
Challenges of Producing Software Bill Of
Materials for Java
Musard Balliu, Benoit Baudry, Sofia Bobadilla, Mathias Ekstedt, Martin Monperrus, Javier Ron, Aman Sharma,
Gabriel Skoglund, César Soto-Valero, Martin Wittlinger

{musard, baudry, sofbob, mekstedt, monperrus, javierro, amansha, gabsko, cesarsv, marwit}@kth.se

Abstract—Software bills of materials (SBOM) promise to become the backbone of

software supply chain hardening. We deep-dive into 6 tools and the accuracy of

the SBOMs they produce for complex open-source Java projects. Our novel

insights reveal some hard challenges regarding the accurate production and

usage of software bills of materials.

Introduction

Modern software applications are virtually never

built entirely in-house. As a matter of fact, they

reuse many third-party dependencies, which form

the core of their software supply chain [1]. The large

number of dependencies in an application has turned

into a major challenge for both security and relia-

bility [2]. For example, to compromise a high-value

application, malicious actors can choose to attack

a less well-guarded dependency of the project [3].

Even when there is no malicious intent, bugs can

propagate through the software supply chain and

cause breakages in applications [4]. Gathering accu-

rate, up-to-date information about all dependencies

included in an application is, therefore, of vital im-

portance.

The Software Bill of Materials (SBOM) has re-

cently emerged as a key concept to enable prin-

cipled engineering of software supply chains. This

takes the well-known concept of ‘bill of materials’

for manufacturing physical goods into the world of

software development. The purpose of an SBOM is

to capture relevant information about the internals

of a software artifact. First and foremost, an SBOM

is expected to include a complete inventory of all the

third-party dependencies of the artifact.

Accurate SBOMs are essential for software sup-

ply chain management [5], vulnerability tracking,

build tampering detection [6], and high software

integrity. For example, software developers leverage

SBOMs to identify vulnerable software components

in a timely manner. This is usually done by matching

software component versions against vulnerability

databases and reporting a warning whenever a vul-

nerable component is part of an application. For

example, in 2021, a serious vulnerability present

in the popular Java logging component Log4J was

discovered. This component was extensively used

by a large number of open-source and proprietary

projects, and consequently, it was a tedious and

costly endeavour to identify all impacted projects [7].

Had all these Java projects published an SBOM, it

would have facilitated the precise identification and

remediation of vulnerable applications.

The software supply chain of modern applications

includes hundreds of components, and to have hu-

mans producing SBOMs by hand is an unreasonable,

time-consuming, and error-prone task. Yet, the full

automation of SBOM production is a process that

poses several challenges [8]. First, the SBOM must

elicit all direct dependencies, which are explicitly de-

clared by the application’s developers in a build con-

figuration file, as well as the indirect dependencies

that come from the transitive closure of dependen-

cies. Tracking down every single dependency that is

being used is hard when software architectures are

formed by deeply nested components, some of which

are potentially resolved at runtime. Identifying the

exact version of a binary dependency in an SBOM

is even harder as this requires tracing the binary

components back to source code repositories. Sec-

ond, while some package managers are able to list

the dependencies, SBOMs are meant to include extra

information about the software supply chain, such

as checksums for all dependencies and data about

third-party tools used in the build. Finally, the SBOM

aims at being both human-readable for auditing and

legal cases, as well as machine-readable for auto-

matic verification. These challenges open an exciting

area for research and innovation, as witnessed by the

recent emergence of many SBOM tools supported by

diverse open-source communities, start-ups, and big

tech companies alike. From a research perspective,

June 1

ar
X

iv
:2

30
3.

11
10

2v
2

 [
cs

.S
E

]
 7

 J
un

 2
02

3

there is a crucial need for laying down systematic

foundations of what SBOMs are, and the challenges

related to their engineering.

This article presents an in-depth study of SBOM

producers in the Java ecosystem. Our focus on Java

is motivated as follows. First, it is one of the top-

3 languages in the world by most notable met-

rics. Second, its mature ecosystem of third-party

dependencies, mainly through Maven, is critical in

government services, financial services [9], medical

infrastructure, and enterprise software systems [10].

Third, SBOM production is intrinsically related to

programming language specifics, as it must capture

each and every aspect of dependency resolution,

compilation, linking, and packaging, all being unique

for a given software stack.

For our study, we create a curated selection of

6 mature and actively maintained SBOM producers.

We execute each producer on a set of 26 active

open-source Java projects. We observe significant

variations in the quality of SBOMs generated by

these SBOM producers. In particular, they capture

a different set of dependencies for the same project.

Based on further manual analysis, we highlight ur-

gent challenges and opportunities to consolidate the

state-of-the-art of SBOM production, in order to sup-

port thorough security and reliability analyses for

software supply chains.

Software Bill of Materials
In 2021, the United States National Telecommu-

nications and Information Administration (NTIA) set

out to identify a minimal set of requirements for

SBOMs [11]. These requirements outline which data

fields should be present, how SBOMs should sup-

port automation, and which practices and processes

should be employed when creating, distributing, and

using SBOMs. The NTIA concluded that three exist-

ing formats meet the requirements: CycloneDX, Soft-

ware Package Data Exchange (SPDX), and Software

Identification (SWID).

CycloneDX aims to be a standard for bills of

materials for software, hardware, software as a ser-

vice, and operations. It has a strong security focus,

originating from the Open Worldwide Application

Security Project (OWASP). In this paper, we focus

on the CycloneDX standard. This choice is motivated

by the rapid development of the standard, as wit-

nessed by the release of many tools for producing

CycloneDX SBOMs.

