-safe languages like
Rust can introduce strengthening
costs (e.g., runtime bounds check-
ing), so they also inherently create a
strength versus cost tradeoff.

Ideally, we would develop tech-
niques to measure these tradeoffs
quantitatively, so that we can make
educated decisions about how to
strengthen our software and pro-
vide more effective hardware sup-
port for strengthening software,
not just for memory errors but for
all classes of unsafe operations
in programs.

For more on the topic of mem-
ory safety, please see Paul van
Oorschot’s two-part column on
memory safety. A1,A2 In addition,
readers are encouraged to submit
pieces on their efforts to the upcom-
ing special issue on “Memory Safety”
announced in this issue.

References
1. D. Blockley, Bridges: The Science and

Art of the World’s Most Inspiring Struc-
tures. Oxford, U.K.: Oxford Univ.
Press, 2012.

2. J. L. Hardcastle, "US cybersecurity
chief: Software makers shouldn't
lawyer their way out of security
responsibilities," The Register, Feb.
2023. [Online]. Available: https://
www.theregister.com/2023/02/28/
cisa_easterly_secure_software/

Appendix: Related Articles
 A1. P. C. van Oorschot, “Memory

errors and memory safety: C as
a case study,” IEEE Security Pri-
vacy, vol . 21, no. 2, pp. 70–76,
Mar./Apr. 2023, doi: 10.1109/
MSEC.2023.3236542.

 A2. P. C. van Oorschot, “Memory errors
and memory safety: A look at Java
and Rust,” IEEE Security Privacy,
vol. 21, no. 3, pp. 62–68, May/Jun.
2023, doi: 10.1109/MSEC.2023.
3249719.

http://rs.ieee.org

The IEEE Reliability Society (RS) is a technical Society within the
IEEE, which is the world’s leading professional association for the
advancement of technology. The RS is engaged in the engineering
disciplines of hardware, software, and human factors. Its focus on the
broad aspects of reliability allows the RS to be seen as the IEEE Specialty
Engineering organization. The IEEE Reliability Society is concerned
with attaining and sustaining these design attributes throughout
the total life cycle. The Reliability Society has the management,
resources, and administrative and technical structures to develop
and to provide technical information via publications, training,
conferences, and technical library (IEEE Xplore) data to its
members and the Specialty Engineering community. The IEEE
Reliability Society has 28 chapters and members in 60 countries
worldwide.

The Reliability Society is the IEEE professional society for
Reliability Engineering, along with other Specialty Engineering
disciplines. These disciplines are design engineering fields that apply
scientific knowledge so that their specific attributes are designed
into the system/product/device/process to assure that it will
perform its intended function for the required duration within
a given environment, including the ability to test and support it
throughout its total life cycle. This is accomplished concurrently
with other design disciplines by contributing to the planning
and selection of the system architecture, design implementation,
materials, processes, and components; followed by verifying
the selections made by thorough analysis and test and then
sustainment.

Visit the IEEE Reliability Society website as it is the gateway
to the many resources that the RS makes available to its members
and others interested in the broad aspects of Reliability and Specialty
Engineering.

Executive Committee (Excom) Members: Steven Li, President;
Jeffrey Voas, Sr. Past President; Lou Gullo, VP Technical Activities;
W. Eric Wong, VP Publications; Christian Hansen, VP Meetings and
Conferences; Loretta Arellano, VP Membership; Preeti Chauhan,
Secretary; Jason Rupe, Secretary

Administrative Committee (AdCom) Members: Loretta Arellano,
Preeti Chauhan, Alex Dely, Pierre Dersin, Donald Dzedzy, Ruizhi
(Ricky) Gao, Lou Gullo, Christian Hansen, Steven Li, Yan-Fu Li, Janet
Lin, Farnoosh Naderkahani, Charles H. Recchia, Nihal Sinnadurai,
Daniel Sniezek, Robert Stoddard, Scott Tamashiro, Eric Wong

Digital Object Identifier 10.1109/MSEC.2023.3264185

https://www.theregister.com/2023/02/28/cisa_easterly_secure_software/
https://www.theregister.com/2023/02/28/cisa_easterly_secure_software/
https://www.theregister.com/2023/02/28/cisa_easterly_secure_software/

	04_21msec03-editorial2-3258207.pdf

