Lawrence Berkeley National Laboratory
LBL Publications

Title
Enhancing loT anomaly detection performance for federated learning

Permalink
https://escholarship.org/uc/item/81z5r3gm|

Journal
Digital Communications and Networks, 8(3)

ISSN
2468-5925

Authors

Weinger, Brett
Kim, Jinoh
Sim, Alex

Publication Date
2022-06-01

DOI
10.1016/j.dcan.2022.02.007

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/81z5r3qm
https://escholarship.org/uc/item/81z5r3qm#author
https://escholarship.org
http://www.cdlib.org/

Digital Communications and Networks 8 (2022) 314-323

Digital Communications and Networks

journal homepage: www.keaipublishing.com/dcan

= mrmasEEGER)
Digital Communications

Contents lists available at ScienceDirect and Networks

Py

Enhancing IoT anomaly detection performance for federated learning]

Brett Weinger?, Jinoh Kim ™", Alex Sim °, Makiya Nakashima ¢, Nour Moustafa ‘, K. John Wu"

@ Stony Brook University, Stony Brook, NY, USA

b Lawrence Berkeley National Laboratory, Berkeley, CA, USA
¢ Texas A&M University, Commerce, TX, USA

d University of New South Wales, Canberra, Australia

Check for
updates

ARTICLE INFO ABSTRACT

Keywords:

Data augmentation
Federated learning
Internet of things
Anomaly detection
Machine learning

Federated Learning (FL) with mobile computing and the Internet of Things (IoT) is an effective cooperative
learning approach. However, several technical challenges still need to be addressed. For instance, dividing the
training process among several devices may impact the performance of Machine Learning (ML) algorithms, often
significantly degrading prediction accuracy compared to centralized learning. One of the primary reasons for such
performance degradation is that each device can access only a small fraction of data (that it generates), which
limits the efficacy of the local ML model constructed on that device. The performance degradation could be
exacerbated when the participating devices produce different classes of events, which is known as the class
balance problem. Moreover, if the participating devices are of different types, each device may never observe the
same types of events, which leads to the device heterogeneity problem. In this study, we investigate how data
augmentation can be applied to address these challenges and improving detection performance in an anomaly
detection task using IoT datasets. Our extensive experimental results with three publicly accessible IoT datasets
show the performance improvement of up to 22.9% with the approach of data augmentation, compared to the
baseline (without relying on data augmentation). In particular, stratified random sampling and uniform random
sampling show the best improvement in detection performance with only a modest increase in computation time,
whereas the data augmentation scheme using Generative Adversarial Networks is the most time-consuming with
limited performance benefits.

1. Introduction

Internet of Things (IoT) devices are widely used in several fields, such
as building operations [1,2], healthcare [3,4], environmental studies [5],
and mobile behavior analysis [6,7]. These devices generate new data,
which need to be processed and analyzed to meet application-specific
goals. For example, the virtual keyboard for mobile devices collects
and analyzes the keyboard input for predicting next words [8]. A critical
challenge for analyzing data generated by independent devices is how to
deal with privacy and confidentiality concerns [9,10]. Federated
Learning (FL) has been introduced to address these concerns [11-13].
Under FL, any data instance in each device will not be shared with any
other participants in the system; however, the Machine Learning (ML)
model at each device is shared with the centralized server coordinating
the FL service. In other words, each device learns a model from its own
local data (local model), and then the coordinator combines them to
build an aggregated model (global model). Thus, the basic idea of the FL

* Corresponding author.
E-mail address: jinoh@lbl.gov (J. Kim).

https://doi.org/10.1016/j.dcan.2022.02.007

approach is the sharing of ML models, thereby not disclosing the data
that may contain confidential information.

Compared to a centralized learner, FL faces various performance
challenges [13]. One of the critical reasons for the performance degra-
dation is that each device generates only a small fraction of data, which
limits the efficacy of its local ML model. Often, each device participating
in an FL environment encounters different types of data; this class
imbalance may impact the overall performance critically. In addition,
when the participating devices are of different types, i.e., with device
heterogeneity, the devices may observe completely different events,
further deteriorating the performance. These challenges are prevalent in
many FL settings, with thousands of end devices distributed across the
system.

In this study, we address the problem of performance degradation in
an FL setting in the context of class imbalance and device heterogeneity.
To this end, we take an approach of data augmentation to approximate
the FL performance to one in the centralized learning environment,

Received 20 January 2021; Received in revised form 17 February 2022; Accepted 23 February 2022

Available online 3 March 2022

2352-8648/© 2022 Chongging University of Posts and Telecommunications. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:jinoh@lbl.gov
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dcan.2022.02.007&domain=pdf
www.sciencedirect.com/science/journal/23528648
http://www.keaipublishing.com/dcan
https://doi.org/10.1016/j.dcan.2022.02.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.dcan.2022.02.007
https://doi.org/10.1016/j.dcan.2022.02.007

B. Weinger et al.
Table 1
AD performance metrics.
Metric Definition
Accuracy TP + TN
TP + TN + FP + FN
Precision
TP + FP
Recall TP
TP + FN
F1 score 2TP
2TP + FP + FN

which mandates the sharing of local data with little data privacy. Spe-
cifically, this study investigates how data augmentation can be applied to
improve detection performance for IoT Anomaly Detection (AD) with an
extensive evaluation using different IoT datasets.

Contributions: The key contributions of this study can be summa-
rized as follows:

@® We show the performance degradation problem for the simple
adoption of FL in the context of AD by comparing the detection rates
to the traditional, non-FL approach using the IoT datasets.

The datasets contain only a small fraction of anomalies (compared
to the fraction of benign samples), and we show how critically the
class imbalance impacts the performance of AD;

@ To address the class imbalance problem in FL, we design five different
FL systems, each of which implements one of the following data
augmentation schemes: random oversampling, stratified over-
sampling [14], Synthetic Minority Oversampling Technique (SMOTE)
[15], Adaptive Synthetic (ADASYN) [16], and Generative Adversarial
Networks (GANs) [17,18]. Moreover, we also present our strategy to
augment data locally to mitigate the class imbalance concern, so as to
improve the quality of local models under FL;

@® We conduct extensive experiments in homogeneous and heteroge-
neous settings with three publicly available IoT datasets (two from
TON_IoT [19] and one from DS20S [20], as described in Section 3.1).
We report the experimental results and observations that support the
feasibility of our proposed approach.

The organization of this paper is as follows. In Section 2, we introduce
relevant background information regarding AD, FL, and related studies.
We provide a summary of the datasets used for this study and conduct
preliminary analysis, including data statistics and centralized classifier
metrics in Section 3. Next, we present common strategies for handling
imbalanced classification and explain our sampling approach in Section
4. In Section 5, we report our experimental results with these strategies
for homogeneous and heterogeneous settings. We conclude our presen-
tation with a summary and future direction in Section 6.

2. Background

In this section, we provide an overview of AD, FL, and a summary of
previous work closely related to this study.

2.1. Anomaly detection

AD is an actively studied area of computational research [21]. The
advances in ML have led to a body of ML-based methods for improving the
performance of AD models [22]. The majority of these AD algorithms rely
on the differences in frequency and distribution between normal and
anomalous data records. When these assumptions hold true, unsupervised
learning effectively identifies the clusters of anomalies. However, when
the features from anomalous records are similar to those of normal sam-
ples, supervised learners are more effective. In this study, we focus on the
supervised learners for AD in a distributed setting described in Section 2.2.