{ "bomFormat" : "CycloneDX",
"specVersion" : "1.4",
"metadata" : {

"timestamp" : "2023-02-20T16:14:42Z",
"tools" : [

{ "name" : "CycloneDX Maven plugin",
"version" : "2.7.5" }

],
"component" : {

"group" : "org.asynchttpclient",
"name" : "async-http-client-project",
"version" : "2.12.3",
"hashes" : [{ "alg" : "SHA-512",

"content" : "e5435852...7b3e6173"}, ...]
"licenses" : [...],
"externalReferences" : [{

"url" : "http://github.com/AsyncHttpClient/a ⌋
sync-http-client"
}

↪→
↪→

],
"bom-ref" : "pkg:maven/org.asynchttpclient/asy ⌋

nc-http-client-project@2.12.3?type=pom"↪→
}

},
"components" : [

{ "group" : "com.sun.activation",
"name" : "jakarta.activation",
"version" : "1.2.2",
"bom-ref" : "pkg:maven/com.sun.activation/jaka ⌋

rta.activation@1.2.2?type=jar"↪→
} ...

],
"dependencies" : [{

"ref" : "pkg:maven/org.asynchttpclient/async-h ⌋
ttp-client-project@2.12.3?type=pom",↪→

"dependsOn" : [
"pkg:maven/com.sun.activation/jakarta.activa ⌋

tion@1.2.2?type=jar"↪→
....

]
} ...] }

Listing 1: Excerpt of a CycloneDX SBOM for the Java

project async-http-client.

Listing 1 shows an excerpt of a CycloneDX SBOM

for the Java component async-http-client. This

particular example contains three root elements –

metadata, components, and dependencies – follow-

ing the CycloneDX standard. The metadata element

records information about the tool which produced

the SBOM and the project on which the producer

was executed. The components element is a list

that includes information about each dependency

found in the project. Each component’s item may

also contain hashes to help identify its exact ver-

sion, which can be used to ensure build integrity.

The dependencies element is a list that records

the relationship between all of the previously-listed

dependencies. In the example, jakarta.activation

is a direct dependency of the analyzed project.

We remark that Listing 1 is a simplified SBOM

for the sake of clarity. In practice, an SBOM will

2 June 2023

�� Java Project
Collection

2. SBOM Production

3. Ground Truth Extraction 4. Computation of  
Accuracy Metrics

5. Manual Analysis

Maven 
Dependency 

Trees

CycloneDX 
SBOMs

FIGURE 1. Overview of the methodology to study CycloneDX SBOM production for Java.

contain much more data. The full CycloneDX SBOM

of async-http-client describes 109 dependencies

and provides eight hashes generated through dif-

ferent algorithms for each component (full-fledged

real SBOM: https://bit.ly/3lfTdpz). Furthermore, the

SBOM standard allows recording additional ele-

ments such as references to external resources (e.g.,

the issue tracker), vulnerabilities, and code signa-

tures.

Given the importance of Java in enterprise and

government IT, the production of Java SBOMs is an

active area. The critical necessity for grounded and

correct Java SBOMs is at the core of this paper’s

significance. In what follows, we purposely produce

SBOMs for complex multi-module Java applications,

which are archetypal of enterprise Java software

systems.

Methodology to Study SBOM
Producers

The core of our study consists in curating and ex-

ecuting state-of-the-art SBOM production tools on

a set of mature Java projects. Then, we perform a

comparative analysis of the SBOMs following the

methodology illustrated in Figure 1.

SBOM producers
To curate the list of SBOM producers, we start by

identifying producers targeting CycloneDX SBOMs

for Java projects. We scan through all the candidates

from the official CycloneDX tool center and query

GitHub with the keyword ’SBOM’ for projects with

at least 100 stars. This process yields 24 producers.

We further select the producers that meet the

following criteria. Each selected producer should: 1)

produce an SBOM containing the dependencies of

the project; 2) be able to analyze Java projects that

build with Maven; 3) be open-source; 4) be run as

a command-line tool and not only as an online tool.

The last two criteria are essential for automating our

experiments and for reproducible science.

Ultimately, this process results in a curated

set of 6 SBOM producers, Build-Info-Go,

CycloneDX-Generator, CycloneDX-Maven-Plugin,

Depscan, jbom, and OpenRewrite, as shown in

Table 1. We use all of these producers’ most recent

stable releases as of May 5, 2023.

SBOM Conceptual Framework
After a deep analysis of the considered SBOM pro-

ducers, we postulate the following framework of

SBOMs that we will apply to our experimental re-

sults.

Build integrity: SBOMs can contain checksums of

software components for verifying build integrity,

but the format of checksums is open.

Dependency hierarchy: SBOMs can contain either a

flat list of dependencies or structured trees of depen-

dencies, which impacts subsequent consumption.

June 2023 3

https://bit.ly/3lfTdpz
https://cyclonedx.org/tool-center/

SBOM producer Version Checksums Hierarchy Reproducibility Production step Scope

Build-Info-Go 1.9.3 ✓ (3) ✓ ✗ Build (Maven compile phase) ✗ (0)
CycloneDX-Generator 8.4.3 ✓ (8) ✓ ✓ Build (Maven package phase) ✓ (1)
CycloneDX-Maven-Plugin 2.7.8 ✓ (8) ✓ ✓ Build (Maven package phase) ✓ (1)
Depscan 4.1.2 ✓ (8) ✓ ✓ Source (Static source code) ✓ (1)
jbom 1.2.1 ✓ (2) ✗ ✗ Analyzed (Post maven package phase) ✓ (1)
OpenRewrite 4.45.0 ✗ (0) ✓ ✓ Build (Maven package phase) ✓ (2)

TABLE 1. Curated set of SBOM producers subject to our study, supporting Java and the CycloneDX standard.

