
Distributed and Application-aware Task Scheduling
in Edge-clouds

Li Lin† Peng Li‡ Jinbo Xiong† Mingwei Lin†
†College of Mathematics and Informatics, Fujian Normal University, China
‡School of Computer Science and Engineering, The University of Aizu, Japan

∗Corresponding author: Li Lin (llfjfz@163.com)

Abstract—Edge computing is an emerging technology which
places computing at the edge of the network to provide an ultra-
low latency. Computation offloading, a paradigm that migrates
computing from mobile devices to remote servers, can now use the
power of edge computing by offloading computation to cloudlets
in edge-clouds. However, the task scheduling of computation
offloading in edge-clouds faces a two-fold challenge. First, as
cloudlets are geographically distributed, it is difficult for each
cloudlet to perform load balancing without centralized control.
Second, as tasks of computation offloading have a wide variety
of types, to guarantee the user quality of experience (QoE) in
terms of task types is challenging. In this paper, we present Petrel,
a distributed and application-aware task scheduling framework
for edge-clouds. Petrel implements a sample-based load balancing
technology and further adopts adaptive scheduling policies ac-
cording to task types. This application-aware scheduling not only
provides QoE guarantee but also improves the overall scheduling
performance. Trace-driven simulations show that Petrel achieves
a significant improvement over existing scheduling strategies.

Index Terms—Edge computing, computation offloading, edge-
clouds, task scheduling.

I. INTRODUCTION

Edge computing is an emerging technology [1], which
performs data analytics and storage close to the data source
(i.e., mobile devices) to reduce the network latency. This
computing paradigm has attracted great attention from both
academic and industry. As a typical use case, computation
offloading [2], which migrates computing from mobile devices
to the cloud, can now use the power of edge computing. The
computation offloading over edge computing is also known
as mobile edge computing [3]. By the deployment of edge-
clouds, which are clusters of small servers (e.g., cloudlets [4])
nearby mobile devices, the end user can benefit from the
ultra-low latency and perform computation offloading in edge-
clouds.

However, given a large number of end users asking for
computation offloading services, the task scheduling in edge-
clouds is a two-fold challenge. First, cloudlets in edge-clouds
are geographically distributed, and task requests from end
users dispersed to cloudlets are naturally unbalanced. Unlike
the cloud, which usually employs monolithic schedulers that
have centralized scheduling policies and complete control over
all resources, cloudlets schedule tasks alone and concurrently.
Without the global view of the overall cloudlets in edge-
clouds, it is difficult for each cloudlet to perform load bal-
ancing strategies.

Secondly, mobile applications have a wide variety of types,
and it is challenging to guarantee the user quality of experience
(QoE) in terms of task types. Generally speaking, people are
sensitive to the response latency when offloading latency-
sensitive applications (e.g., augmented reality); however, they
are more tolerant to the delay with latency-tolerant appli-
cations (e.g., deep neural net) but pay attention to if these
applications would complete within specific latency bounds.
Then, it puts forward a problem that how to schedule tasks
efficiently in terms of task types, which is unsolved in the
task scheduling for edge-clouds.

To solve the above challenges, in this paper, we propose
Petrel, a distributed and application-aware task scheduling
framework for edge-clouds. Unlike the monolithic schedulers
in the cloud, Petrel is a lightweight scheduler deployed on each
cloudlet running automatically. Petrel implements a simple
sample-based load balancing strategy, which employs the tech-
nology “the power of two choices” [5]. With this technology,
for load balancing, Petrel randomly probes two cloudlets in
edge-clouds and selects the cloudlet with the less load to place
the task. This way has been proved to be effective under
limited information [6] and can also reduce the scheduling
overhead significantly.

Furthermore, Petrel implements an application-aware
scheduling algorithm, which adapts different scheduling poli-
cies in terms of task types. Specifically, for latency-sensitive
tasks, Petrel uses a “greedy” policy to find the cloudlet which
has the minimum completion time for the tasks; whereas,
for latency-tolerant tasks, Petrel adopts a policy of “best
effort” scheduling. In the “best effort” scheduling, if there are
idle resources on the cloudlet, Petrel then performs the task
assignment; otherwise, it delays the task for a while but with
the latency bound guarantee, which we call delay scheduling.
The application-aware scheduling achieves a significant per-
formance improvement which is substantiated in our analysis
and experiments.