Table 1 shows several common performance metrics used to measure
the effectiveness of AD algorithms. An AD algorithm is typically

Digital Communications and Networks 8 (2022) 314-323

described as giving a positive mark to an anomalous data record and a
negative mark to a normal record. Following this notion, Table 1 dif-
ferentiates four classes of data records: True Positive (TP) — anomalies
correctly classified, True Negative (TN) — normal instances correctly
classified, False Positive (FP) — normal instances incorrectly classified as
anomalies, and False Negative (FN) — anomalies incorrectly classified as
normal. The four performance metrics are defined by the number of in-
stances of these four classes. We know that accuracy could be a biased
metric based on published studies as it provides equal weight to positive
and negative classes. In comparison, precision and recall are often
considered effective when used together. F1 score is the harmonic mean
of precision and recall and is regarded as a suitable replacement for the
precision and recall pair. In this study, we choose to use F1 as the main
metric for measuring the AD algorithms.

2.2. Federated Learning

FL is an ML approach that allows several devices to contribute to a
global model [11-13]. McMahan et al. [11] showed that starting with an
initial neural network, a set of compute nodes could reach a common
optimal solution through multiple rounds of local training and global
aggregation. To accommodate the relatively low (and varying) speed of
updating, the authors also proposed the FederatedAveraging algorithm, a
variation of Stochastic Gradient Descent (SGD), to allow each compute
node to make more progress before aggregation.

A typical FL implementation employs a server to manage the
participating compute nodes, which are also referred to as the clients.
The interactions between the server and clients can be described as fol-
lows. The FL server first accepts connections from a subset of K devices
with n total examples for a given training round t. This proportion of total
available clients chosen per round is donated by a parameter C (i.e., a
fraction of clients). Once C-K of the clients has been chosen, the server
enters a configuration phase where the current model checkpoint is
retrieved and distributed to user devices. Client nodes then use their
available data to train this model using specified values for local epochs
E, batch size B, learning rate #, and any other necessary parameters. Each
device k will then repeatedly calculate weight updates for the specified
number of epochs and for every batch b:

wh = wk — pVE(wk;b)

The final updates are then reported back to the server to be aggre-
gated together via the following weighted averaging function:

K n
= Zk:l ;kwk

The FL server typically enforces a timeout if clients do not report back
within an allotted window. However, a minimum number of successful
updates are necessary to commit to the global model, which could still
force the server to wait for the slow clients to complete the learning
process.

Through this process, FL completes its distributed learning without
sharing local data, thus mitigating the privacy concern. In this study, we
address some performance issues in FL, particularly, the impact of class
imbalance and node heterogeneity.

Wit

2.3. Related work

IoT Anomaly Detection. As noted earlier, there are many ML-based AD
algorithms for IoT devices. For example, deep autoencoders have also been
shown to be successful in detecting anomalous network traffic from IoT
devices [23]. Clustering is another efficient technique for finding deviations
from normal behavior [24]. Other effective algorithms include logistic
regression, support vector machines, decision trees, and random forests
[25]. An orthogonal technique to improve all these methods is to enhance
feature selection to better capture IoT-specific network behaviors [26].

B. Weinger et al.

Table 2
Summary of IoT/IloT datasets in TON_IoT.

Dataset Specific features # % Description

instances anomalies

Fridge fridge_temperature 587,077 14.7 IoT Fridge

(Number) activity
temp_condition (String)

GarageDoor door _state (Boolean) 591,447 12.9 IoT Garage
Door activity

sphone_signal (Boolean)

GPSTracker latitude (Number) 595,687 13.7 IoT GPS
Tracker
activity

longitude (Number)

Modbus FC1_Read_Input_Reg 287,195 22.4 IoT Modbus

(Number) activity
FC2_Read _Discrete_Val

(Number)

FC3_Read_Holding_Reg

(Number)

FC4_Read_Coil

(Number)

MotionLight motion_stat (Number) 452,263 14.1 IoT Motion
Light
activity

light_stat (Boolean)

Thermostat curr_temperature 442,229 12.7 IoT

(Number) Thermostat
activity
termostat_stat (Boolean)

Weather temperature (Number) 650,243 13.9 IoT Weather

activity
pressure (Number)
humidity (Number)

AD over FL is frequently used for intrusion detection on IoT devices.
In this context, there are novel strategies to augment the FL techniques,
for example by incorporating blockchain [27] and language-analysis
[28]. Beyond intrusion detection, FL is also used to detect suspicious
network traffic flows while preserving data privacy [29]. A closely
related application scenario involves malicious clients that could
dramatically challenge the FL approach. In this case, identifying and
removing updates from such adversarial clients is critical [30].

3. Data description and learning models

We employ three IoT datasets, such as Modbus and Weather datasets
from TON_IoT collection [19] and the DS20S dataset [20] for our study
of AD with FL. In this section, we first provide the description and
analysis of the IoT datasets and then discuss potential limitations of the
naive adoption of FL with our preliminary experimental results.

3.1. Description of IoT datasets

We first use two datasets from the TON_IoT collection [19], which
contains IoT telemetry readings, operating system logs, and network
traffic information that were published in 2019 for cybersecurity appli-
cations. The positive events in this collection are various cyberspace at-
tacks generated in laboratories. These attacks include some of the most
common hacking events, such as scanning, Denial of Service (DoS), and
backdoor attacks. Unfortunately, there was no published study of FL
effectiveness using this data collection when we started this study.

Table 2 summarizes the IoT/IIoT datasets in the TON_IoT collection.
It includes seven independent datasets collected from seven different IoT
devices. Each dataset provides specific features as shown in the table. In
addition, there are four common features defined in all the datasets,
which are date, time, label and type. Here, the label feature has either 1
(positive) or 0 (negative), while the type feature shows the attack cate-
gory if applicable. After examining individual datasets, we decide to
focus on Modbus and Weather. The Modbus dataset contains a rich set of

Digital Communications and Networks 8 (2022) 314-323

Table 3
Transforming Modbus features using multiple bins. The “# features” is the
number of neurons in the input layer for FL.

Bin size # features Training time (sec)
500 632 599.4

1000 314 308.1

2000 154 260.8

3000 101 190.4

4000 79 175.6

No encoding 4 93.2

features compared to data for other IoT devices. It is a record of
communication between a power plant supervisory computer and a
remote terminal unit in an electrical power system (i.e., SCADA or Su-
pervisory Control and Data Acquisition systems). The Weather dataset
has more records than any other in the TON_IoT collection.

In the third dataset, we use the Distributed Smart Space Orchestration
System (DS20S) network traffic traces [20]. It contains communications
between seven different service types across four emulated IoT sites [31].
The positive events in this dataset are malicious traffic such as spying,
abnormal operations, and DoS attacks.

The authors of DS20S dataset trained a set of distributed ML models
and obtained a detection accuracy of 99% [31]. That approach is based
on centralized learning, while we will use this dataset in a distributed FL
framework.

3.2. Feature engineering

Next, we describe how we prepare the three datasets for later studies.
We describe the feature engineering work on each dataset in turn.

