EMOVIS - An Efficient Mobile Visual Search
System for Landmark Recognition

Dawei Li
Computer Science and Engineering Department
Lehigh University
Email: dal312@]lehigh.edu

Abstract—Traditionally, content-based image retrieval systems
(CBIR) are designed to allow users to search for images in
large databases which match closely with users’ query images.
Recent emergence of powerful mobile devices equipped with
digital cameras have led to the emergence of several interesting
mobile CBIR applications. Due to the limited resources in mobile
devices, it is critical that the image matching engine within
any mobile CBIR system be efficiently designed. Many existing
image matching engines use SURF-based methods which return
many keypoints, and hence are not quite suitable for mobile
devices. In this paper, we present an efficient mobile visual
search system (EMOVIS) which allows mobile users to retrieve
relevant information using image-based queries. EMOVIS uses
two unique salient keypoint identification schemes we designed
which allow image matching to be conducted efficiently and with
high accuracy. In addition, EMOVIS includes an image cropping
scheme which eliminates irrelevant regions within a query image.
Such cropping minimizes query latency, bandwidth usage and
the energy cost of using EMOVIS. Via extensive evaluations
using ZuBuD dataset and our own image dataset, we showed
that EMOVIS can achieve higher than 92% accuracy with low
computational and energy cost. '

Index Terms—mobile visual search, CBIR, SURF, salient
keypoints

I. INTRODUCTION

In recent years, powerful mobile devices with one or two
embedded cameras e.g. IPhone or Android-based phones have
emerged and become pervasive. New mobile media search
related applications have appeared. Among these, mobile
location search [1], [2] is one of the most popular mobile
media search applications. Users can search information about
locations, landmarks or products by just taking a photograph of
the object of interest using their mobile devices. Each captured
image is sent as a query over wireless networks e.g. cellular or
WiFi networks to a remote server. The server then compares
the query image with training images of recognizable objects
or landmarks stored in an image database in an attempt to
identify the object (e.g. a landmark or a product) within the
query image.

In addition, some emerging augmented reality (AR) ap-
plications also provide mobile visual search. A tourist who
visits a place he/she is unfamiliar with can conduct a virtual
tour of his/her new environment using an AR-based tourist
guide system. That tourist can also snatch a photo of any
building he/she encounters and retrieve interesting information
e.g. history of the building via an image-based query.

All the above applications described above are built using
an image matching engine. The success of such an engine

I'This project is supported by NSF NeTS Grant 1049845,

Mooi Choo Chuah
Computer Science and Engineering Department
Lehigh University
Email: chuah@cse.lehigh.edu

relies on whether salient keypoint descriptors can be identified
which (i) allows images of different targets to be distinguished,
(ii) endures content variability among training images of the
same target and (iii) endures possible distortions added to
a query image (e.g. inclusion of trees in a building image)
during the mobile image capture process. Often, incorrect
locations with visually similar appearances are returned as top
matches when the image matching engine failed to identify a
good match. Such poor performance is consistent with our
own experience using Google image search feature as well as
results reported in other state-of-the-art systems [2], [3], [4],
[5]. Furthermore, many existing image matching engines use
SURF-based methods [20]. However, such methods usually
involve many keypoints, and hence are not quite suitable for
mobile devices.

In this paper, we focus on designing an efficient mobile vi-
sual search system for landmark recognition called EMOVIS.
To improve the computational efficiency for image matching,
we design two novel algorithms to extract the most salient
keypoints of a landmark from a set of training images. All ex-
tracted salient keypoint descriptors are later used by EMOVIS
to construct a kd-tree to speed up the image matching process.

To further improve the matching accuracy and reduce both
the matching processing and energy cost, we also design an
image preprocessing scheme. Before being sent to a remote
EMOVIS server, a query image is first resized to a reasonable
small scale according to its original aspect ratio. After resizing,
the query image is cropped to remove irrelevant regions
e.g. trees, which make the image less distinctive. Such a
preprocessing technique leads to higher matching accuracy and
improved query response time.

We conduct extensive studies using a prototype EMOVIS
system we developed to compare our approach with two
existing approaches, namely (a) a basic hessian-value based
approach [14] and (b) an enhanced hierarchical grid based
detector [9]. Our results indicate that EMOVIS can achieve a
high matching accuracy (> 92%) with faster query response
time when compared to these two existing approaches. In
addition, we report on the energy consumption of using
EMOVIS on Android-based devices.

In summary, our efficient mobile visual search (EMOVIS)
system for landmarks has the following unique features:

« uses MaxUnion and MaxMin Salient Keypoint Identifica-
tion schemes designed to identify salient keypoints from a
set of training images of each landmark during an offline
training phase,

o achieves fast image-based query response time using a
visual-feature based kd-tree constructed from all salient

keypoints,

o image-preprocessing scheme which removes irrelevant
regions in a query image such that matching accuracy
and energy cost can be improved, and

« an image matching engine which processes image-based
queries asynchronously to achieve higher query through-
put.

The rest of the paper is organized as follows: Section II
will discuss related work. We present the system architecture
of EMOVIS and our design considerations in Section III. In
section IV, we present the detailed system design. Then, we
report the evaluation results in Section V. We conclude in
Section VI by discussing some near future work which we
would like to explore.