In this paper, our contributions can be summarized as
follows:
• we propose Petrel, a distributed task scheduling frame-

work for computation offloading in edge-clouds.
• Petrel uses a sample-based strategy for load balancing to

reduce the scheduling overhead.
• Petrel implements an application-aware scheduling algo-

rithm to improve the overall performance.

ar
X

iv
:1

90
2.

04
36

2v
1 

 [
cs

.D
C

] 
 1

2 
Fe

b 
20

19



The rest of this paper is organized as follows. Section II
reviews some background and related work about the task
scheduling in edge-clouds. Section III presents an overview of
the system architecture. Section IV builds the model of task
scheduling and objective. Section V introduces the distributed
and application-aware task scheduling algorithm. Section VI
evaluates Petrel with other existing strategies based on trace-
driven simulations, followed by conclusions in Section VII.

II. BACKGROUND AND RELATED WORK

In this section, we will review the background and related
work.

A. Edge Computing and Computation Offloading

Edge computing is now a compelling paradigm which
extends the cloud computing to the edge of the network. The
origins of edge computing can be traced to the development
of the Internet of Things (IoT) and 5G networks [3], in which
sensor data are ingested and analyzed at the edge for the low
latency. However, as edge computing has various advantages,
it enables a new breed of services and applications. As a
typical scenario, computation offloading over edge computing,
also known as mobile edge computing (MEC), is an emerging
computing paradigm that mobile devices migrate parts of their
computation to the edge nodes in the vicinity. This paradigm
offers a low end-to-end latency, which is critical for latency-
sensitive applications.

To utilize the power of edge computing, a large number of
edge nodes are required to be deployed in the proximity to
end users. These edge nodes are heterogeneous and different
in the form factors. However, the most notable paradigm of
the edge node is “cloudlet” [4], a small data center nearby
end users. Clusters of cloudlets, which are interconnected but
without centralized nodes, become a kind of “edge-clouds”.
Specifically, we use the word “edge-cloud” to represent this
infrastructure of cloudlets in this paper.

B. Task Schedulers

The research of task scheduling in edge-clouds is fresh.
As cloudlets are geo-distributed, scheduling on cloudlets is
naturally decentralized. Rashidi et al. [7] have proposed a
dynamic cloudlet selection policy, which uses the neuro-fuzzy
inference system to place tasks. This policy is robust to the
limited scheduling information. Shi et al. [8] have presented
an adaptive probabilistic scheduler, which can optimize the
energy consumption of tasks with time-constrained. Zhao et
al. [9] have introduced a cooperative scheduling mechanism
over edge-clouds and the cloud. The above works propose
sophisticated algorithms to place tasks on cloudlets across the
edge-clouds but are unaware of the characteristic of task types,
which has a vital impact on the task scheduling. By contrast,
Petrel implements a lightweight load balancing strategy and
further an application-aware task scheduling algorithm.

Daemon Cloudlet
Daemon Cloudlet

Daemon Cloudlet

Cloud

Edge-clouds

Execution Cloudlet Execution Cloudlet

Fig. 1: System architecture

III. SYSTEM ARCHITECTURE

Fig. 1 illustrates the architecture of Petrel. It is a typi-
cal multi-tiered architecture, including mobile devices, edge-
clouds, and the cloud. Thanks to the deployment of edge-
clouds over cloudlets which are well-connected with each
other, mobile devices can migrate their computation to these
cloudlets for low latency. We introduce the concept of “dae-
mon cloudlet”, which has the lowest delay with mobile devices
in the vicinity, and it plays the role of a computing proxy for
the mobile devices. Ideally, an offloading task is served by its
daemon cloudlet; however, too many tasks can cause a long
queueing time affecting the performance, and so a daemon
cloudlet would send tasks to other execution cloudlets for load
balancing. Petrel copes with the problem that whether a task
would be executed on a daemon cloudlet or other execution
cloudlets and which execution cloudlet to choose. Notice
that daemon cloudlets and execution cloudlets are relative, a
cloudlet can be a daemon cloudlet for some mobile devices
but an execution cloudlet for others.