Production step: SBOMs can be computed at differ-

ent stages of the build and deploy lifecycle, and this

can change the resulting SBOMs significantly.

Dependency resolution: SBOMs must faithfully cap-

ture the dependency resolution as it happens in build

tools, which is often not documented.

Projects under study
To compare the quality of SBOMs generated by

different producers, we run them on a dataset of Java

projects. This dataset is meant to include mature,

active Java projects that rely on a significant num-

ber of dependencies. A recent work on dependency

management in Java has curated a list of projects

that meet these criteria [12]. Since our work also

involves dependency analysis, we decide to reuse

their dataset of projects. The dataset includes 31

Maven projects with stable releases and frequent

activity, indicating the project’s maturity. We exclude

teavm and moshi as these projects have migrated

from Maven to using Gradle as the build system,

as well as auto and subzero since they are not

valid Maven projects due to the lack of a pom.xml

file in their root directory. We merge jenkins-core

and jenkins-cli as a single project jenkins as we

execute SBOM producers at the root directory of the

project rather than submodules to avoid dependency

resolution errors. This process gives us a set of

26 popular, actively maintained open-source Maven

projects for our analysis.

Table 2 details the set of analyzed Java projects.

Each project is identified by the name and commit at

which we analyze the project. The projects include

between 733 and 1.5 million lines of application code

and are composed of up to 211 Maven modules. They

have between 2 and 191 direct dependencies, and

between 1 and 582 indirect dependencies.

Protocol to compare SBOM producers
Figure 1 illustrates the five main steps of the proto-

col for our experiment. Step 2 in Figure 1 is “SBOM

Project Name kLOC
Maven

Modules
DD ID Total

tika 163 108 186 563 749
alluxio 295 66 143 582 725
jooby 65 54 129 368 497
neo4j 686 124 191 273 464
flink 1,528 211 121 270 391
steady 99 20 78 267 345
para 29 6 82 224 306
jenkins 181 10 99 200 299
accumulo 399 18 121 158 279
selenese-runner-java 21 1 22 114 136
undertow 150 10 28 107 135
handlebars.java 22 11 36 84 120
error-prone 225 10 61 53 114
async-http-client 29 14 40 69 109
couchdb-lucene 3.9 1 25 51 76
mybatis-3 62 1 27 37 64
launch4j-maven-plugin 1.5 1 12 50 62
checkstyle 304 1 22 35 57
orika 43 5 25 30 55
commons-configuration 51 1 33 21 54
spoon 155 1 22 32 54
webcam-capture 19 2 16 35 51
javaparser 181 11 18 33 51
CoreNLP 615 3 23 18 41
jacop 89 1 6 5 11
jHiccup 0.7 1 2 1 3

TABLE 2. Descriptive statistics of the analyzed Java

projects. Number of thousands of lines of application code

(kLOC), number of Maven modules, number of unique

direct dependencies (DD), number of unique indirect de-

pendencies (ID), and total number of unique dependencies

(Total). Rows are ordered with respect to the total number

of dependencies in the projects.

Production” where we run each SBOM producer on

each project. To support the reproducibility of our

experiment, we save the specific git hash of each

project and run the SBOM producers in a docker

container. This SBOM generation procedure is fully

automated, and it ensures that there are no interac-

tions among the producers as the SBOM production

for each project is isolated and starts in the same

state. The repository with our study subjects and the

experimental pipeline is publicly available1.

1https://github.com/chains-project/SBOM-2023

4 June 2023

https://github.com/jfrog/build-info-go
https://github.com/CycloneDX/cdxgen
https://github.com/CycloneDX/cyclonedx-maven-plugin
https://github.com/AppThreat/dep-scan
https://github.com/Contrast-Security-OSS/jbom
https://docs.openrewrite.org/reference/rewrite-maven-plugin
https://github.com/apache/tika/tree/41319f3c294b13de5342a80570b4540f7dd04a3e
https://github.com/Alluxio/alluxio/tree/d5919d8d80ae7bfdd914ade30620d5ca14f3b67e
https://github.com/jooby-project/jooby/tree/f71b551213ac03523e44a7fbb8c972b752ffc707
https://github.com/neo4j/neo4j/tree/c082e80b792d46ad1b342fbf7f1facb2028344c6
https://github.com/apache/flink/tree/c41c8e5cfab683da8135d6c822693ef851d6e2b7
https://github.com/eclipse/steady/tree/3d261afe9513f7c708324aa0183423ab2e9e4692
https://github.com/Erudika/para/tree/41d900574e2e159b05fbd23aaab1f6e554ab8fc3
https://github.com/jenkinsci/jenkins/tree/ce7e5d70373a36c8d26d4117384a9c5cb57ff1c1
https://github.com/apache/accumulo/tree/706612f859d6e68891d487d624eda9ecf3fea7f9
https://github.com/vmi/selenese-runner-java/tree/3e84e8e4e7e06aa1bdacaa8266db00f62ebef559
https://github.com/undertow-io/undertow/tree/f52b70c1520277a1552f0f453c2a908897a8a5dc
https://github.com/jknack/handlebars.java/tree/2afc50fd5dcd32af28f8305b59689b3fec4a3b07
https://github.com/google/error-prone/tree/27de40ba6008f967c01a55ec83c9127419bfe433
https://github.com/AsyncHttpClient/async-http-client/tree/7a370af58dc8895a27a14d0a81af2a3b91930651
https://github.com/rnewson/couchdb-lucene/tree/855473709bd4e3d92d3f62ece86ab739d0f0de13
https://github.com/mybatis/mybatis-3/tree/c195f12808a88a1ee245dc86d9c1621042655970
https://github.com/orphan-oss/launch4j-maven-plugin/tree/3f9818ee34b36cdcea58e2d6e6542f140b394faf
https://github.com/checkstyle/checkstyle/tree/233c91be45abc1ddf67c1df7bc8f9f8ab64caa1c
https://github.com/orika-mapper/orika/tree/eef82092c8a9dfda04192a5378fa0e49d70ade3a
https://github.com/apache/commons-configuration/tree/59e5152722198526c6ffe5361de7d1a6a87275c7
https://github.com/INRIA/spoon/tree/ee73f4376aa929d8dce950202fabb8992a77c9fb
https://github.com/sarxos/webcam-capture/tree/e19125c2c728a856231a3b507372e94e02fdfd35
https://github.com/javaparser/javaparser/tree/1ae25f3f77f5d680c135d0742257ccd62916f17d
https://github.com/stanfordnlp/CoreNLP/tree/f7782ff5f235584b0fc559f266961b5ab013556a
https://github.com/radsz/jacop/tree/1a395e6add22caf79590fe9d1b2223bfb6ed0cd0
https://github.com/giltene/jHiccup/tree/a440bdaed143e1445cbeab7c5bffd30989a435d0
https://github.com/chains-project/SBOM-2023