The first IoT dataset is named Modbus. Even though it has more
features than others, it only contains four numeric features, corre-
sponding to four sensors. If these features are used directly as input to a
neural network for FL, the neural network would only have a handful of
input neurons. Our initial exploration of building neural networks with
such input neurons found them to be not very effective in identifying
anomalies. To improve the effectiveness of neural networks, we
increased the size of the input layer. A well-known approach named one-
hot encoding treats each distinct value in the input features as a binary
variable. In this particular case, the Modbus dataset has more than
50,000 distinct values, which leads to large neuron networks that require
large memory and computational time. For this reason, we transform the
features into a discrete domain using a set of bins with a prescribed
bin_size. Each bin becomes a transformed feature that uses a binary flag to
indicate if a register's reading is within a given range of values.

Table 3 compares the number of Modbus features after the trans-
formation based on bin size, along with the training overhead in seconds.
Preliminary testing in Table 3 shows that setting bin_size to 1000 achieves
a substantially large feature space and is more efficient than smaller sizes
with the manageable training overhead. This bin size is used in the rest of
this study even though it might be worthwhile to explore the choice of
bin_size further.

Next, we briefly study the statistics of Modbus dataset. Fig. 1a shows
kernel density estimation functions for each class indicating the fre-
quency of values for the FC1_Input Register feature. We see that the
distributions of normal and anomalous records are very close to each
other, which suggests that it would be difficult to differentiate the in-
stances between these two classes.

For the Weather dataset, there is significantly less variation in feature
values. We set the bin size to 0.5. The density distributions of Weather
features from the normal class are also similar to those from the anom-
alous class. Fig. 1b shows the distributions of humidity; among all the
Weather features, the humidity feature has the greatest difference be-
tween the two classes.

Each instance of the DS20S dataset includes information about the
source, destination, accessed nodes, operation performed, and value

B. Weinger et al.

Digital Communications and Networks 8 (2022) 314-323

1e=5 0.012
1.6
1.4 1 0.010 4
1.2
0.008 4
1.0 4
0.8 - .‘ ‘ 0.006 -
|
0.6 - '
. 0.004 4
0.4 \
\
- \
0.2 1 —— normal 0.002 —— normal
—— anomalous ——— anomalous \
0.0 - T : : 0.000 r - : : —
-10000 O 10000 20000 30000 40000 50000 60000 70000 20 40 60 80 100
FC1_Read_Input_Register humidity

(a) Modbus FC1_Read_Input_Register Feature

(b) Weather Humidity Feature

Fig. 1. Kernel density estimations for TON_IoT Modbus FC1_Read_Input_Register and Weather humidity readings, separated by class. The similarity of these prob-

ability distributions motivate supervised learning to classify unknown readings.

Table 4
Medians of selected DS20S encoded features.

Feature Normal Anomalies

sourceType
sourceLocation
destinationServiceType
destinationLocation
accessedNodeType
operation

value

oA NWO®N
= JE NS, IR NN

5347

associated with a transmitted packet as well as a label assigning it to a
normal or anomalous class. Features specific to particular devices are
dropped in favor of shared features among all devices.

Anomalies are extremely sparse in this dataset, making up less than
3% of the total samples. Thus, it is important to not lose vital information
during the preprocessing phase. One-hot encoding is used for all features
aside from the one named value as it has a range of over 10,000, while the
other features are restricted to a small number of choices. The value
feature most often takes on an integer value; however, it can also be True,
False, or blank. The latter three options are given their own column with
a binary flag, while a bin size of 50 is used to encode the remaining values
in the same fashion as the two previous datasets.

Table 4 shows median values of selected features from the normal and
anomalous data classes. For the value feature in particular, the arithmetic
mean can be a misleading metric as values of 0 and 1 are by far the most
common and it would therefore be heavily influenced by larger values.
Indeed, while the median of this feature for the anomalous data is only 1,
its mean exceeds 2800. Though packets with 0 or 1 values can still
certainly be and often are normal, this information along with several
other disparities between the classes nonetheless provides useful insight
for classification.

3.3. Limitation of naive Federated Learning

All of the TON_IoT datasets and the DS20S dataset have significantly
more normal samples than anomalous readings. This class imbalance
creates challenges for most ML approaches. Next, we describe a number
of tests to illustrate these challenges.

Our first experiment uses the Modbus dataset as a test case for AD
with neural networks. The neural network comprises two hidden layers,
each with a shape of 157 neurons, which is half of the input dimension.
We use a batch size of 100 and an RMSprop optimizer with an initial
learning rate of 0.1. The same neural network is used for both centralized
learning and FL in the following tests.

[o o e e e e T T e S S =
0.8 - e
’, -
e
-
7
4
/ et
4 7 ———
0.6 / PSS ay
e
< Ry Prtds
8 / -7
0 ! -~
—~ 0.4 1 1 ,/’
L 1 b
1 Pud
I /
1 ’
021 ! /
I
| " == 5nodes
I 1 == 50 nodes
" ! 100 nodes
0.0 4 L ~? —=— centralized
T T T T T T
0 20 40 60 80 100

Training Round

Fig. 2. F1 scores for naive FL classifiers trained over 5, 50, and 100 nodes for
the Modbus dataset. An important observation is the initial start at an F1 score
of 0 due to the class imbalance issue, which could be mitigated by a manual
rebalancing on each client.

To compare the AD performance between the centralized and FL
settings, we assume that each FL client has a disjoint subset of training
records, while the centralized setting can access the entire training re-
cords to build the learning model. Since the Modbus dataset does not
contain the client identifier information for individual records, we
randomly partition the data to simulate the FL setting. In our experiments
throughout this paper, the homogeneous FL setting assumes that clients
have an equal amount of data instances, while each client has a different
number of instances in the heterogeneous setting.

We first examine the centralized classifier over the entire Modbus
dataset. This classifier requires only a few epochs to begin to correctly
recognize anomalies, converging after ~50 epochs to a model with a
testing accuracy of 94.35% and F1 score of 87.35%.

We next assume the homogeneous FL setting. We use the same model
architecture as described earlier, while also setting the number of local
epochs to 10 at each client. Fig. 2 shows the F1 scores after randomly
splitting data across 5, 50, and 100 nodes. We note that dividing the data
onto more nodes requires FL to use additional rounds to differentiate the
two classes, i.e., FL needs a larger number of rounds until the F1 score
becomes non-zero. Furthermore, the slopes of these curves representing
progress in model training decrease with the number of client nodes
used. As the number of clients increases, the class imbalance on many of
these clients would be worse than that of the original data. Reducing this
class imbalance is a key motivation for our study.

B. Weinger et al.
4. Data augmentation

Next, we describe the data augmentation approaches to address the
class imbalance issue. The techniques we examine include uniform
random sampling (RAND), stratified sampling (STRAT), SMOTE [15],
ADASYN [16], and a GAN [32].

4.1. Uniform and stratified random sampling

A strategy to increase the size of a minority class is to randomly
sample that class with replacement. A straightforward implementation of
this idea is uniformly sampling the minority class. We typically enforce
that the minority class is as large as the majority one, which leads to a
rebalanced dataset that has the same number of records per class. This
rebalancing forces the neural network's optimization algorithm (e.g.,
SGD) to pay equal attention to the two classes, thereby improving the
overall AD performance [33,34].

We also use an extension of random oversampling that follows a
stratified sampling paradigm [14]. First, the k-nearest neighbors are
computed for each data point with a positive label. Each positive point j is
assigned to a stratum based on the number of its k-nearest neighbors with
negative labels (i.e., considered normal), s;, forming k + 1 distinct stra-
tum. The probability to select a point is proportional to s;. This approach
replicates anomalies multiple times surrounded by a greater number of
normal points, which could be regarded as increasing the number of
points near the boundary between normal and anomaly instances. Our
intuition is that this would help the learning algorithms to quickly find
the boundary.