To support a standard execution environment of computa-
tion offloading, cloudlets in edge-clouds are built on virtual
machines (VMs). VMs based resource provisioning [10] is
a widely-used technology to set up the executing environ-
ment for cloudlets quickly. When a computation offloading
executed, a mobile device migrates its method execution to a
VM associated with uploading data about the method. Then
when the cloudlet finishes, it returns results to the mobile
device. Every daemon cloudlet makes scheduling decisions
automatically for task requests from mobile devices in the
vicinity. The cloud in Petrel is backup for task executing but
not a centralized scheduling node.

IV. SCHEDULING MODEL

In this section, we build a model for the task scheduling
in edge-clouds, where the “task” refers to a computation
offloading from a mobile device to a remote server. A task
can be executed on mobile devices, cloudlets in edge-clouds
or the cloud. It is a multi-cloudlets scheduling problem, and
we define the problem in the following.



A. Task Completion Time
The set J contains tasks from mobile devices; the task

arrivals are independent and identically distributed (i.e., i.i.d).
For each task i in J , the completion time of the task on the
mobile device, the cloudlet, and the cloud are defined as:

Ti =

 Tmobile
i , the mobile device;
T cloud
i , the cloud;
T cloudlet
i , the cloudlet.

(1)

The completion time denotes the time span which a specific
platform completes the task.

When a task runs on the mobile device, the completion time
is equal to the task execution time Rmobile

i

Tmobile
i = Rmobile

i , (2)

where Rmobile
i depends on the hardware of the mobile device.

If a task is decided to be executed in the cloud, and its
completion time is calculated by

T cloud
i = Rcloud

i +
Di

Bcloud
+RTTcloud. (3)

Rcloud
i is the task execution time in the cloud; Di indicates

the data volume of uploading and downloading, and Bcloud

is the bandwidth; RTTcloud is the network delay. The part of
Di

Bcloud
+RTTcloud denotes the communication time between

the mobile device and the cloud. In general, the cloud is
considered to have unlimited resource capacity, and so a task
arriving in the cloud is immediately served with the time
Rcloud

i .
The case of executing tasks on cloudlets is complicated.

Cloudlets in edge-clouds can be seen as a network topology
G = (V,E), where the set V denotes the connected cloudlets.
In Petrel, a daemon cloudlet has the lowest latency with mobile
devices in the vicinity. If a task is assigned to its daemon
cloudlet vd ∈ V , the completion time is

T cloudlet
i = Rvd

i +W vd
i +

Di

Bvd

+RTTvd (4)

Unlike the cloud, cloudlets have limited resource, and the
task should contend for running including the waiting time
W vd

i . As a result, the completion time contains the task
execution time Rvd

i on the vd ∈ V , the waiting time W vd
i , and

the communication time Di

Bvd
+ RTTvd

. Generally, cloudlets
have larger bandwidth Bvd and lower delay RTTvd than the
cloud, and so the smaller of the communication time. In
particular, for load balancing, a daemon cloudlet would send
the task to other execution cloudlets, for example, the cloudlet
ve ∈ V . If the task i is assigned to the cloudlet ve, and its
completion time is calculated by:

T cloudlet
′

i = Rve
i +W ve

i +
Di

Bve

+RTTvd +RTTve (5)

In (5), it has an additional RTTve comparing to (4). As in
Petrel, the mobile device first connects to its daemon cloudlet
which decides how to place tasks; if the task is finally assigned
to other execution cloudlets, e.g., ve in this example, the
daemon cloudlet will redirect the task to ve with the additional
delay RTTve .

Daemon

Cloudlet

Execution

Cloudlet

VM1

VM2

...

VMn

VM1

VM2

Execution

Cloudlet

Execution

Cloudlet

Execution

Cloudlet
VM1

VM2

...
VMn

VM1

VM2VMVM

VM3

VM4

VM1

VM2VV

VM3

...
taskQueue

1

2

Fig. 2: An illustration of task scheduling in Petrel. If the
daemon cloudlet has no idle VMs, it will probe two other
execution cloudlets and pick up the one with the less load.