II. RELATED WORK

A critical component in Content-Based Image Retrieval
Systems (CBIR) is the image matching engine. Several popular
methods have been designed for image matching e.g. SIFT
detector which is robust in scale, orientation, and viewpoint
variations. However, the robust features such as SIFT or SURF
are time consuming and hence not suitable for mobile devices.
Several simplified-version of these features are designed to
achieve faster speed. For example, the authors in [6] present a
modified SIFT created from a fixed patch size of 15x15 pixels
and use only a 36-dimension descriptor. The authors in [7]
combine the simplified SIFT with a scalable vocabulary tree
to achieve interactive object recognition on mobile phones.
The simplified features incur less computational cost which
is required for mobile applications. Unfortunately, while such
methods can speed up the matching process, they sacrifice
the robustness feature. In addition, such methods can only
improve the matching speed by 2-3 times when compared to
the traditional more robust SIFT or SURF-based detectors.

The authors in [9] proposed a hierarchical image partition-
ing method where a query image is divided into 4x4 grids and
these grids are used to match against training images in their
image database. They assume hierarchical partitioning is also
performed on every image in their database. There are a total
of 16 (1x1 grids)+9 (2x2 grids)+4 (3x3 grids) and 1 (whole
image)=30 hierarchical grids for one image and any grid must
contain at least NN, features in order to be stored as part of
the relevant grids for that image. Their approach however
incurs too much storage and memory cost since it needs to
maintain information of many hierarchical grids per image.
In [14], the authors constructed a kd-forest using keypoints
identified from all training images in the database. Additional
trees are constructed as new training images are added to
the database. Using the ZuBuD database, this approach can
yield 92% accuracy with 300 keypoints from each training
image. Their average matching time is 300ms. Our approach
can achieve such accuracy with only 100 salient keypoints per
landmark and incurs only an average matching time of 95ms.

ITI. SYSTEM OVERVIEW
A. System Architecture
As in several previous works [10][11], we adopt a client-
server system architecture. Figure 1 illustrates the system
architecture of our efficient mobile visual search system
(EMOVIS) and the basic data flow of our system. Our system
consists of client software running on mobile devices equipped

S

ImageContent
DB DB
Server

Fig. 1: System Architecture. (1) A user takes a photo with the phone camera and the
photo is then preprocessed by EMOVIS client software running on his mobile device. (2)
The preprocessed image is then sent to a remote server via a wireless connection. (3) The
remote server matches the query image against all trained images in the image database,
and retrieves the information relevant to that matched landmark once it is identified. (4)
The server returns the retrieved landmark content to the user’s device. (5) Our client
software then displays the received contents on the screen.

with cameras and a remote server which can be hosted in
a cloud. Content and image databases are attached to the
server. The image database houses training images of all
buildings (or landmarks) which EMOVIS recognizes, and
the salient keypoint descriptors of different faces of these
recognized buildings/landmarks. Each building has a unique
object identifier which can be used to extract information
relevant to that building e.g. history or design architect of a
building from the content database.

The client-server architecture is chosen because the inten-
sive image matching process should be conducted at a remote
high-end server rather than locally in the mobile devices due
to their limited battery and computing resources. Furthermore,
mobile devices typically do not have enough storage space for
all the training images.

B. System Design Considerations

To design an efficient mobile CBIR system, we need to
make two major design decisions, namely, (i) tradeoff between
matching accuracy and matching speed, (ii) tradeoff between
image quality, bandwidth usage, and energy consumption.

1) Tradeoff between Image Matching Accuracy and Image
Matching Speed: The default SURF algorithm usually detects
more keypoints than are necessary for achieving certain match-
ing accuracy [12][17]. To speed up the matching process,
the system must prune the set of keypoints to retain only
those important ones. Fewer keypoints means faster matching
processing speed but it may affect the matching accuracy
when insufficient number of keypoints are used. Therefore,
the system must rely on a keypoint pruning algorithm which
produces a minimal set of salient keypoints that will yield the
required matching accuracy.

2) Tradeoff between Query Image Quality and Network
Delay: The query image must be of sufficient quality so that
a sufficient number of keypoints can be extracted to match
with the salient keypoints of all trained landmarks stored in
the image database. However, better image quality means a
larger file size which translates into higher energy cost and
longer network delay when it is being sent over a wireless
link. Hence, the client software must pre-process the query
image to an appropriate size before sending it to the remote
server.

Overall, our goal is to design a robust mobile visual search
system such that it provides satisfactory user experience which
means we can sacrifice a little bit of matching accuracy to
achieve shorter query latency and lower energy cost. The
system should be tunable to meet the minimum required
matching accuracy at the lowest possible energy cost and query
latency.

G —]
Matching /]

(Keypoints)
b Server

Content
Retrieval
eless
f===—-- nection_ _ | _ _ _ _ _ _ _ _
| Image Resu :
| . Preprocessing Processing |
' iant |
: Clmnt| Online
|

b tmege J \ | Disply /| | Mstchine

Fig. 2: Software Architecture of EMOVIS
IV. DETAILED SYSTEM DESIGN

Figure 2 illustrates the software architecture of EMOVIS,
and the data flow of its operations. The server includes an
offline image training module and an online image matching
module. The image training module is responsible for identi-
fying salient keypoints of every landmark. In EMOVIS, each
face of a building is considered a separate landmark object.
The keypoint extraction submodule extracts a keypoint set
from each training image. The keypoint sets from all training
images are then fed into the keypoint pruning submodule
to identify salient keypoints which can be used to uniquely
identify a particular landmark object. The identified salient
keypoints of all landmarks are then stored in the image
database and each landmark object is given a unique identifier.
The image matching module extracts keypoints from a query
image which are then sent to the image matching submod-
ule for landmark recognition. Once a matched landmark is
identified, the server can then use its unique landmark object
identifier to extract content about this landmark from the
content database. Information related to that landmark e.g. the
history of that building, is stored in the content database. The
content description of the identified landmark can then be sent
to the querying user.