Let S =) s, P be the number of positive points, N be the number of
negative points, and f = N/S. Assuming P < N, our algorithm for creating
N positive data points could proceed as follows: for each positive point j,
replicate the point k; times where k; is fis; rounded to the nearest integer.

4.2. SMOTE and ADASYN

SMOTE [15] is a generative algorithm that creates new data for the
underpopulated class using a point's nearest neighbors. SMOTE chooses a
minority sample at random, and instead of reproducing it, the algorithm
will select one of its k-nearest neighbors among the minority samples and
create a new point by interpolating between the two points along each
dimension separately.

This method generates new points that are within the bounds of the
original minority samples and assumes the new points are to have the
positive labels. However, these new points do not necessarily have the
correct labels, particularly in the cases shown in Fig. 1 where the positive
classes are nearly indistinguishable from the negative classes.

ADASYN [16] is an extension of SMOTE that attempts to shift the
classification boundary closer to harder-to-learn examples. ADASYN
starts by calculating the k-nearest neighbors of each minority example
and biases the probability of selecting a point based on the neighbors.
Minority points with majority examples as their closest neighbors will be
chosen with greater frequency, resulting in additional points near the
boundary and separating normal points from the anomalous points. Both
SMOTE and ADASYN can improve AD performance due to newly
generated data [35]. However, this improvement is not guaranteed as the
synthesized samples are not necessarily correctly labeled.

4.3. Generative adversarial networks

Generative adversarial networks, often called GANs, have been
shown to lead to promising results for the task of data augmentation [17,
18]. In the domain of host-based intrusion detection, for instance, con-
verting system calls from the ADFA-LD dataset to images and using
Cycle-GAN to create images of anomalous data led to an increase in AD
rate from 17% to 80% [36]. A GAN is composed of a generator network to
produce new realistic-looking samples and a discriminator network to

Digital Communications and Networks 8 (2022) 314-323

recognize positive samples. With training, the two neural networks could
mutually improve at their respective tasks. In our case, the generator is
used to produce anomalies to increase the number of positive samples
and balance the two classes.

Applying GANs to FL is challenging. One significant issue is that, to
maintain the privacy constraint that FL. demands, we can not bring all
data records into a central server for training. The GAN itself has to be
trained under the same FL setting we use for AD, which could increase
the computational cost.

Instead, we choose to train individual GANs on each client node using
the data present in that client's storage. When each node's dataset is
relatively small, training these models may not be expensive. Further-
more, each client could proceed independently in parallel.

4.4. FL with data augmentation

We now present our augmentation strategy in the context of FL. The
naive FL scenario introduced in Section 3.3 does not employ any sam-
pling technique but builds local models only using the data generated by
the Modbus TON_IoT testbed (without any synthetically augmented in-
stances). This may result in a biased model, especially in earlier rounds,
which leads to performance degradation in the FL setting. This problem is
more critical when a large number of nodes are used in training, and each
node is only a small proportion of the total dataset. Our strategy in this
study is to augment data locally to improve the quality of local models,
ensuring that these clients can contribute meaningful updates to the
global model.

Formally, our goal is to maximize the F1 score; however, doing so
directly would not yield a convex optimization problem necessary for
gradient descent. Instead, we train our models using the binary cross-
entropy objective function [37], where N is the number of samples in a
batch, y is the ground-truth labelings, and p(y) is the predicted proba-
bilities of each sample being an anomaly:

1

N " i log(p(v)) + (1= 1) - log(1 - p())

Under the FL setting, each client's model optimizes its individual p(y)
function for its own subset of examples. When aggregating the learned
weights, the global model should arrive at a minimal L(y) despite only
performing local optimization. Since cross-entropy is being used as a
surrogate loss function here and is sensitive to the number of labeled
instances in each class, data augmentation is especially important such
that anomalies are given proper consideration when fine-tuning p(y).

We now describe our augmentation strategy under the FL environ-
ment in detail. In the typical scenario, the client (device) generates its
own data. Because supervised learning is assumed to detect anomalies,
we also assume the generated data instance is tagged to indicate whether
it is normal or not. When the client participates in an FL round, it ana-
lyzes the generated instances with respect to class population. In general,
the number of anomalies is much smaller than that of normal samples, as
can be seen in Table 2. The client then augments the minority class data
to mitigate the imbalance problem. Each client's dataset is rebalanced
such that there are an equal amount of normal and anomalous readings,
using either random oversampling, SMOTE, ADASYN or a pretrained
GAN. After balancing the number of instances in both classes, the client
creates the local model, which is then aggregated to a global model for
that round.

For augmenting the minority class data (i.e., anomalies), random
oversampling and SMOTE duplicate or create instances chosen in a
uniform manner, while stratified sampling and ADASYN introduce new
distributions assigning “importance” values to either clusters of or indi-
vidual anomalies. SMOTE and ADASYN generate synthetic data using a
randomly selected k-nearest neighbor, where we set k to 5 to ensure some
variations without using points that are too distant in the feature space.
For stratified sampling, k is set to 25 to obtain a better sense of the class
density in each anomaly's surrounding neighborhood.

B. Weinger et al.

Digital Communications and Networks 8 (2022) 314-323

(X ° [X) [([X J °
° ° °
oo { o . o i eooo { & ° ° F A eooo{ & ° o e°
o® o0 O ° ° o o o0 © [] N o oo © [] []
L]
50000 .%. ® ° o e . 50000 .’. ® ° e & e 50000 o ¢ o e & e
L4 ° ° ° ° °
- ° = ° = .
& 40000 e H ® o0 ° S 40000 * $ ® 0 ° 3 40000 * $ ® 0 ®
<! oo e® o e o <! ' e® o o o <! ' e® o o o
g 30000 o ee o & 30000 b oo O & 30000 e oo O
° X * . °
S ° el ®e % S ° Ore ®e s o ° O30 ®e %
2 o pd [b [
20000 Lot . .%l 20000 L0 e . . .:’ 20000 T . ° ."
[J e ® L]
10000 o P O 2" 10000 o ° o ° e°S 10000 ° o o Ve o™
. ° L o &, ® L4 o &. O L o &, ©
e o e e S ® s S @
0 oo o ° 0 () e° o o 0 ° oL @ °
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 0000
FC3_Read_Holding_Register FC3_Read_Holding_Register FC3_Read_Holding_Register
(a) No resampling (NONE) (b) RAND (c) STRAT
o o oo o oo o
° ° °
eooo | & ° o ff . o0 | o o ° F 60000 o ° F
o o0 O ° ° N . ® o0 O ° ° . o oo © o (]
°
50000 ‘.‘. 4 ° * o 4 50000 .‘ ° s 4 50000 & ® ° o o .
L4 ° ° ° L4 °
. ° = ° = °
3 40000 . S ¢ o0 @ ° 3 40000 e $ ¢ o0 o ° S 40000 e $ ® o ,@° °
- e 3 ©¢ & o‘. * 3 0 o o0 0 oq° ° . ey .'l.': o .0;.. .
& 300001 @ (KJ & 300001 @ Py oo O o 230000 { @ .; ®
o % “fre o, ‘s 5 5 e ®e o % < s . eg ® %
° ° °
£ 20000 L Y ° ‘: £ 20000 ce o ° o & 20000 oo o . o d
P - ™ ° o . - e o . - e e e
00001 © @ ° 3 . ‘ .? 10000 hd ° % ° 2% 10000 d ° (Y o°®
° \“ o &8 000 ° N o &0 . o ** o &, °
0 ° e® o 00 0 (0 o0 o To o 0 ° e o °
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
FC3_Read_Holding_Register FC3_Read_Holding_Register FC3_Read_Holding_Register
(d) SMOTE (e) ADASYN (f) GAN

Fig. 3. Various resampling strategies for client 1 receiving 1/50 of the Modbus dataset. Negative samples are shown in blue and positive samples are in red. The FC1
and FC2 features are limited to a 10,000 x 10,000 window. Larger points indicate a greater frequency of sampling.