B. The Scheduling Objective

To formalize the completion time on different platforms, we
define an allocation vector A = (α1, α2, α3) to indicate which
platform a task is assigned to. In the vector A, α1 denotes
whether the task is executed on a mobile device with α2 for
the cloud and α3 for the cloudlet; the value 1 represents yes,
otherwise 0. For example, A = (0, 0, 1) indicates that the task
is executed on the cloudlet. Further, we use the task speedup
as the metric indicating the benefit of the task executed on
remote servers

Spi =
Rmobile

i

ATi
. (6)

Then, for all tasks in J , the objective of task scheduling is to
maximize the following:

Spi = (
∑
i∈J

Rmobile
i

ATi
)/N, (7)

i.e., the average task speedup, where N indicates the number
of task. Specifically, for each task i, the Spi should larger than
1, which means the computation offloading should improve its
performance on the mobile device.

V. DISTRIBUTED AND APPLICATION-AWARE TASK
SCHEDULING

To solve the challenges of the task scheduling in edge-
clouds, in this section, we propose a distributed and
application-aware algorithm (DAA).

Fig. 2 illustrates the process of task scheduling in Petrel.
Tasks are served using the principle of first come, first served
(FCFS) based on VMs as one task at a time for each VM.
Once a task is scheduled, Petrel first finds if there are idle VMs
on the daemon cloudlet, if so, then the daemon cloudlet will
execute the task; otherwise, Petrel will probe other execution
cloudlets. As shown in Fig. 2, when the task at the head of
taskQueue is scheduled, the daemon cloudlet finds itself has
no idle VMs at the time; then it sends probe 1 and 2 and finds
the probe 2 with the less load to assign the task.

The details of task scheduling are shown in Algorithm 1.
For each taski in taskQueue, if the daemon cloudlet has idle
VMs, it will serve the task immediately (in line 2); otherwise,
it performs the load balancing policy (in line 5) and adopts



Algorithm 1 Distributed and Application-aware Scheduling

Initialization: for each taski arrives at its daemon cloudlet
cloudletd, we insert taski into the queue taskQueue;
Typesen denotes the set of latency-sensitive tasks; boundi
denotes the latency bound of taski

1: if cloudletd has idle VMs then
2: assign taski to cloudletd;
3: else
4: calculate the expected completion time tdi on cloudletd;

5: randomly probe two cloudlets in edge-clouds, and pick
up the one, cloudlete, with the least loaded of the two
cloudlets;

6: if taski ∈ Typesen then
7: calculate the expected completion time tei on

cloudlete;
8: if tei < tdi then
9: assign taski to cloudlete;

10: else
11: assign taski to cloudletd;
12: end if
13: else
14: // taski is a latency-tolerant task
15: if cloudlete has idle VMs then
16: assign taski to cloudlete;
17: else
18: calculate the expected completion time td

′

i on
cloudletd for a delay of time D;

19: if td
′

i ≥ boundi then
20: assign taski to cloudletd;
21: else
22: delay taski for time D
23: end if
24: end if
25: end if
26: end if

different assignment strategies in terms of task types (in lines
6 to 25).

The “load” in Algorithm 1 indicates the task queue length
with respect to the task expected completion time on a
cloudlet. Specifically, the task expected completion time means
the wall-clock time at which a cloudlet completes a task. In
DAA, what we say the least loaded of two cloudlets means
if a task is tentatively assigned to the two cloudlets, the
one providing the earlier expected completion time has the
less load, as the cloudlete in the algorithm. We maintain
a PriorityQueue to store the ready time for all VMs on a
cloudlet, and so the head of the PriorityQueue is the earliest
ready time for a task. Then, the task expected completion time
is calculated based on the PriorityQueue.

If there are no idle VMs on the daemon cloudlet, then the
task scheduling strategies are task type dependent. If taski is
a latency-sensitive task, we compare its expected completion
time on cloudlete with that on the daemon cloudlet cloudletd

70
92

120

333

411

504

5512

167 176
208

572
605

718

5639

Pool Pingpong Workout Face Lego Drawing Sandwich
0

100

200

300

400

500

600

700

5500

T
im

e
 (

m
s
)

 Cloudlet

 Cloud

Fig. 3: The mean latency of benchmarks offloading to the
cloudlet and the cloud

and assign the task to the faster one, as in lines 7 to 12. This
comparison is necessary, as a task migrating to an execution
cloudlet will cause an additional network delay shown in (5).
As a result, this comparison guarantees the optimal latency
of task executing. On the other hand, if taski is a latency-
tolerant task, we first check if cloudlete has idle VMs; if so,
we perform the assignment; otherwise, we tentatively delay the
task scheduling and calculate the expected completion time
td

′

i in line 18. The td
′

i should satisfy the latency bound of
taski; if not, it will be assigned to cloudletd with the expected
completion time tdi . This process is what we call the “best
effort” scheduling with the delay scheduling if there are no
idle VMs.