An SBOM captures a rich set of information about

the software supply chain, including the network

of direct and indirect dependencies. As part of our

study, we assess the accuracy of the dependencies

in the SBOM with respect to a ground truth. Step

3 in Figure 1 represents the process of extracting

the ground truth. We use the complete list of de-

pendencies returned by the command tree of the

maven-dependency-plugin@3.4.0. This plugin is an

integral part of the Maven build system, and it is the

most common plugin used to perform this single task

in the supply chain: resolve dependencies. It pro-

vides a deterministic dependency tree for a specific

version of a Maven project. Moreover, it has been

in production since 2007 and is being continuously

maintained, with the latest release as recent as 2023.

It is very mature and stable, and consequently is the

best ground truth for our study.

In Maven, a dependency is identified by a name

and a version number. The name is a combination of

its groupId and artifactId, separated by a colon,

for example, com.google.guava:guava. We consider

two dependencies identical if their name and version

match precisely. As shown in step 4 in Figure 1, we

compare the accuracy of SBOMs by computing the

precision and recall of dependency lists computed

by each producer. The precision is the share of

dependencies in the SBOM that are correct with

respect to the ground truth. The recall is the share

of correct dependencies that are in the SBOM.

Note that the ground truth considers all depen-

dencies required for producing a software artifact,

including test dependencies. While these test depen-

dencies are not included in the deployed software,

they are relevant in the context of supply chain

attacks. A malicious test dependency has the poten-

tial to interact with the build system and introduce

malicious code at build time [3]. In order to trace

vulnerable or malicious test dependencies, it is im-

portant that these are included in the SBOM.

The last step of our methodology, step 5 in Fig-

ure 1, consists of manually analyzing a sample of

SBOMs in order to get a concrete grasp at the con-

tent of the SBOMs produced. This provides us with

detailed insights about the challenges that SBOM

producers face in order to correctly retrieve all the

dependencies in an application’s software supply

chain.

Experimental Results
We follow our protocol and run 6 SBOM production

tools on 26 Java projects. The results provide key

insights about the tools’ behavior as well as the

quality of the produced SBOMs.

Producer Insights
Table 1 summarizes the essential features of SBOM

producers that we have identified, and to what extent

these features are present in the tools.

Checksum Diversity

Table 1 summarizes the number of different

checksum algorithms that each SBOM producer

uses. The production of different checksums is useful

because it maximizes the likelihood of integrating

the SBOMs with third-party tools that expect a

specific checksum. Three producers compute eight

types of checksums for each dependency jar:

CycloneDX-Generator, CycloneDX-Maven-Plugin

and Depscan provide md5, sha1, sha256, sha512,

sha384, sha3-384, sha3-256, and sha3-512 for

each dependency in the SBOM. One producer,

OpenRewrite, does not provide any checksums,

which is considered a serious limitation. Our

observations help practitioners to select SBOM

producers accordingly.

Dependency Hierarchy

An essential feature of SBOM producers is eliciting

all the dependencies in the software supply

chain of an application. Beyond a flat list, some

analyses, such as vulnerability analysis, debloating,

and installation via package managers, require

the complete tree of relationships between the

different components in the chain. The CycloneDX

specification provides the attribute dependencies to

serve this purpose. We note that five of six producers

report the hierarchy among dependencies. However,

jbom cannot link the dependencies together since it

acts after the build step where some dependencies

cannot be resolved. For example, for mybatis-3,

com.fasterxml.jackson.core:jackson-core

version 2.13.2 is an indirect dependency at

the fourth level. The producers Build-Info-Go,

CycloneDX-Generator, CycloneDX-Maven-Plugin,

and Depscan report this information correctly.

Reproducibility

SBOMs are meant to be reference documents, and

potentially may become legally binding. To that ex-

June 2023 5

tent, one must produce them reliably. In that re-

spect, we claim that SBOM production should be

reproducible. We say an SBOM tool is reproducible

if it generates strictly identical files contentwise

over multiple runs. We exclude metadata such as

timestamp. We generate SBOMs twice for each pro-

ducer and find that Build-Info-Go and jbom are

not reproducible: they do not preserve the order

of SBOM elements. Moreover, jbom also produces

different hashes of the components. While this is a

fixable engineering issue, it highlights the necessity

to consolidate the maturity of SBOM tooling before

it can be relied upon in court.