The client software basically performs the image prepro-
cessing function before a query image is sent to the remote
server. The image preprocessing involves two tasks. The first
task is to resize the image into one with the appropriate
quality. The second task is to detect and remove irrelevant
parts of a query image such that any potential interference
from these irrelevant parts to the matching process can be
reduced. Since our system is targeting buildings or landmarks,
we focus on removing green plants (e.g. trees, grass) from the
query image. Such image cropping allows EMOVIS to achieve
higher matching accuracy and lower computational cost. The
cropped image is then compressed and sent over a wireless
network to the remote server. We choose to send a compressed
image rather than the descriptors extracted from the cropped
image because the total size of keypoint descriptors can be
three times larger [9][14] than the size of a compressed
image, and hence sending the compressed image incurs less
bandwidth and energy cost. Upon receiving a query response
from the server, the client software will display the matched
result on the screen of a user’s mobile device.

(A) (B)
Fig. 3: Keypoints Identified from 4 Training Images using existing SURF detector

()

(kp1, kp2, kp3) |J (kp2, kp3, kp4, kps) (kp1, kp2, kp3) (kp2, kp3, kp4, kp5)
— [(kp1, kp2, kp3, kp4, kp5) Minimal Keypoint Set
Union Keypoint Set
(a) (b)

Fig. 4: Union Keypoint Set and Minimal Keypoint Set

A. Keypoint Pruning for Training Images

A typical SURF-based keypoint extractor can produce many
keypoints from each image. In Fig 3, we showed the keypoints
obtained using the SURF detector from four training images
of Memorial Church in Lehigh University. It is obvious from
Fig 3 that many keypoints are returned using the existing
SURF detector, and some of them do not represent the
building, e.g. the keypoints on the trees and the cloud. Hence,
for fast and accurate matching operations, we need to design
efficient algorithms to identify a minimal set of keypoints that
can be used to uniquely identify a landmark object.

In this work, we design two schemes for identifying salient
keypoints from a set of training images for a landmark.
To better explain our schemes, we first give two important
definitions:

Definition 1: the Union Keypoint Set of a training image is
the union of all keypoint sets produced by pairwise matching
this image with other training images of the same landmark
(as shown in Figure 4 (a)).

Definition 2: the Minimal Keypoint Set of a training image
is the smallest keypoint set produced by pairwise matching
this image with other training images of the same landmark
(as shown in Figure 4 (b)).

In both schemes, a Union Keypoint Set (UKS) is con-
structed for each training image. The first scheme, the
MaxUnion-Based Salient KeyPoint Identification (MaxUnion-
SKI) scheme, finds the Best Training Image which produces
the largest UKS. The second scheme, the MaxMin-Based
Salient KeyPoint Identification (MaxMin-SKI) scheme, finds
the Best Training Image that produces the largest Minimal
Keypoint Set. For both schemes, the UKS associated with the
Best Training Image will then be used as the Master Salient
Keypoints (MSK) of that landmark.

The pseudo code for the MaxUnion-Based Salient Keypoint
Identification (MaxUnion-SKI) method is shown in Algorithm
1. It first matches the keypoints extracted from a training
image with those extracted from another training image. The
matched keypoints from the training image (expressed as kps)
are “union”’ed with the existing union set of matched keypoints
found so far and relevant counters are updated before the
updated union set is stored in UKS. The training image which

Algorithm 1 MaxUnion-Based Salient Keypoint Identification
(MaxUnion-SKI) Method

Input: A set of training images Sy, = {Img1, Imga, ..., Imgx }
Output: Master Salient Keypoints 1\5 SK
master <— null
mazCount < 0
for each image Img; € S do
UKS«+ 0
for each image I'mg; € S;mg do
if Img; # I'mg; then
kps < MatchKeypoint(Img;, Img;)
UKS< Union(UKS, kps)
end if
end for
if len(UKS) > maxzCount then
mazCount < len(UKS)
13: MSK <+ UKS
14: endif
15: end for
16: return MSK

Union Keypoint Set

—_—
NIV RIDNRLD

—

returns the largest UKS will be the Best Training Image and
that largest UKS will be used as the MSK for that landmark.

A drawback of this method is that when there are a few
extremely similar images (e.g. two continuously captured
photos), one of them is quite likely to be selected as the Best
Training Image. However, if those extremely similar images
are taken from a bad angle or at a distance, they do not
uniquely represent that landmark and hence these keypoints
should not have been included in MSK.

The MaxMin Salient Keypoint Identification (MaxMin-SKI)
method (Algorithm 2) avoids this drawback. For each train-
ing image, the MaxMin-SKI method determines its Minimal
Keypoint Set. Then, the MaxMin-SKI method chooses the Best
Training Image which produces the largest Minimal Keypoint
Set. The Union Keypoint Set associated with this Best Training
Image will be used as the MSK for that particular landmark
object.