VI. EVALUATION

In this section, we evaluate the performance of Petrel based
on trace-driven simulations. First, we introduce benchmarks
used in the simulations. Then, the experimental methodology
is provided.

A. Benchmarks

Applications in computation offloading have various types
and QoE demand [11], and we classify these applications
into two categories: latency-sensitive applications and latency-
tolerant applications. Then, we use the applications listed in
the paper [12] as benchmarks, which are type of cognitive
assistance applications [13]. Fig. 3 shows the mean latency
when these benchmarks are offloaded to the cloudlet and the
cloud, source from [12]. Notice that the latency on the cloudlet
in this figure is considered as the service time in the following
simulations; the service time indicates the time span if a task
runs alone on the cloudlet. By further analysis, we find that the
Sandwich uses a deep neural net approach which is compute-
intensive and time-consuming, and people are more tolerant of
the application; therefore, it can be seen as a latency-tolerant
application. However, the other applications, employing some
simple AI algorithms, need a tight interaction with users, and
so they are latency-sensitive applications.

B. Methodology

To conduct the simulations, we build a trace-driven data
set. The data set contains 200 offloading tasks; each task is



randomly selected from benchmarks in Fig. 3. There are 10
cloudlets in our edge-cloud, and each cloudlet has the number
of virtual machine range from 1 to 10. Task arrivals on their
daemon cloudlets are modeled as a Poisson process with the
arrival rate λ. We set two different arrival rates λ=1 and λ=2 in
our simulations, which means the mean time intervals between
two tasks are 1 and 0.5 unit time respectively.

The latency illustrated in Fig. 3 can be seen as the time span
when a task is offloaded from a mobile device to its daemon
cloudlet, which is considered to have the lowest latency with
mobile devices in the vicinity, and the RTT is usually smaller
than 10ms. However, if a daemon cloudlet decides to send
tasks to other execution cloudlets, it will cause an additional
RTT from mobile devices to execution cloudlets according to
(5), and this additional RTT usually ranges from 50-70ms [14].
We consider these RTTs in the construction of our data set.

1) Comparing Algorithms: For a comprehensive evaluation,
we compare DAA with the following scheduling algorithms:
• DaemonCloudletOnly: all tasks are executed only on

daemon cloudlets with the rule of FCFS. There is no
load balancing strategy.

• RoundRobin: a simple load balancing algorithm. Tasks
are distributed to cloudlets on the edge-cloud in a round
robin way. This algorithm treats each cloudlet equally,
without considering the benefit of daemon cloudlets.

• GreedyScheduler: a greedy scheduling algorithm. For
each task, GreedyScheduler always finds an optimal
cloudlet which has the minimum completion time to serve
the task.

• TwoChoices: employing the “the power of two choices”
strategy. In TwoChoices, for each task, it randomly probes
two cloudlets and selects the one has the less load.

Our proposed DAA in Algorithm 1, is a distributed scheduling
algorithm, employing a sample-based load balancing technol-
ogy and further an application-aware scheduling strategy.

C. Simulation Results

In this section, we evaluate the DAA algorithm in two
metrics: the average weighted turnaround time (AWT) and the
makespan for cloudlets.

1) Average Weighted Turnaround Time: The average
weighted turnaround time is defined as:

AWT = (

N∑
i

T turnaround
i

T service
i

)/N. (8)

T service
i is the service time as a task is served by a cloudlet

alone; T turnaround
i denotes the turnaround time of a task,

i.e., the completion time we define in Section IV-A; N is the
number of tasks. Reviewing (7) in Section IV-B, the scheduling
objective is to maximize the overall task speedups. In other
words, by comparing (7) and (8), it can be seen that the higher
the average task speedup, the lower the average weighted
turnaround time.