Production Step

There are six steps at which an SBOM could

be produced - Design, Source, Build, Analyzed,

Deployed, and Runtime2. The considered SBOM

producers do not produce SBOM at the same

step. We report the step at which SBOM is pro-

duced per the documentation provided by the

developers. Build-Info-Go, CycloneDX-Generator,

CycloneDX-Maven-Plugin, and OpenRewrite pro-

duce an SBOM at the Build step. The build step can

further be broken down into more steps, as Maven

splits a build into multiple phases3. Build-Info-Go

produces an SBOM when the Maven build system

is compiling. Meanwhile, the other three producers

perform SBOM production when the artifact, JAR, for

example, is being generated. This phase is also called

package in Maven. Depscan produces an SBOM from

the source files. Finally, jbom produces an SBOM by

analyzing the final jar file, corresponding to CISA’s

“Analyzed” step.

These different steps are significant

regarding the production of SBOMs, since

the information available about the software

supply chain varies at these different stages.

Indeed, software projects go through a Build/

CI/CD life cycle and, at every point, the information

available is different [13]. For example, before the

build phase, an SBOM producer cannot know what

will be finally included in the binary. Similarly, after

the build, information about some dependencies

may be lost, because the build system has removed

redundant or unnecessary dependencies.

2https://www.cisa.gov/sites/default/files/2023-04/sbom-

types-document-508c.pdf
3https://maven.apache.org/guides/introduction/

introduction-to-the-lifecycle.html

The CycloneDX standard does not address this

aspect, and the producers do not clearly document or

motivate the phase they consider. SBOM producers

should state the production step at which they col-

lect information about the software supply chain, to

help SBOM consumers decide which SBOM is most

appropriate for their needs.

Scopes

The CycloneDX JSON specification supports an op-

tional scope attribute for each component. This

attribute can take the values required, optional

or excluded, based on the dependency’s behav-

ior at runtime. According to the specification4, the

required scope denotes that the component is re-

quired at runtime; the optional scope denotes com-

ponents that “[. . .] are not capable of being called

due to them not be installed or otherwise accessible

by any means”. Finally, excluded components “[. . .]

provide the ability to document component usage for

test and other non-runtime purposes.’

We observe significant differences among SBOM

producers regarding the identification of scopes.

As an example, org.slf4j:slf4j-api@2.0.1 is a

dependency of mybatis-3. CycloneDX-Generator,

CycloneDX-Maven-Plugin, and Depscan report its

scope as optional, OpenRewrite reports the scope

as required, while the other producers report no

scope at all.

We note that each SBOM producer only

uses a subset of the allowed scope values.

CycloneDX-Generator, CycloneDX-Maven-Plugin,

and Depscan either label components as optional or

provide no scope value. jbom labels all components

as required. OpenRewrite marks components as

either optional or required, and Build-Info-Go

does not report scope for any component. It is not

clear from the documentation of the producers how

these values are computed. Due to the lack of clarity

in the standard and the absence of ground truth, it

is impossible to determine which one is correct.

Providing clear information as to how and when

in the software lifecycle a component is used –

the scope as we understand the standard – is an

important feature of an SBOM. However, our results

show that no SBOM consumer can rely on the scope

values produced by current SBOM producers.

4https://github.com/CycloneDX/specification/blob/1.4/

schema/bom-1.4.xsd#L514

6 June 2023

https://www.cisa.gov/sites/default/files/2023-04/sbom-types-document-508c.pdf
https://www.cisa.gov/sites/default/files/2023-04/sbom-types-document-508c.pdf
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://github.com/CycloneDX/specification/blob/1.4/schema/bom-1.4.xsd#L514
https://github.com/CycloneDX/specification/blob/1.4/schema/bom-1.4.xsd#L514

0 20 40 60 80 100
Precision in [%]

0

20

40

60

80

100

R
ec

al
l i

n
[%

]

cdxgends

jbom

cdx-mp

or

big

FIGURE 2. Mean precision and mean recall of each SBOM

producer, excluding producer failures. The abbreviations

stand for the following, big for Build-Info-Go, cdx for

CycloneDX-Generator, or for OpenRewrite and cdx-mp for

CycloneDX-Maven-Plugin

Dependency Identification Accuracy
Figure 2 shows the accuracy of the considered

SBOM producers per our ground truth. The X-axis

is the precision, and the Y-axis is the recall for

each producer. A point represents the accuracy of

dependencies captured in the SBOM and the isolines

represent the standard F1-score combining precision

and recall. We report the average precision and

recall of an SBOM producer, over all projects. For

our experiment, we performed 156 executions of

SBOM producers, which produced 119 SBOMs and

37 failures. For the latter, SBOMs were either empty

or contained no dependency because the build failed

or the producer failed. We exclude these data points

from our study.

At the bottom-left of Figure 2, jbom has the

lowest precision and recall. Next, OpenRewrite

has the highest precision of 96%, but with a

low recall. Higher up in the figure, we find

CycloneDX-Maven-Plugin with 92% precision and

66% recall; CycloneDX-Generator and Depscan per-

form very similarly. Finally, Build-Info-Go is at the

top right corner with the best score of detected

dependencies according to the dataset and ground

truth.