Table 5

Two-sample KS test statistics and maximum p-values (comma separated) after
augmentation. The two samples are considered from the same distribution where
the test statistic is close to 0, or the p-value is close to 1. Typically, a p-value less
than 0.05 indicates that the two distributions are different.

the different datasets and augmentation strategies. As normal readings
are unchanged, we omit these samples when conducting the tests.
SMOTE, ADASYN, and GAN, as expected, significantly alter the data
distributions, synthesizing new points. As RAND chooses samples uni-
formly, it should not change the data distributions. STRAT sampling

Method Modbus Weather DS208 depends on the proximity of anomalies to nearby normal readings; hence,
RAND 0.001, ~ 1 0.001, ~ 1 0.001, ~ 1 the change in the underlying distributions appears to be dataset-
STRAT 0.002, ~ 1 0.005, .05 0.098, ~ 0 dependent. Note that altering the feature distributions is not a require-
SMOTE 0.013, 7e-8 0.012, 5e-8 0.025, 4e-5 ment for augmentation; rebalancing the two classes is sufficient for
ADASYN 0.014, 7e-8 0.028, ~ 0 0.104, ~ 0 adding weight to the anomalies when applying the cross-entropy loss
GAN 0.107, ~ 0 0.153,~ 0 0.110, ~ 0

The GAN model consists of a generator and a discriminator with the
following parameters. The generator has five hidden layers of di-
mensions: 128, 256, 512, 526, and 128. The input layer is a 5-dimension
random noise vector and the output layer is a vector with the same
dimensionality as the desired number of features. The discriminator takes
in the same number of features, has hidden layers of sizes 512, 256, and
128, and outputs a single value corresponding to the likelihood that its
input is a real anomaly or a synthesized one. All activation functions
between layers are Leaky ReLUs with a negative slope coefficient of 0.2,
aside from the final layers which use sigmoid activations. Additionally,
dropout layers with a probability 0.3 follow each hidden layer in the
discriminator model.

Fig. 3 provides a visual example of these data augmentation tech-
niques. The TON_IoT Modbus dataset is partitioned across 50 client nodes
and the aforementioned algorithms are used to balance the two classes. A
cross section is then taken such that the FC1 and FC2 register values are
confined between the range 30,000 and 40,000, and the FC3 and FC4
values are plotted, as shown in the figure. In the cases of random and
stratified sampling, larger points indicate a greater frequency of sampling
that anomaly.

As can be seen from Fig. 3, performing data augmentation may, but
does not necessarily, change the underlying distributions for each
feature. The two-sample Kolmogorov-Smirnov (KS) test can be used to
quantify the difference between probability distributions using sets of
samples. Table 5 shows the results of KS tests for anomalous data,
reporting the test statistics and maximum p-values across all features for

function.

Computational complexity is a critical concern in an FL setting with
resource-constrained devices. In fact, the majority of the oversampling
methods we employ do not add on any significant overhead. Considering
n to be the number of data samples and m to be the data dimensionality,
pure random oversampling runs in O(n) time, while stratified sampling,
SMOTE, and ADASYN all run in O(nm) time as they rely upon the k-
nearest neighbors algorithm before selecting points. GAN training is
substantially more rigorous, requiring many passes through the dataset
and backpropagation steps that add on a non-negligible layer of
complexity. Our experimental result also shows that the time taken to
train a GAN model is ~4 orders of magnitude greater than a random
sampling (as will be discussed in Section 5.4). As we only perform
augmentation once prior to FL training, the additional time expense
thereafter is only due to a larger set of anomalies clients train with. We
keep track of the average runtimes in our experiments to determine if the
greater magnitude of samples imposes noticeable latency.

5. Experiments

We conduct a series of experiments for homogeneous and heteroge-
neous settings on the NERSC Cori supercomputer system (cor-
i.nersc.gov). The TensorFlow Federated library is used to simulate
training FL models across client nodes. For all models, we use the same
neural network architecture described in Section 3.3.

In this section, we first report the experimental results observed from
homogeneous settings individually for the Modbus, Weather, and DS20S
datasets. The effectiveness of GAN data augmentation is discussed

B. Weinger et al.

Table 6

Digital Communications and Networks 8 (2022) 314-323

TON_IoT Modbus FL performance metrics for various nodes and dataset rebalancing strategies over 100 rounds.

Clients (nodes) Method Accuracy (%) Precision (%) Recall (%) F1 Score (%) Avg Round Time (s)
5 NONE 94.74 86.99 89.94 88.39 13.58
RAND 94.65 86.49 90.24 88.33 23.35
STRAT 95.94 89.85 92.15 90.99 22.86
SMOTE 91.97 79.68 86.28 82.84 20.56
ADASYN 87.91 67.07 90.72 77.12 24.77
50 NONE 85.98 76.47 54.36 63.55 22,77
RAND 87.29 77.97 60.92 68.40 25.81
STRAT 88.14 79.78 64.69 71.45 23.53
SMOTE 76.30 48.07 73.42 58.10 24.80
ADASYN 76.81 48.77 72.20 58.22 24.98
100 NONE 81.87 69.07 35.20 46.64 34.68
RAND 83.49 70.99 46.17 55.96 37.09
STRAT 83.89 71.99 47.60 57.31 36.58
SMOTE 72.22 42.65 66.88 52.09 36.87
ADASYN 73.34 44.20 65.46 52.77 36.63

separately in the following subsection, and then we investigate the het-
erogeneous setting in which we assume discrepancies among devices
with respect to their data generation rates.

5.1. IoT modbus results

For the experiments in this section, the Modbus dataset was parti-
tioned such that each client node received an equal number of samples.
Data for each client is selected at random; hence, this partitioning sim-
ulates data being Independently and Identically Distributed (IID), which
is a common setting for studying FL performance. The heterogeneous
setting is considered in Section 5.5, where the IID assumption is relaxed
by creating dramatic differences in the amount of data available to each
client.

Trials are conducted using 5, 50, and 100 nodes in training, which
result in a relatively large, medium, and a small amount of data to train
each client with, respectively. For each node size, clients will iteratively
rebalance their own dataset using either random oversampling, stratified
sampling, SMOTE, or ADASYN. A benchmark case with no resampling is
also considered. Metrics are recorded for each pair of node size and
oversampling method, including accuracy, precision, recall, F1 score, and
average training time per round (in seconds).