Fig. 4 shows the comparison of these algorithms in terms
of the average weighted turnaround time. As can be seen,

14.8

18.5

2.8 3

1.3

DaemonCloudletOnly

RoundRobin

GreedyScheduler

TwoChoices

DAA

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 W

e
ig

h
te

d
 T

u
rn

a
ro

u
n
d
 T

im
e

(a) λ = 1

15.9

19.9

3.4
4.1

1.4

DaemonCloudletOnly

RoundRobin

GreedyScheduler

TwoChoices

DAA

0

2

4

6

8

10

12

14

16

18

20

22

A
v
e
ra

g
e
 W

e
ig

h
te

d
 T

u
rn

a
ro

u
n
d
 T

im
e

(b) λ = 2

Fig. 4: The average weighted turnaround time

DaemonCloudletOnly and RoundRobin have the worst perfor-
mance. Specifically, DaemonCloudletOnly restricts all tasks
to be executed only on daemon cloudlets and employs no
load balancing strategies, leading to poor performance on
the less powerful cloudlets. Although RoundRobin uses a
simple Round Robin load balancing, this strategy treats every
cloudlet equally without considering the benefit of daemon
cloudlets and the more powerful cloudlets. GreedyScheduler
achieves a significant performance improvement, as it always
assigns tasks to the cloudlet that has the minimum completion
time. However, it incurs enormous scheduling overhead across
cloudlets on the edge-cloud. On the contrary, the TwoChoices
algorithm only samples two cloudlets when performing load
balancing, but it gets similar performance with GreedySched-
uler.

It can be seen that DAA has better performance than the
other algorithms, and the gap is increasing with a more
frequent task arrival (λ = 2). DAA adopts different strategies
according to the type of tasks, as “greedy” for latency-
sensitive tasks and “best effort” for latency-tolerant tasks.
These strategies can conquer the drawback by always placing
tasks greedily without considering the type of the task, which
can cause the starvation of short tasks (latency-sensitive tasks)
because of the long tasks (latency-tolerant tasks) executing,
just as GreedyScheduler does. Moreover, DAA gets the task
assignments with a lightweight load balancing strategy like
TwoChoices does. Furthermore, we evaluate the performance



1970 1990

3360
3072

2016

26918

52453

8385

9339

7432

8790

10622

5974
5728

3673

DaemonCloudletOnly

RoundRobin

GreedyScheduler

TwoChoices

DAA

0

2000

4000

6000

8000

10000

36000

54000

M
a
k
e
s
p
a
n
 (

m
s
)

 MinMakespan

 MaxMakespan

 AverageMakespan

(a) λ = 1

970 990

2660 2505

904

26918

52453

8105

8909

6707

8290

10056

5289

6167

2651

DaemonCloudletOnly

RoundRobin

GreedyScheduler

TwoChoices

DAA

0

2000

4000

6000

8000

10000

36000

54000

M
a
k
e
s
p
a
n
 (

m
s
)

 MinMakespan

 MaxMakespan

 AverageMakespan

(b) λ = 2

Fig. 5: The minimum, maximum, and average makespan of
cloudlets

when all tasks are executed on the cloud, and the average
weighted turnaround time is 1.6, which is also worse than
DAA. It appears that task executed on cloudlets can achieve
better performance than on the cloud if the right scheduling
algorithms are adopted. Meanwhile, all user tasks executed
on the public cloud seems unpractical in terms of resource
consumption.

2) Makespan: Makespan is defined as the time when a
cloudlet completes the last task; in other words, it is a
metric of the throughput of the cloudlet [15]. Scheduling
algorithms strive for the goal of minimizing the makespan
and maximizing the throughput. Fig. 5 depicts the mini-
mum (MinMakespan), the maximum (MaxMakespan), and
the average makespan (AverageMakespan) of cloudlets. The
average makespan indicates the mean value of all cloudlets
in our edge-cloud. It can be seen that DaemonCloudlet and
RoundRobin have the worst maximum and average makespan,
as they perform no or inefficient load balancing strategies,
which incurs so obviously unbalanced load among cloudlets.
GreedyScheduler and TwoChoices improve the overall average
makespan by distributing tasks efficiently, but sacrifice some
cloudlets which have the lower load, as can be seen in the
minimum makespan. Finally, the DAA algorithm achieves the
best overall performance.