We highlight five main reasons why producers fall

short on creating a fully-accurate SBOM with respect

to the ground truth: exclusion of test dependencies

from the SBOM; failure to resolve maven proper-

ties5; failure to correctly resolve the version of a

dependency; advanced dependency resolution tech-

niques; the project itself is counted as a dependency.

We elaborate on each of these points below.

SBOM producers like OpenRewrite and

CycloneDX-Maven-Plugin do not include test

dependencies by default in the SBOM they produce.

This explains the low recall of 39% and 66%,

respectively. Although Build-Info-Go has the

highest F1-score, we observe that it misses test

dependencies for some projects, while achieving

100% recall on some other projects, for example

jenkins, which clearly contains test dependencies.

When a producer does not correctly resolve

Maven properties, the SBOM cannot be compared to

the ground truth. For example, jbom reports version

${guava.version} for com.google.guava:guava, in-

stead of 31.0.1-jre, for alluxio. This eventually

yields a list of dependencies that are not comparable

with the list of dependencies in the ground truth.

To verify that a dependency is correctly reported,

the groupId, artifactId, and version must match.

However, jbom incorrectly retrieves the version for

some dependencies. For example, it reports version

0.4 of com.pholser:junit-quickcheck-core for

CoreNLP, which does not exist in the ground truth.

OpenRewrite faces similar challenges, reporting ver-

sion 4.1.78.Final for io.netty:netty-handler in

selenese-runner-java, while the correct version is

4.1.79.Final. A major difficulty for retrieving the

version number occurs when different versions of

the same library appear as indirect dependencies

at different locations in the dependency tree. The

correct version identification must faithfully capture

the actual resolution embedded in the build system.

Moreover, the resolution of dependencies

is affected by the different ways that SBOM

producers use to retrieve dependencies. Depscan

and CycloneDX-Generator perform equally on

most projects. For example, they both have

the same results on selenese-runner-java.

However, Depscan correctly reports a dependency

ch.uzh.ifi.seal:changedistiller version 0.0.4

for steady while CycloneDX-Generator misses it.

In this case, Depscan reports a dependency that is

stored as local jar in the project. This illustrates

that they both have different methods for resolving

5https://maven.apache.org/pom.html#Properties

June 2023 7

https://maven.apache.org/pom.html#Properties

dependencies. On the other hand, a closer look at

the architecture of Build-Info-Go shows that it

relies on the Maven APIs to invoke the build and

retrieve deeper information, thus producing results

that are closer to the ground truth. This suggests

that SBOM producers benefit from being tailored

to a language and a build system in order to plug

deeply into the build process to obtain correct

information.

Finally, we have observed that some SBOMs

include the source project in the dependency list.

This is yet another reason why Build-Info-Go falls

short of perfect aligment with the ground truth. It

reports all dependencies for selenese-runner-java,

accumulo, jenkins, checkstyle, error-prone,

jooby, launch4j-maven-plugin, orika, and

mybatis-3, but in each of these cases, it incorrectly

considers the root module as a dependency.

Overall, Figure 2 shows significant differences

among the accuracy of the SBOMs produced by 6

state of the art producers. These results reveal dis-

crepancies in the list of dependencies in the SBOMs,

with different dependency versions and missed de-

pendencies. To better illustrate the different accu-

racy levels, we manually analyze a sample of the

SBOMs. To sample the files we use the following cri-

teria: Ww select SBOMs produced by Build-Info-Go

and jbom as these producers are at both ends of the

accuracy range; we analyze SBOMs for project spoon

as three of the authors are maintainers and hence

have a deep understanding of this project. After

applying the previous filters we sample 4 SBOM

files: 2 SBOMs with the highest and lowest precision

on dependencies, produced by Build-Info-Go and

jbom; 2 SBOMs with the highest and lowest precision

on direct dependencies produced. This analysis was

conducted by two of the authors, both experts in Java

programming. In case of discrepancies, they met and

discussed to resolve them and reach a conclusion.

The ground truth indicates that the single

module of spoon has 22 direct dependencies

and 32 indirect ones (see Table 2). The SBOM

produced by Build-Info-Go correctly contains

23 dependencies, and the only incorrect one is

the fr.inria.gforge.spoon:spoon-core itself. The

precision is consequently high, but some dependen-

cies are clearly missing. Build-Info-Go excludes

test dependencies for spoon. On the other hand, the

SBOM produced by jbom reports 125 dependencies,

but only 29 of them are correct. The other 96 depen-

dencies are the result of failure of jbom to resolve

Maven properties, versions or metadata groupId.

The next two case studies come from

Build-Info-Go. First, we inspect the SBOM

produced for selenese-runner-java, and we find

that Build-Info-Go fetches all 136 dependencies.

It also includes the complete dependency tree

hierarchy information. Such precise information

is important and makes the SBOM consumable.

However, we notice that even a solid producer such

as Build-Info-Go does not always achieve high

precision. For example, the SBOM of javaparser

includes 14 correct dependencies out of 51. The

majority of the dependencies the producer misses

are test scoped. We observe an inconsistent behavior

in Build-Info-Go as it sporadically includes test

dependencies.

The SBOM produced by jbom for

async-http-client contains only 2 correct

dependencies out 109. On a deeper inspection,

we observe that most dependencies in the SBOM

are identified with wrong versions, resulting in

poor precision. We analyze the SBOM of mybatis-3

produced by jbom. This SBOM includes all the

direct dependencies, precisely with correct version

numbers as they were specified. However, all

indirect dependencies are missed.

Overlap analysis. Figure 3 is a Venn diagram

that captures the overlap between the SBOMs of

CoreNLP generated by the six SBOM producers.