The collected metrics over a testing dataset are reported in Table 6,
where boldface indicates the best value achieved for a fixed number of
nodes. The NONE rows in the table represent naive FL classifiers. A
general trend evident from this data is that as training becomes more
decentralized over more nodes, oversampling strategies become
increasingly effective at recognizing anomalies. For only 5 nodes, the
difference between the baseline and the best performing method after
100 rounds is fairly narrow with only a 2.60% gap in F1 score. When 100
nodes are used in training, this gap increases sharply to 10.67%. Espe-
cially for 50 and 100 nodes, random oversampling and its weighted
stratified variant appear to be the best means of dataset rebalancing. This
suggests that the anomalies in the original data are sufficient for learning
models, as evidenced by the centralized case that does not use over-
sampling to achieve high metrics. The naive model with no augmentation
takes longer to reach the same performance level as random over-
sampling, and alternatively, randomly undersampling the normal read-
ings led to a classifier that stagnated at ~50% testing accuracy. This
indicates that the large volume of normal readings is necessary to avoid
underfitting; however, the issue of too few anomalies can be remedied by
a simple random oversampling.

SMOTE and ADASYN did not appear to provide significant im-
provements for classification. Notably, Table 6 shows that the SMOTE-
trained classifier over 100 nodes had the highest recall but the lowest
precision after 100 rounds, with the ADASYN classifier showing very
similar metrics. This indicates that synthetic data generation for the
Modbus dataset will allow more anomalies to be detected at the expense

F1 Score

RAND
STRAT
SMOTE
ADASYN
NONE
= —— target

024 | ,; 7
0.1 A

0.0 4

150 200 250 300

Training Round

100

Fig. 4. F1 scores using various preprocessing methods over 100 client nodes for
the TON_IoT Modbus dataset. Random/stratified oversampling and a naive
approach surpass a 70.00% target threshold while SMOTE and ADASYN do not.

of a higher degree of false positives. Due to anomalies being sparsely
distributed rather than clustered together, these algorithms seemed to
have shifted the classification boundary too significantly such that more
normal readings became misclassified.

Fig. 4 shows F1 scores over an extended period (300 rounds) of
training to compare to a target threshold of 70.00% using 100 nodes. Our
naive FL classifier attained this F1 score after 280 rounds, while it took
211 rounds for an FL classifier using random oversampling of client data
to surpass the threshold and only 187 with stratified sampling. Neither
SMOTE nor ADASYN reached this performance level after 300 rounds of
training and appeared to be converging at a lower value. Stratified
oversampling was able to yield a 33.2% decrease in the number of rounds
to attain this target with only a 5.5% increase in average training time per
round. Note that wall-clock time is not a particularly relevant metric, as
sending updates back to the server for aggregation is a far more signifi-
cant bottleneck than on-device training.

5.2. IoT weather results

Next, we run similar experiments on the TON_IoT Weather dataset.
We assume that most real-world scenarios will run FL in a highly
decentralized manner and restrict our attention to the case of homoge-
neously partitioning data across 100 nodes. As can be observed in
Table 2, the Weather dataset has more than double the number of total
instances compared to Modbus, although the percentage of anomalies is
nearly half. A greater magnitude of overall data is certainly advantageous
when training a classifier, though the range of possible values each

B. Weinger et al.

0.4
034 14
‘a
L]
\
7 0.2 /
- !
L]
0.1 ! —— RAND
. —— STRAT
K -~ SMOTE
1 —— ADASYN
004 -~ —— NONE
0 25 50 75 100 125 150 175 200

Training Round

Fig. 5. F1 scores using various preprocessing methods over 100 client nodes for
the TON_IoT Weather dataset.

feature can take is quite limited. As such, we first observe the centralized
case to determine a reasonable maximum performance we could hope to
achieve under FL.

Indeed, the lower proportion of anomalies appears to be a major
limitation for a centralized classifier. A model with identical architecture
to the one used in the FL setting was trained for 100 epochs over the
encoded Weather readings, and the F1 score ultimately converged to
0 because the classifier learned to predict all inputs to be normal. FL
could be a more advantageous method of learning for such a dataset, as
first partitioning the instances to clients and making smaller incremental
updates can lead to a more useful model. We would anticipate varying
parameters such as using a smaller batch size or learning rate to help
optimize the centralized classifier; however, we merely opt to show that
this is a difficult learning task and focus attention on the FL setting, as
well as emphasize that identifying a significant portion of the anomalies
does not appear to be feasible.

Next, FL. models are trained over 100 nodes using the same over-
sampling strategies as the Modbus dataset. In the previous case, a larger
proportion of anomalies allowed for fairly reliable classification; how-
ever, the Weather dataset lacks diversity features with a wide range of
values. Thus, we do not set a target threshold for this experiment and
merely observe where and when training begins to converge. A graph of
F1 scores over 300 rounds for the baseline, random oversampling,
stratified sampling, SMOTE, and ADASYN methods are shown in Fig. 5.

Similar to the centralized case, the naive classifier initially ignores all
anomalies resulting in a 0 F1 score. It takes a non-negligible number of
rounds for this model to reach a performance level comparable to other
models, although it does eventually surpass the models trained using the
nearest neighbor techniques as was in the case with the Modbus data. A
notable difference here is that stratified sampling does not seem any better
than random sampling; while the probability distributions of the anomalies
in the two methods do appear to be statistically different, sampling
boundary points more frequently may not always be advantageous. Strati-
fied sampling is likely to be much more powerful when the original classes
exhibit greater clustering patterns than is present in the TON_IoT datasets.

5.3. DS20S results

We begin our experiments for the DS20S dataset by confirming pre-
existing results, particularly the greater separability of the two classes.
Using the pruned and encoded set of features as described in Section 3.1,
we trained a centralized classifier with the same setup as described in the
previous subsection and observed a maximum binary accuracy of 98.9%
and F1 score of 75.6%. The vast majority of normal instances were
classified correctly, with a false negative (normal instance) rate under
1%; however, ~9.5% of anomalies were misclassified.

321

Digital Communications and Networks 8 (2022) 314-323

0.90 4
R isiniid
=
L
0.85 - 1
]y
- il e L e
w . 7 e ——————————
= -
c 0.80 4 Ll
£ 74
5 Vi
=3 I
< i1
/i
0.75 A
"’4 —— RAND
" —— STRAT
i —— SMOTE
0.70]! —— ADASYN
i —— NONE
0 20 40 60 80 100

Training Round

Fig. 6. F1 scores using various preprocessing methods over 100 client nodes for
the DS20S traffic trace dataset.

As anomalies only make up less than 3% of this dataset, it would be
reasonable to assume that a classifier attempting to minimize overall loss
could ignore anomalies and achieve ~97% binary accuracy on its
training set. However, the more substantial disparities between normal
and anomalous classes make this a less challenging task than for the
TON_IoT Weather dataset, and in the centralized and FL settings, quite
high AD metrics can be achieved.

Fig. 6 reports F1 scores for each oversampling technique using FL for
100 nodes. Due to the aforementioned class differences, learning con-
verges quite quickly, and it does not appear beneficial to train beyond
100 global epochs, and therefore, no target threshold is set. One major
difference used in these trials was a reduced level of oversampling; rather
than perfectly balancing the two classes, better performance was ach-
ieved by only sampling until a 90% normal/10% anomaly split was
reached. An equal ratio between the classes resulted in the random
oversampling method yielding a lower F1 score than the baseline, which
is likely because the wide range of normal instances available is enough
to recognize erroneous samples quite well without much knowledge
about the anomalies. Then, it would be more beneficial to learn what
types of inputs should be considered normal rather than equally focusing
on regular readings and outliers when the sheer quantity of the former set
cause it to possess richer information.