Algorithm 2 MaxMin-Based Salient Keypoint Identification

Input: A set of training images SIW = {Img1,Imga,....Imgn}

Output: Master Salient Keypoints M SK
1: master < null
2: mazxCount < 0
3: for each image Img; € S do
4: minCount < oo
5: UKS«+ 0 # Union Keypoint Set
6: for each image Img; € S do
7: if Img; # I'mg; then
8: kps <— MatchKeypoint(Img;, Img;)
9: UKS<+ Union(UKS, kps)
10: if len(kps) < minCount then
11: minCount < len(kps)
12: end if
13: end if
14: end for
15: if minCount > maxCount then
16: maxCount < minCount
17: MSK «+ UKS
18: end if
19: end for

20: return MSK

Instead of using all the matched keypoints in MSK, we
select the Top N salient keypoints per landmark object. Recall
that our Union function has a counter value associated with
each keypoint in MSK. This counter value measures the
number of times that keypoint has matched with keypoints
from other training images. Thus, the matched keypoints in
MSK can be easily ranked to identify the Top N keypoints.
Among the matched keypoints with the same counter values,
we can further rank them based on other factors e.g. its hessian

MaxUnien_SKI

MaxMin_SKI

Fig. 5: Top 100 Salient Keypoints Identified by MaxUnion-SKI and MaxMin-SKI in the
Best Training Images ((B) and (A)) in Fig. 3

value [14] or its distance to other higher ranked keypoints such
that we can include keypoints that are not close to one another
[17]. The Top N keypoints will be used as the salient keypoints
representing the landmark. In case the number of keypoints
in MSK is fewer than N, the remaining keypoints from the
Best Training Image which are not in MSK are ranked (e.g.
using Hessian Value) and chosen to make up the Top N salient
keypoints.

In Fig 5, we showed the salient keypoints identified using
our two methods. Compared to Fig3, it is obvious that our two
methods significantly reduce the number of keypoints that are
used to uniquely describe this particular landmark object. We
will show in the evaluation section that the matching accuracy
obtained using these two methods is high.

B. Image Matching

Some existing matching approaches use a brute-force
matching method i.e. a query image is matched against each of
the images in a database, and the image with the most matched
keypoints is returned as the matched landmark. However,
with a large database, such method is extremely slow and
not scalable. Therefore, EMOVIS uses a kd-tree based image
matching method, i.e. we look for a nearest neighbor for
each keypoint descriptor from the query image. After salient
keypoints of all landmark objects are identified, these salient
keypoints are used to construct a kd-tree. The nearest neighbor
search in kd-tree is an O(log(n)) algorithm. Suppose we
identify the top N keypoints for each landmark, and there are
m landmark objects, k keypoints are detected from a query
image. The computational complexity for image matching in a
kd-tree is O(klog(mN)) assuming that there is sufficient system
memory.

We use a 2-stage matching method similar to [14] to match
a query image: (1) the keypoints extracted from a query image
is matched using the constructed kd-tree(s) to identify the top
10 candidate images, and (2) the pair-wise RANSAC-based
match is later used to match only these top 10 candidate
images to find the best matched image. Although our query
matching process is similar to [14], our method is significantly
different since (a) in [14], their kd-tree is constructed using top
N keypoints from every training image and hence their kd-tree
is bigger, and (b) they use Hessian values to rank keypoints
while we identify salient keypoints.

C. Query Image Preprocessing

In general, the total size of SURF-based keypoint descrip-
tors can sometimes be three times the size of the original query
image [9][14]. Thus, to be more energy-efficient, our EMOVIS
client software sends a compressed version of a cropped query
image to our EMOVIS server. This cropped image is produced
by a query image preprocessing process.

Fig. 6: Two example images processed by Image Cropping

The preprocessing process involves two tasks: Image Re-
sizing and Image Cropping. Image resizing has been used
in previous work [9] to resize the query image into a fixed
640*480 small-size image. In this work, instead of using a
fixed size, we scale a query image down based on its original
aspect ratio such that the length of the cropped query image
is a preconfigured value (set to 640 in this work). Thus, we
maintain the original aspect ratio without causing any image
distortion.

The second task of Image Cropping is carried out to
minimize potential interference caused by irrelevant parts of
an image e.g. the green scenery around a landmark during the
matching process. The Green Cropping task in the EMOVIS
client software will remove the green scenery caused by
trees, bushes, grass from an image. Our Green Cropping
algorithm (Algorithm 3) is a iterative RGB-based method
which identifies a certain region in an image which likely
contains green scenery. The MaxRem function returns (i) the
maximum intensity among the IntL, IntR, IntU and IntD values
extracted from each cropping region of a query image, and
(i) RemlIndx identifies the region of an image (L,R,U,orD)
that achieves this maximum green intensity value and will be
removed. If we cannot find any region to remove, we repeat
calling the Green Cropping function one more time using
n = 16.