For each SBOM producer, we use the set of true

positives dependencies. Intersection areas mean

producers have the same correct dependency in

their SBOM. Every SBOM producer has a different

color for their outline. For example, we use yellow

for CycloneDX-Generator. The labels indicate the

number of dependencies in the intersection area

and areas without a label are empty (meaning no

dependency in common). We have six different

intersection areas. The largest one is in the middle

and shows that 20 dependencies are correctly

identified by every producer. The second-largest

area indicates that 12 dependencies are correctly

captured by every producer except jbom. For

example, jbom misses javax.xml.bind:jaxb-api

because it either resolves an incorrect version,

or it resolves some dependencies as null. Two

areas have only one dependency in the intersection.

One intersection area contains the producers

CycloneDX-Generator, CycloneDX-Maven-Plugin,

8 June 2023

build−info−go

cdxgen

cyclonedx−mp

depscan

jbom

openrewrite

3

1

4

1

12

20

FIGURE 3. Venn Diagram of different SBOM producer re-

sults. Only the true positives (correctly identified dependen-

cies) are compared. Intersection areas mean that multiple

SBOM producers have overlapping correct dependencies. In

this project, all producers correctly identify a majority of 20

dependencies.

jbom, and Depscan, which correctly capture

junit:junit:4.13.1, while OpenRewrite and

Build-Info-Go miss it. OpenRewrite entirely skips

test dependencies by design, and Build-Info-Go

misses it. The other area is the intersection of

CycloneDX-Maven-Plugin,CycloneDX-Generator,

and Depscan that correctly detect

org.hamcrest:hamcrest-core:1.3 in the SBOM.

jbom misses this dependency because it is included

as a jar with a relative path in the repository. It only

identifies correctly the groupId and artifactId, while

the version is set to null.

Experimental Limitation
It may be argued that SBOM producers should sim-

ply reuse the ground truth we consider as the basis

for SBOM production, that is the code of Maven in

our experiment. However, SBOMs can be extracted

at multiple steps, per our discussion on production

steps above. All these extraction steps are valid and

potentially useful depending on the goal and the

SBOM consumption. Our ground truth only captures

one single production step. To that extent, some

inaccuracies we have reported may be due to the

mismatch between the ground truth and the targeted

production steps of some SBOM producers.

Take-aways

In theory, extracting SBOMs is easy. Our results

show that in practice, this is not the case. In this

section, we discuss the benefits of our work for two

target audiences, Java developers and standardiza-

tion committees, and reason about the difficulty of

confronting theory and practice.

Java developers: Our in-depth study shows that

Build-Info-Go is the best SBOM producer for Java

developers. The reasons are that: 1) it produces

different checksums ; 2) it supports dependency hier-

archies; and 3) it achieves the highest precision and

recall thanks to a tailored integration in Maven. Yet,

Build-Info-Go has room for improvement. First, the

precision and recall of 94% and 87% respectively can

be increased, with several important fixes. Second,

assuming that the standard clarifies the matter, it

could also provide the scope of the dependencies.

Standardization committees: Our study identifies

two shortcomings in the CycloneDX standard. The

specification needs to require producers to specify

the exact step at which the SBOM is produced, and

it must precisely define the notion of scope, which

would help both SBOM producers and consumers.

We believe that the latter is more important as

the current state is ambiguous for developers, and

ambiguity upstream typically means incorrectness

downstream.

Difficulty: Our study reveals difficulties of differ-

ent nature in producing complete and useful SBOMs.

The challenges of checksums, tree hierarchy, and

determinism can all be fixed with additional engi-

neering effort. However, clarifying the meaning of

production steps and scopes is fundamentally hard,

because it requires the appropriate abstraction over

multiple build pipelines in different software stacks,

and this abstraction would require consensus in the

SBOM community.

Open Challenges

Our experiments revealed a number of challenges for

the accurate production and the effective consump-

tion of Software Bill of Materials.

June 2023 9

SBOM and Tooling Dependencies

In our analysis, we observe that the bulk of SBOMs

consists of collecting accurate dependency trees for

an application project. Yet, the software supply chain

of an application is made of many more compo-

nents. For example, the version control system, the

testing and build tools and the infrastructure to

deploy or distribute the application are key compo-

nents of the supply chain. In the recent years, we

witnessed attacks such as the Solarwinds incident,

which successfully compromised a system through

these components [3]. The CycloneDX standard at-

tempts to document such information by providing

the attribute externalReferences. However, there

is currently scarce support to generate these at-

tributes and our study shows that the SBOM produc-

ers implement this partially and with inconsistencies.

The comprehensive collection and documentation of

all tools involved in the supply chain is a pressing

challenge to produce SBOMs that are amenable to

thorough hardening procedures.

SBOMs for Threat Analysis

In the longer term, the value of SBOMs will increase

with enabling automatic security analyses. For exam-

ple, one key challenge is to let SBOM producers qual-

ify the trust that one can have in the dependencies.

This type of assessment of the supply chain relates

to threat modeling and analysis, which is already

considered good practice for DevOps organizations

[14]. In order to guide which properties an SBOM

should include support reasoning about trust and

threats, the attack taxonomy of Ladisa et al. [3]

constitutes an excellent starting point. Furthermore,

the work of Zahan et al. [15] proposes concrete met-

rics as warning signs of supply chain vulnerabilities

that could be mapped to the taxonomy, such as Too

many maintainers which can match the Take-over

Legitimate Account as well as the use of Installation

scripts which relates to the Running a malicious

build job technique.