VII. CONCLUSION

In this paper, we present Petrel, a distributed and
application-aware task scheduling framework for edge-clouds.

Petrel implements a sample-based load balancing for cloudlets
in edge-clouds, which is simple but efficient and can reduce
the scheduling overhead sharply. Furthermore, Petrel adopts
different scheduling policies in terms of task types, as the
“greedy” policy for latency-sensitive tasks but the “best effort”
service for latency-tolerant tasks. The results of trace-driven
simulations show that our proposed scheduling strategies
achieve significant improvements over the existing scheduling
algorithms.

VIII. ACKNOWLEDGMENTS

This work is supported by National Natural Science Foun-
dation of China under grant No. 61502103, 61872088, and
61872086, and Natural Science Foundation of Fujian Province
under grant No. 2017J01737.

REFERENCES

[1] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[2] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,” Wireless
communications and mobile computing, vol. 13, no. 18, pp. 1587–1611,
2013.

[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computinga key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, Oct 2009.

[5] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094–1104, Oct 2001.

[6] A. W. Richa, M. Mitzenmacher, and R. Sitaraman, “The power of two
random choices: A survey of techniques and results,” Combinatorial
Optimization, vol. 9, pp. 255–304, 2001.

[7] S. Rashidi and S. Sharifian, “Cloudlet dynamic server selection policy
for mobile task off-loading in mobile cloud computing using soft
computing techniques,” The Journal of Supercomputing, vol. 73, no. 9,
pp. 3796–3820, Sep 2017.

[8] T. Shi, M. Yang, X. Li, Q. Lei, and Y. Jiang, “An energy-efficient
scheduling scheme for time-constrained tasks in local mobile clouds,”
Pervasive and Mobile Computing, vol. 27, pp. 90 – 105, 2016.

[9] T. Zhao, S. Zhou, X. Guo, Y. Zhao, and Z. Niu, “A cooperative
scheduling scheme of local cloud and internet cloud for delay-aware
mobile cloud computing,” in 2015 IEEE Globecom Workshops (GC
Wkshps), Dec 2015, pp. 1–6.

[10] K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satyanarayanan, “Just-in-
time provisioning for cyber foraging,” in Proceeding of MobiSys, 2013.

[11] F. A. Silva, G. Zaicaner, E. Quesado, M. Dornelas, B. Silva, and
P. Maciel, “Benchmark applications used in mobile cloud computing
research: a systematic mapping study,” The Journal of Supercomputing,
vol. 72, no. 4, pp. 1431–1452, Apr 2016.

[12] Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, G. Wu, K. Ha, K. Elgazzar,
P. Pillai, R. Klatzky, D. Siewiorek, and M. Satyanarayanan, “An empiri-
cal study of latency in an emerging class of edge computing applications
for wearable cognitive assistance,” in Proceedings of SEC, 2017, pp.
14:1–14:14.

[13] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan,
“Towards wearable cognitive assistance,” in Proceedings of MobiSys,
2014.

[14] S. Agarwal, M. Philipose, and P. Bahl, “Vision: The case for cellular
small cells for cloudlets,” in Proceedings of MCS, 2014, pp. 1–5.

[15] M. Maheswaran, S. Ali, H. J. Siegal, D. Hensgen, and R. F. Freund,
“Dynamic matching and scheduling of a class of independent tasks onto
heterogeneous computing systems,” in Proceedings of HCW, April 1999,
pp. 30–44.


	I Introduction
	II Background and Related Work
	II-A Edge Computing and Computation Offloading
	II-B Task Schedulers

	III System Architecture
	IV Scheduling Model
	IV-A Task Completion Time
	IV-B The Scheduling Objective

	V Distributed and Application-aware Task Scheduling
	VI Evaluation
	VI-A Benchmarks
	VI-B Methodology
	VI-B1 Comparing Algorithms

	VI-C Simulation Results
	VI-C1 Average Weighted Turnaround Time
	VI-C2 Makespan


	VII Conclusion
	VIII Acknowledgments
	References