Algorithm 3 Green Cropping(Imgq,n=8)

Input: A query RGB- color image I'mgq, n

1: Imgcrop = Imgq

2: imgL <« the left l/n part of Imgq

3: 4mgR < the right 1/n part of Imgg

4: imgU < the upper 1/n part of Imgq

5: 4mgD < the bottom 1/n part of Imgg

6: IntL <+ CheckGreen (imgL)

7: IntR < CheckGreen (imgR)

8: IntU <+ CheckGreen (imgU)

9: IntD <+ CheckGreen (imgD)

10: (IntMax, RemIndz) <+ MaxRem(IntL, IntR, IntU, IntD)
11: if IntMax > 0.1 then

12: Imgerop < Remove(Imgq, RemIndx)
13: return GreenCrop(Imgcrop)

14: else

15: Green Cropping(Imgq,16)

16: end if

17: return Img.rop

Algorithm 4 Check Green Intensity: CheckGreen(/mg)

Input: An RGB-color image Img
Output The green intensity gInt

gValue < 0 # Total green value
rValue < 0 # Total red value
bValue < 0 # Total blue value

for 100 random RGB pixels {p1,p2,...,pn} € image do
gValue < gValue + p;.GreenvValue ()
rValue < rValue 4+ p;.RedValue ()
bValue < bV alue + p;.BluevValue ()
end for
gInt < (gValue—Max (rValue, bV alue))/gValue
return gInt

PORRADNRELRN

—

The Green Cropping operation reduces the computing bur-
den required at the server during the matching process but

we also need to make sure that the additional computing
requirement at the mobile device for such cropping is kept
to a minimal. Our Check Green function in Algorithm 4 is
designed to incur minimal computing requirement. Instead of
checking every pixel of a rectangle area (e.g. 38,400 pixels for
640*60 rectangular area), only 100 randomly selected pixels
are used and this results in a speed up of 384 times. Figure 6
shows the results of two Lehigh University buildings cropped
using our Green Cropping algorithm.

V. SYSTEM EVALUATION

In this section, we present evaluation results of our proto-
type system. We implemented both the client and server mod-
ules of EMOVIS using python and OPENCV libraries. Then,
we conduct several experiments to measure the performance
of both our client and server application. We evaluated the
image matching accuracy, server processing time, and server
throughput of EMOVIS. In addition, we evaluate the latency
required for image pre-processing and its energy cost on an
Android-based smartphone.

A. Prototype Implementation and Image Datasets

We built our prototype using OpenCV libraries (version
2.4.5). Our server is configured with Intel(R) Core(TM) i7-
2600 CPU @3.40GHz, 16GB memory and 1 Gb Ethernet
connection to Lehigh University Network.

In our experiments, two datasets are used: Zurich Build-
ing Database (ZuBuD)[13] and Lehigh Building Database
(LeBuD). ZuBuD is a popular landmark image dataset used in
many previous works [10][14][16]. In ZuBuD, there are 201
buildings each having 5 training images (1005 training images
in total) and 115 test images each of which can be matched
to one of the 201 buildings. The size for all training images is
640*480 while the size for all testing images is 320%240. We
use ZuBuD as the dataset for server evaluation since it contains
images of many buildings. In our prototype system, since each
face of a building is considered as a separate landmark object,
we identify 31 of the ZuBuD buildings which have images
of two different faces and therefore we have a total of 232
landmark objects for ZuBuD. The query images in ZuBuD
seldom have green scenery so we did not apply the Green
Cropping algorithm to these images.

We use LebBuD as the dataset for evaluating our client
software. LeBuD is a relatively small image dataset with only
12 buildings and 6 of them have two faces resulting in a total
of 18 landmark objects. Each landmark object has 5 training
images and 3 testing images which were taken from different
angles, distances and with “Green Scenery” contents. The size
of each training image in LeBuD is 640¥480 while each query
image size is not fixed to mimic the various image sizes that
different EMOVIS users may send.

B. Matching Accuracy and Query Latency
TABLE I: ZuBuD Image Keypoint Statistical Characteristic

Avg | Max | Min Std
1276 | 2654 | 486 | 391.47

We evaluate the performance of our prototype system by
measuring the matching accuracy and the server processing
time. We compare our salient keypoint based schemes with the
pure hessian-threshold keypoint pruning method described in
[14][15]. For this set of experiments, we only use the ZuBuD
image set as it has a relatively large number of landmark
objects and there are significant differences among results of

10000 %

S0.00%:

000
—#—MaxMin_SKI

TO00% =#=Maxlnicn_SKI

Accuracy

MaxMin_Hessian
60.00% =+#=Maxlnion_Hessian

S0.00% Hessian

£0.00%,
50 100 150 200

Keypoint Number

Fig. 7: Matching Accuracy Comparison
different methods. The default Hessian threshold for SURF
method is set to 500 and each keypoint has a descriptor of 128
values. Table I shows the statistical characteristic of keypoints
extracted from the ZuBuD image set.

We first conduct an experiment using recommended values
of the SURF method to estimate its matching accuracy and
query response time using such default values. The matching
accuracy is defined as the percentage of query images which
are recognized correctly. The matching time per query image
is defined as the time it takes for an EMOVIS server to
return a matching result. For this baseline experiment, a kd-
tree is constructed using keypoints extracted from all training
images. Then, we extract keypoints from each query image
and see which matched landmark is returned. With 115 query
images, the matching accuracy using these default values is
94.78%, and the average matching time per query image is
3.94 seconds.

Next, we compare our salient keypoint identification meth-
ods with simple hessian-value based keypoint selection [14].
The method used in [14] (referred to as the ‘“Hessian”
method) selects the top N hessian-value based keypoints
from each training image and constructs a kd-forest using
all these extracted keypoints. This method requires a long
matching time. Thus, we also tried two related methods,
namely (a) “MaxMin_Hessian” and (b) “MaxUnion_Hessian”
methods which can speed up the matching process. The
“MaxMin_Hessian” is an enhanced Hessian method which
uses the top N hessian-value based keypoints only from the
Best Training Image of a landmark object identified using our
MaxMin method. The “MaxUnion_Hessian” is an enhanced
method which uses the top N hessian-value based keypoints
only from the Best Training Image of a landmark object
identified using our MaxUnion method.