Nonetheless, careful random or stratified oversampling can cause the
FL-trained classifier to converge quicker — in 25 rounds using stratified
sampling as opposed to 36 in the baseline. However, they do not appear
well-suited for datasets such as this one. Instead, semi-supervised
learning has greater potential to improve performance as one class has
enough information to make assumptions about the other, which we
investigate in the next subsection and include in our directions for future
work.

5.4. GAN for data augmentation

While GANs can certainly be effective at data augmentation, they
appear to rely more heavily than the other techniques on the assumption
that the class it learns to augment (i.e., the anomalies) is distinct from
others present in the dataset. Random and stratified oversampling tech-
niques do not add new unique instances, while SMOTE and ADASYN
constrain their synthesized examples to a local neighborhood around
existing points. Stratified sampling and ADASYN also make use of the
majority class to influence selection probability, while a GAN trained for
data augmentation has no such information beyond a client's anomalies.
This can induce a greater risk of class overlap; moreover, the limited
training data available in highly decentralized settings could result in
individual GANs recognizing and learning patterns that do not generalize
well to other clients' data.

B. Weinger et al.

Table 7

Average F1 scores for naive FL and GAN augmentation.
Dataset Benchmark (%) GAN (%)
TON_IoT Modbus 71.3 66.3 (—5.0)
TON_IoT Weather 44.0 40.9 (-3.1)
DS20S Traffic Traces 89.0 89.5 (+0.5)

The two TON_IoT datasets used in this study appear to suffer from
these difficulties associated with using pretrained GANs on each node for
data augmentation. With sparsely distributed anomalies amongst the
normal readings and a very limited quantity of the former class instances,
training effective GANs that adhere to the true anomalous data distri-
bution seems to be a challenging task. The approach fairs somewhat
better for the DS20S dataset, where the anomalies behave more typically
like outliers, slightly outperforming the rest of the preprocessing
methods. Average F1 scores compared to the naive FL models for each
dataset after 300 rounds (or 100 rounds for the DS20S data, after
convergence) are reported in Table 7 using GANs trained for 50 epochs.

Another issue posed by GANs is the computational expense of training
them before they can be useful for augmentation. While clients can train
their GANSs in parallel, devices with a larger set of anomalies could add an
additional bottleneck that further slows down the training process. In a
moderately decentralized setting where each client received 1/50 of the
Modbus dataset, the time to fully train each GAN is approximately 4 orders
of magnitude greater, in seconds, than a simple random sampling.
Accompanied by the fact that the majority of clients likely would not
possess enough data to sufficiently train a GAN, we do not consider this to
be a very useful method for AD when anomalies are sparse and infrequent.

5.5. Heterogeneous setting

In real-world scenarios, it is very unlikely for data to be evenly
distributed across client devices participating in training. The FedAvg
algorithm partially considers this, computing a weighted average be-
tween updates based on the proportion of data a client uses in training
relative to the total data used by all the clients. Nonetheless, heteroge-
neous partitioning can pose an issue for some classifiers to attain
acceptable performance.

We iteratively generate Gaussian random variables and translate
them to their corresponding probabilities, which represent the propor-
tion of the total available data to assign to a new client. We always
consider the smaller-tail probability such that the dataset is not exhaus-
ted too quickly. Using the Modbus dataset, we are able to create parti-
tions for 35 nodes consistently such that each client has multiple
anomalies to perform generative oversampling techniques.

0.8

o
o
L

o
S
L

F1 Score

{
1
024 | —— RAND
H —— SMOTE
! —=— ADASYN
,' == no augmentation
0.0 —=— centralized

80

T T T T
40 60
Training Round

T
100

(a) Heterogeneous partitioning resulting in variation in
client dataset sizes

Digital Communications and Networks 8 (2022) 314-323

Fig. 7 shows F1 score results for an FL classifier trained over the
Modbus data where the number of instances on each client is fixed and
determined by a Gaussian distribution. Furthermore, we also show F1
scores for the homogeneous case using FL over 35 nodes for comparison.
Interestingly, heterogeneous partitioning actually yields higher testing
metrics over 100 rounds than the homogeneous case regardless of
oversampling algorithm. This appears to be due to the fact that the
highest weighted updates are ones that come from nodes with the most
amount of data, so classifiers can benefit from a heterogeneous setting
where some clients have large numbers of examples that are indicative of
the overall data distributions of each class.

While not entirely following the IID assumption, FL nonetheless ap-
pears well-equipped to handle clients with varying sizes of their datasets.
While random oversampling does cause a speedup of reaching an F1
score of 70% from 34 rounds to only 15 rounds — a 55.9% decrease —
this can be misleading as all models trained over heterogeneous data
ultimately converge at approximately the same level of performance.
Indeed, there is only a 0.98% difference in the F1 score between the
random oversampling model and the naive model after 100 rounds of
training. In environments where the number of training rounds must be
rigorously optimized, random oversampling can certainly be advanta-
geous; however, naive FL over heterogeneous data does not appear to
suffer from the same degree of performance degradation as in the ho-
mogeneous case.

Performing such oversampling would be more beneficial for clients
with data crucial for generalizing beyond training sets but have too few
total samples to contribute a significant update after aggregation, i.e.,
their data follows a different distribution than data belonging to other
clients. Future work using other datasets that are generated from multi-
ple sources, for instance, could test such an approach to determine how
strong the benefit of data augmentation can be in this more extreme non-
IID setting.

6. Conclusion and future directions

We have shown that naive FL may initially stagnate when training
over a large number of clients with imbalanced datasets, which can ul-
timately degrade overall model performance due to poorly learned initial
parameters. Random oversampling, SMOTE, and ADASYN can improve
the AD performance in earlier rounds in homogeneous and heteroge-
neous settings, where we observed up to a 22.9% improvement in F1
score. Interestingly, stratified sampling performed at least comparable to
baseline models consistently. This appears to be due to the sparse dis-
tribution of anomalies among normal readings in the IoT Modbus dataset,
which is likely a more realistic setting than anomalous data being highly
clustered together. With the popular use of GANs, we also examined their

0.8
0.6
<
o
[v]
£ 044
u [
Y
024 \ /1 —= RAND
W II == SMOTE
L —— ADASYN
,l - = no augmentation
004 --- == centralized
T T T T T T
0 20 40 60 80 100

Training Round

(b) Homogeneous partitioning resulting in equal client

dataset sizes

Fig. 7. F1 scores over the TON_[oT Modbus dataset for 100 rounds of training FL classifiers across 35 nodes, where the data is first heterogeneously and then ho-
mogeneously partitioned. Heterogeneous splitting results in metrics closer to those of the centralized classifier.

322

B. Weinger et al.

effectiveness for data augmentation in our setting. The GAN-based
approach has the potential to improve detection performance with
rigorous optimization and under idealized conditions; however, we
observed quite expensive computational overheads (~4 orders of
magnitude greater than random oversampling), implying limited benefits
in FL settings.

From the analysis of the DS20S data, we observed that anomalies
might often show significant deviations from normal instances. In that
regard, it is interesting to investigate how to improve AD performance
using semi-supervised recognition of anomalies over FL. This has the
major advantage of learning only the behavior of the normal data,
allowing for potentially high anomaly recognition even with very few of
these samples in the training set. Supervised learning lends itself more
naturally to cases when there is sufficient data in each class to make
generalizations about them, which is not often the case with anomalies.
Moreover, it is plausible that some clients could have no anomalous
samples, which would deter them from contributing any valuable in-
formation to our proposed approach. In that sense, training networks that
make no assumptions about anomalies besides them being outliers, such
as autoencoders, would be an option.