SBOMs at Runtime

The next challenge will be to bring SBOMs online,

as a foundation to enforce security requirements at

runtime. For a given SBOM pertaining to a software

application, one can develop lightweight dynamic

analysis to enforce mandatory access control poli-

cies. This can be achieved by monitoring the usage

of dependencies at runtime and ensuring that only

the dependencies within the SBOM are used by

the application, thus preventing the entire class of

vulnerabilities that rely on the dynamic inclusion of

malicious code and packages. A major challenge for

such an approach is that it would require accurate

static information about dependencies, which is a

challenging endeavor, as we have shown in this

article.

SBOMs in Other Software Stacks

The production of SBOMs for other software stacks

is likely to face similar challenges as those seen

for Java. We note that some programming ecosys-

tems already partially address certain challenges.

For instance, ecosystems such as npm, Go and Rust

record checksums for all publicly available depen-

dencies in auto-generated lock files. In theory, the

data provided by these instruments can already be

aggregated and used to produce meaningful SBOMs.

In the specific case of Go, the lock file information

can be validated against an immutable, verifiable

database, providing integrity guarantees which can

be leveraged in SBOMs. Nonetheless, a definitive

solution is yet to be established and widely used in

either of these software stacks.

Conclusion
We performed a deep-dive into the meaning of Soft-

ware Bill of Materials and its realization in the Java

ecosystem, one of the most commonly used enter-

prise programming languages. Our research findings

indicate strong interest and vibrant activity in this

essential area for software supply chain security

and reliability. Yet, we also revealed that SBOMs

today rely on a technical foundation that is unstable.

Our empirical insights shed light on important weak-

nesses that require attention, starting with incorrect

or incomplete dependency lists recovered in SBOMs.

These findings call for further work in clarifying the

SBOM standards, as well for more work on improv-

ing the quality of SBOM producers’ output. Studying

SBOM quality for other languages (e.g. Rust) and for

other SBOM formats (e.g. SPDX) would be very valu-

able for the community. Both academia and industry

agree that SBOMs promise great benefits, now the

time is ripe to all work together to unleash their full

potential.

10 June 2023

REFERENCES

1. R. Cox, “Surviving Software Dependencies,” Com-

munications of the ACM, vol. 62, no. 9, pp. 36–43,

2019.

2. A. Gkortzis, D. Feitosa, and D. Spinellis, “Software

reuse cuts both ways: An empirical analysis of its

relationship with security vulnerabilities,” Journal of

Systems and Software, vol. 172, 2021.

3. P. Ladisa, H. Plate, M. Martinez, and O. Barais, “SoK:

Taxonomy of Attacks on Open-Source Software Sup-

ply Chains,” in Proceedings of the IEEE Symposium

on Security and Privacy (SP), may 2023.

4. C. Rezk, Y. Kamei, and S. Mcintosh, “The ghost com-

mit problem when identifying fix-inducing changes:

An empirical study of apache projects,” IEEE Trans-

actions on Software Engineering, vol. 48, no. 9,

pp. 3297–3309, 2021.

5. N. Harutyunyan, “Managing your open source sup-

ply chain-why and how?,” IEEE Computer, vol. 53,

no. 6, pp. 77–81, 2020.

6. K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly,

L. Gasser, I. Khoffi, J. Cappos, and B. Ford, “Chainiac:

Proactive software-update transparency via collec-

tively signed skipchains and verified builds.,” in Pro-

ceedings of USENIX Security Symposium, pp. 1271–

1287, 2017.

7. L. Tal, “The Log4j vulnerability and its impact on

software supply chain security.” Snyk Blog, 2021.

8. “Survey of Existing SBOM Formats and Standards.”

United States Department of Commerce – National

Telecommunications and Information Administra-

tion, 2021.

9. C. Soto-Valero, M. Monperrus, and B. Baudry,

“The Multibillion Dollar Software Supply Chain of

Ethereum,” IEEE Computer, vol. 55, no. 10, pp. 26–

34, 2022.

10. F. Massacci and I. Pashchenko, “Technical leverage:

Dependencies are a mixed blessing,” IEEE Security

& Privacy, vol. 19, no. 3, pp. 58–62, 2021.

11. “The Minimum Elements For a Software Bill of Ma-

terials.” United States Department of Commerce –

National Telecommunications and Information Ad-

ministration, 2021.

12. C. Soto-Valero, N. Harrand, M. Monperrus, and

B. Baudry, “A comprehensive study of bloated de-

pendencies in the Maven ecosystem,” Empirical

Software Engineering, no. 3, pp. 1–44, 2021.

13. B. Xia, T. Bi, Z. Xing, Q. Lu, and L. Zhu, “An Empirical

Study on Software Bill of Materials: Where We Stand

and the Road Ahead,” in Proceedings of ICSE, 2023.

14. S. Rafi, W. Yu, M. A. Akbar, S. Mahmood, A. Al-

sanad, and A. Gumaei, “Readiness model for devops

implementation in software organizations,” Journal

of Software: Evolution and Process, vol. 33, no. 4,

2021.

15. N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy,

C. Maddila, and L. Williams, “What Are Weak Links

in the Npm Supply Chain?,” in Proceedings of ICSE-

SEIP, p. 331–340, 2022.

June 2023 11

	Introduction
	Software Bill of Materials
	Methodology to Study SBOM Producers
	SBOM producers
	SBOM Conceptual Framework
	Projects under study
	Protocol to compare SBOM producers

	Experimental Results
	Producer Insights
	Dependency Identification Accuracy
	Experimental Limitation
	Take-aways

	Open Challenges
	Conclusion
	REFERENCES
	REFERENCES