Figure 7 and Figure 8 show the results of the matching
accuracy and the average incurred matching time of each
method. The results show that with our proposed methods, the
matching accuracy is around 92% while the average matching
time is as low as 95ms when Top 100 salient keypoints are
used. This is better than the basic “Hessian” method with
an accuracy lower than 90% when fewer than 200 keypoints
are selected but incurs significantly longer matching time. To
achieve an accuracy higher than 90% using the basic “Hessian”
method, it requires an average of about 600 ms matching
time. The modified hessian-value based keypoint selection
methods (MaxUnion_Hessian and MaxMin_Hessian) each has
a relatively poor matching accuracy (always lower than 80%)

performance.)) .)
Next, we compare our approach with the hierarchical grid-

® MaxMin_SKI
400 - MaxUnion_SKI

300 #MaxMin_Hessian

Matching Time [ms]

< Random

Hessian

= R,

=1 100
Keypoint Number

20

Fig. 8: Matching Time Comparison

based method described in [9]. In this method, each training
image is divided into 4x4 grids, and keypoints are extracted
from 30 combinations of grids e.g. 1x1, 2x2 grids. Only grids
with keypoints higher than a certain threshold (referred to as
the retaining threshold) are retained. This method consumes
much memory so we did a few minor adjustments so that we
can run it to compare with our method. For example, we set
the retaining threshold to be 50 because we use query images
of smaller sizes. The inlier matched threshold is set to 10
instead of 20. Top 10 candidate images are identified using
the kd-tree search rather than using a single returned result.

We ran experiments using 115 test images from the ZuBuD
dataset with these three methods:(a) H-Grid uses a similar
method described in [9] where all valid hierarchical grids
with more than 50 keypoints associated with the Best Training
Images (identified using our MaxUnion-SKI method) are used
for matching, (b) Top100 uses the Top 100 salient keypoints
extracted using our MaxUnion-SKI method from the Best
Training Images. (c) Top 200 uses the Top 200 salient keypints
extracted using our MaxUnion-SKI method from the Best
Training Images. For all three methods, we use the grid-based
matching procedure described in [9] to process a query image.

TABLE II: Hierarchical Grid Result

ACCY | Time (s) | P-Mem | V-Mem
H-Grid | 91.3% 8.25 13GB 23.4GB
TopI00 | 92.2% 0.26 380MB | 1.14GB
Top200 | 93.0% 0.36 706MB | 1.45GB

Table II shows our results. ACCY denotes the matching
accuracy. Time is the matching time per query image. P-Mem
is the allocated physical memory, while V-Mem is the virtual
memory used. “H-Grid” achieves good matching accuracy but
a single image needs more than 8 seconds for matching.
Our experiment shows that the 232 Best Training Images
generates 3410 hierarchical grids with around 1.6M key-
points/descriptors. Therefore, “H-Grid” consumes too much
physical and virtual memory and slows down the matching
significantly. “Topl100” and “Top200” each achieves higher
than 92% matching accuracy. However, the matching time
(260ms for 100 keypoints) is slower than our MaxUnion-
SKI method (95ms for 100 keypoints). The reason is that,
for “Top100”, 59% of the queries require full image matching
before their landmarks are recognized but they incur wasteful
processing cost for matching against smaller grids e.g. three
1x1, one 2x2 and one 3x3 grids without any success.

C. Server Throughput

We built two types of HTTP servers: a Synchronous and
Asynchronous server. A Synchronous server handles one client
request at a time, i.e. it must receive complete data from a

mulative § of Completed Transactions

N I I I I I I
U |
3 L] 5 [7

Time (min) Time (min)

Fig. 9: Server Throughput

client before serving the next request. Meanwhile, the Asyn-
chronous Server can handle multiple client requests without
blocking. Since the synchronous server would be blocked until
it has received a complete image, it can not handle too many
concurrent client requests.

We did an experiment to evaluate the throughput of each
type of servers. For this set of experiments, we only use the
MaxUnion-SKI method with 100 selected salient keypoints.
We simulate multiple clients sending image queries simulta-
neously from a laptop with a WiFi connection. Each client
sends 100 image requests continuously, i.e. a client sends the
next request after receiving the image matching result of the
previous query image.

Figure 9 shows the throughput of the two types of servers.
Here,we define throughput as the number of matching results
returned per minute to the clients. With an Asynchronous
server, it can achieve a stable throughput of 655 per minute.
However, with a Synchronous server, the achievable through-
put is quite unstable and may reduce to as low as 365 per
minute. With a Synchronous server, the server cannot keep
up with many client requests. Hence, some TCP connections
ultimately time out and the number of completed requests
drops.

Two types of HTTP errors occur during the process: Errno
110 (Connection Timed Out) and Errno 104 (Connection
reset by peer). Errno 104 is a fatal error as the server side
sends a RST packet to force close a connection. The left-
hand plot in Figure 10 shows the error rates (percentage
of errors for all client requests) of both Synchronous and
Asynchronous servers. As seen in 10, though the error rates
for both servers increase as the number of concurrent clients
increases, the Asynchronous server does not incur any errors
until 40 or more clients send requests concurrently. However,
for a Synchronous Server, errors occur when there are only 20
clients in the system. With 60 concurrent clients, the error rate
for a Asynchronous server is only 7.57% (including both Errno
110 and Errno 104) while the Synchronous server has an error
rate of 22.22%. Meanwhile, many errors at the Synchronous
server are the fatal connection reset errors which means that
the server is forced to give up on many client requests.

When multiple clients send requests simultaneously, each
request is inserted into a queue to be processed (image
matching) by the server. Therefore, with increasing number
of client requests, each request will incur additional queuing
delay compared to the case when a client request arrives to see
no queue ahead of itself. We conduct an experiment to measure
the average queuing time when 100 requests are submitted per
client to an Asynchronous Server. We use the Ist 20 requests
as the warm up period, and only compute the average queuing
time for the 21st to the 80th requests. As seen from the right
hand plot in FiglO0, the average queuing time initially increases
rapidly as the number of clients increases but the increase rate

SYN

ASYN

—=SYN-110
—m— 5104
a— ASVN-110

— ASYN-104

=1

HTTP Erver Rate

& o & o= om

an

an 50 60 10 2w 1 aw 50

Humber of Concurrent Clients

0
Humber of Concurrent Clents.

Fig. 10: Error Rates & Average Queuing Time

slows down when the number of concurrent clients exceeds 30
because the server begins to drop some connections and hence
the queue size does not increase as fast.

D. Query Image Preprocessing

We evaluate the impact of the image preprocessing scheme
on the performance of our prototype system. For this ex-
periment, we use the LeBuD image sets. 54 photos taken
from various smarpthones are used as query images. Their
sizes can be: 2560x1920, 1200x900, 1280x720. Some query
images are large while some have “Green” content. The
query images are resized to different scales: 240, 320, 480,
640. Each scale value determines the length of an image,
and its width is scaled to maintain the original aspect ratio.
Table III presents the results for the image preprocessing
process. In the table, “G-ACCY” and “NG-ACCY” represent
the matching accuracy for the “Green Cropped” and Non-
cropped query images. The “#Greened” denotes the number
of query images being cropped by the “Green Cropping”
algorithm. The “MatchingTime” is the average server query

matching time.
TABLE III: Client Preprocessing Effect

Scale | G-ACCY | NG-ACCY | #Greened | MatchingTime
640 100% 100% 16 72ms
480 98.15% 96.30% 16 47ms
320 96.30% 94.44% 17 26ms
240 90.74% 87.04% 17 20ms

From the table, we see that the matching accuracy increases
when the “Green Scenery” is cropped from the query images.
In addition, a larger image size of a good query image (from
the right angle etc) usually means a higher matching accuracy
but longer server processing time. With LeBuD, when the
query image is resized to a scale of 320 (which is 50% of the
training image size), we can still achieve a matching accuracy
above 92%. However, when the query image is resized to a
scale of 240 (which is 37.5% of the training image size),
the matching accuracy drops to around 90%. For a large
query image, randomly select 100 pixels to determine if it has
green contents may not be sufficient. We intend to explore an
appropriate setting in the near future.

E. Mobile Device Energy Cost

We evaluate the power consumption of our Android-based
EMOVIS application running on a Samsung Google phone
using PowerTutor, a per-application energy statistics applica-
tion developed by University of Michigan. Our Android client
is connected to a wireless router in our laboratory which is
connected to the Lehigh University Campus Network. The
measured WiFi signal using Network Signal Info tool was
-53dBm with 72Mbps bandwidth. We evaluated the energy
cost using two query images which are resized to two dif-
ferent sizes: 240*320 and 480*640. For each image size, we
recorded the energy consumption of the Android client while

it preprocessed, and sent a query using that image 100 times
continuously. We repeated such an experiment 5 times using
each image. Our results are summarized in Table IV. Each
reported value is the average value of these 5 trials. The
average per image energy cost is about 0.4] if a query image
is cropped to 480x640 size. This is a reasonable energy cost
since streaming a short movie trailer of 1 minute duration can
consume 68J on the same type of smartphones.

Different images of the same size have different energy cost
depending on the extent of the “Green” content in an image,
the original image size as well as the number of keypoints
detected by our modified SURF-based algorithm. The more
keypoints identified from an image, the longer time the server
needs to do the matching, resulting in longer TCP connection
times. Reducing the image size can significantly reduce the
energy cost though we have to make sure that the cropped

image is of sufficient quality to produce accurate matching.
TABLE IV: Energy Cost Per 100 Image Query (J)

Size CPU | WiFi | CPU+WiF1
imgl | 480%640 | 109 | 29.5 40.4
img?2 | 480%640 11 39.3 50.3
imgl | 240%320 | 5.9 15.4 21.3
img2 | 240%320 | 9.3 17.6 26.9

F. Discussion

Here, we discuss a few techniques that can be used to further
improve the performance of EMOVIS. One technique is to
use location information (GPS coordinates) associated with
the query image to reduce the number of salient keypoint sets
that the EMOVIS server needs to compare with during the
matching process. For example, a location-aware enhancement
can find training images that lie within a certain region of that
query location and only match those qualified images rather
than the whole collection of training images. Furthermore,
additional servers can be deployed to deal with increasing
query loads for a large scale system. For a large scale system
with many images, one can also deploy various servers to
deal with different subsets of images, and conduct searches in
parallel.For example, the Distributed Kd-trees[8] is a method
which employs MapReduce architecture to efficiently build
and distribute kd-trees to deal with millions of images.

In addition, optimization techniques suggested by other
researchers can also be incorporated in our system. For exam-
ple,an optimization method described in [18] which removes
keypoints in a query image that match some training images
from several landmark objects. Such an optimization method
will improve the matching accuracy.

Furthermore, keypoints-based image matching has some
inherent limitations. For example, different sets of keypoints
can be detected for images from different angles of a lay-
ered building (e.g. a building with pillars in front) or a
glass-structure building. Moreover, SURF-based keypoints are
detected from gray-scale images, and thus it is insensitive
to colors. Therefore, we can investigate how to combine
keypoints features with color/texture features (e.g. CEDD [21])
to improve the matching accuracy.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented EMOVIS, an efficient and
robust mobile visual search system, which we have designed.
EMOVIS uses two salient keypoint identification schemes
we designed to identify top 100 keypoint descriptors which
can be used to uniquely identify a landmark, and hence

improve matching accuracy. Furthermore, EMOVIS uses an
image cropping algorithm to remove irrelevant regions from
a query image, and hence reduces the query latency time and
energy cost of using EMOVIS on mobile devices. Extensive
evaluations using images from the popular Zurich database
reveal that EMOVS achieves high accuracy (> 92%) with low
computational and energy cost. Our designed system provides
higher accuracy and faster matching response time than two
existing approaches. In the near future, we intend to implement
three enhancements which we have identified that can further
improve the performance of EMOVIS. Furthermore, we intend
to evaluate our system using a larger image database e.g. the
Manhattan database described in [2].

REFERENCES

[1] G. Schindler, M. Brown, “City-scale location recognition”, IEEE CVPR,
2007

[2] F. X. Yu, R. Ji, S.F. Chang, “Active Query Sensing for Mobile Location
Search”, ACM Multimedia, Nov-Dec, 2011.

[3] J. Knopp, J. Sivic, T. Pajdha, “Avoiding confusing features in place
recognition”,10th European Conference on Computer Vision, 2010.

[4] G. Baatz, K. Koser, D. Chen, R. Grzesczuk, M. Pollefeys, “Handling
urban location recognition as a 2d homothetic problem”, 10th European
Conference on Computer Vision, 2010.

[5] D. Chen, G. Baatz, K. Koser, S. Tsai, R. Vedantham,T. Pylvanainen, K.
Roimela, X. Chen, J. Bach, M. Pollefeys, B. Girod, and R. Grzeszczuk.
“City-scale landmark identification on mobile devices”, CVPR, 2011

[6] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, D. Schmalstieg,
“Pose tracking from natural features on mobile phones”, in ISMAR, 2008.

[7] N. Henze, T. Schinke, S. Boll, “What is that? Object Recognition from
natural features on a mobile phone”, Proceedings of Workshop on Mobile
Interaction with the Real World, 2009.

[8] M. Aly, M. Munich, and P. Perona, “Distributed Kd-Trees for Retrieval
from Very Large Image Collections”, in BMVC 2011.

[9] W. Guan, S. You and U. Neumann, “Efficient Matching and Mobile
Augmented Reality”, ACM Transactions on Multimedia Computing,
Communications and Applications (TOMCCAP), speical issue on 3D
Mobile Multimedia, Volume 8 Issue 3s, Article No. 47, September 2012.

[10] G. Fritz, C. Seifert and L. Paletta, “A Mobile Vision System for
Urban Detection with Informative Local Descriptors”, Proceedings of the
Fourth IEEE International Conference on Computer Vision Systems, p.30,
January 04-07, 2006.

[11] R. Boris, K. Effrosyni and D. Marcin, “Mobile museum guide based
on fast SIFT recognition”, 6th International Workshop on Adaptive
Multimedia Retrieval, pp. 26-27, 2008.

[12] V. Pimenov, “Fast image matching with visual attention and surf descrip-
tors,” in Proceedings of the 19th International Conference on Computer
Graphics and Vision, pp. 49-56, 2009.

[13] L. V. G. H. Shao, T. Svoboda, “Zubud-Zrich buildings database for
image based recognition.” ETH Zrich, Tech. Rep. 260, 2003.

[14] X. Chen , M. Koskela, “Mobile visual search from dynamic image
databases”, Proceedings of the 17th Scandinavian conference on Image
analysis, Ystad, Sweden, May 01, 2011.

[15] J. J. Foo , R. Sinha, “Pruning SIFT for scalable near-duplicate image
matching”, Proceedings of the eighteenth conference on Australasian
database, p.63-71, Ballarat, Victoria, Australia , January 30-February 02,
2007.

[16] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W.-C. Chen,
T. Bismpigiannis, R. Grzeszczuk, K. Pulli, and B. Girod. “Outdoors
augmented reality on mobile phone using loxel-based visual feature
organization”, In Multimedia Information Retrieval, pages 427-434, 2008.

[17] Sergieh, H.M, Egyed-Zsigmond, E., Doller, M., Coquil, D., Pinon, J.-
M. and Kosch, H., “Improving SURF Image Matching Using Supervised
Learning”, in SITIS 2012.

[18] X. Pan and S. Lyu, “Detecting image region duplication using SIFT
features”, Proc. ICASSP, 2010.

[19] Martin A. Fischler , Robert C. Bolles, “Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography”, Readings in computer vision: issues, problems,
principles, and paradigms, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, 1987

[20] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust
features,” in Computer Vision - ECCV 2006.

[21] S. A. Chatzichristofis, Y. S. Boutalis, “CEDD: Color and Edge Directiv-
ity Descriptor: A Compact Descriptor for Image Indexing and Retrieval”
in ICVS 2008.