Declaration of interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was supported by the Office of Advanced Scientific
Computing Research, Office of Science, of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231, and also used resources of the
National Energy Research Scientific Computing Center (NERSC).

References

[1] A.P. Plageras, K.E. Psannis, C. Stergiou, H. Wang, B.B. Gupta, Efficient iot-based
sensor big data collection—processing and analysis in smart buildings, Future
Generat. Comput. Syst. 82 (2018) 349-357.

E. Bautista, M. Romanus, T. Davis, C. Whitney, T. Kubaska, Collecting, monitoring,
and analyzing facility and systems data at the national energy research scientific
computing center, in: Proceedings of the 48th International Conference on Parallel
Processing, Workshops, 2019, pp. 1-9.

E. Luo, M.Z.A. Bhuiyan, G. Wang, M.A. Rahman, J. Wu, M. Atiquzzaman,
Privacyprotector: privacy-protected patient data collection in iot-based healthcare
systems, IEEE Commun. Mag. 56 (2) (2018) 163-168.

M. Elhoseny, G. Ramirez-Gonzalez, O.M. Abu-Elnasr, S.A. Shawkat, N. Arunkumar,
A. Farouk, Secure medical data transmission model for iot-based healthcare
systems, IEEE Access 6 (2018) 20596-20608.

A. Mylonas, O.B. Kazanci, R.K. Andersen, B.W. Olesen, Capabilities and limitations
of wireless co2, temperature and relative humidity sensors, Build. Environ. 154
(2019) 362-374.

A. Hard, K. Rao, R. Mathews, F. Beaufays, S. Augenstein, H. Eichner, C. Kiddon, D.
Ramage, Federated Learning for Mobile Keyboard Prediction, arXiv preprint arXiv:
1811.03604.

K. Dolui, I.C. Gyllensten, D. Lowet, S. Michiels, H. Hallez, D. Hughes, Poster:
towards privacy-preserving mobile applications with federated learning-the case of
matrix factorization, in: The 17th Annual International Conference on Mobile
Systems, Applications, and Services, 2019.

S. Ramaswamy, R. Mathews, K. Rao, F. Beaufays, Federated Learning for Emoji
Prediction in a Mobile Keyboard, arXiv preprint arXiv:1906.04329.

S. Zheng, N. Apthorpe, M. Chetty, N. Feamster, User perceptions of smart home iot
privacy, Proceed. ACM Hum. Comput. Interact. 2 (2018) 1-20. CSCW.

[2]

[3]

[4]

(51

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

Digital Communications and Networks 8 (2022) 314-323

H. Lin, N.W. Bergmann, Iot privacy and security challenges for smart home
environments, Information 7 (3) (2016) 44.

B. McMabhan, E. Moore, D. Ramage, S. Hampson, B.A. y Arcas, Communication-
efficient learning of deep networks from decentralized data, in: Artificial
Intelligence and Statistics, 2017, pp. 1273-1282.

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C.
Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan, et al., Towards Federated
Learning at Scale: System Design, arXiv preprint arXiv:1902.01046.

T. Li, AK. Sahu, A. Talwalkar, V. Smith, Federated learning: challenges, methods,
and future directions, IEEE Signal Process. Mag. 37 (3) (2020) 50-60.

H. Aoyama, A study of stratified random sampling, Ann. Inst. Stat. Math. 6 (1954)
1-36.

N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, Smote: synthetic minority
over-sampling technique, J. Artif. Intell. Res. 16 (2002) 321-357.

H. He, Y. Bai, E.A. Garcia, S. Li, Adasyn: Adaptive synthetic sampling approach for
imbalanced learning, in: 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), IEEE, 2008,

pp. 1322-1328.

V. Sandfort, K. Yan, P.J. Pickhardt, R.M. Summers, Data augmentation using
generative adversarial networks (cyclegan) to improve generalizability in ct
segmentation tasks, Sci. Rep. 9 (1) (2019) 1-9.

F.H. K.d.S. Tanaka, C. Aranha, Data augmentation using gans, Proc. Mach. Learn.
Res. (2019) 1-16.

The TON_IoT datasets. https://research.unsw.edu.au/projects/toniot-datasets.
(Accessed 19 January 2022).

IoT traffic traces gathered in a the DS20S IoT environment. https://www.ka
ggle.com/francoisxa/ds2ostraffictraces/. (Accessed 19 January 2022).

V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey, ACM Comput.
Surv. 41 (3) (2009) 1-58.

R. Chalapathy, S. Chawla, Deep Learning for Anomaly Detection: A Survey, arXiv
preprint arXiv:1901.03407.

Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher,

Y. Elovici, N-baiot—network-based detection of iot botnet attacks using deep
autoencoders, IEEE Pervasive Comput. 17 (3) (2018) 12-22.

L. Lyu, J. Jin, S. Rajasegarar, X. He, M. Palaniswami, Fog-empowered anomaly
detection in iot using hyperellipsoidal clustering, IEEE Internet Things J. 4 (5)
(2017) 1174-1184.

M. Hasan, M.M. Islam, M.LI Zarif, M. Hashem, Attack and anomaly detection in iot
sensors in iot sites using machine learning approaches, Internet Things 7 (2019)
100059.

R. Doshi, N. Apthorpe, N. Feamster, Machine learning ddos detection for consumer
internet of things devices, in: 2018 IEEE Security and Privacy Workshops (SPW),
IEEE, 2018, pp. 29-35.

D. Preuveneers, V. Rimmer, I. Tsingenopoulos, J. Spooren, W. Joosen, E. Ilie-Zudor,
Chained anomaly detection models for federated learning: an intrusion detection
case study, Appl. Sci. 8 (12) (2018) 2663.

T.D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, A.-R. Sadeghi,
Diot: a federated self-learning anomaly detection system for iot, in: 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS), IEEE, 2019,
pp. 756-767.

Y. Zhao, J. Chen, D. Wu, J. Teng, S. Yu, Multi-task network anomaly detection using
federated learning, in: Proceedings of the Tenth International Symposium on
Information and Communication Technology, 2019, pp. 273-279.

S. Li, Y. Cheng, W. Wang, Y. Liu, T. Chen, Learning to Detect Malicious Clients for
Robust Federated Learning, arXiv preprint arXiv:2002.00211.

M.-O. Pahl, F.-X. Aubet, All Eyes on You: Distributed Multi-Dimensional Iot
Microservice Anomaly Detection, 2018, pp. 72-80.

1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, Y. Bengio, Generative adversarial networks, Commun. ACM 63 (11)
(2020) 139-144.

J.L.P. Lima, D. Macéedo, C. Zanchettin, Heartbeat anomaly detection using
adversarial oversampling, in: 2019 International Joint Conference on Neural
Networks, IJCNN), 2019, pp. 1-7.

A. Ghazikhani, H.S. Yazdi, R. Monsefi, Class imbalance handling using wrapper-
based random oversampling, in: 20th Iranian Conference on Electrical Engineering
(ICEE2012), 2012, pp. 611-616.

J. Kong, W. Kowalczyk, S. Menzel, T. Back, Improving Imbalanced Classification by
Anomaly Detection, 2020, pp. 512-523.

M. Salem, S. Taheri, J.S. Yuan, Anomaly generation using generative adversarial
networks in host-based intrusion detection, in: 2018 9th IEEE Annual Ubiquitous
Computing, Electronics Mobile Communication Conference, UEMCON), 2018,

pp. 683-687.

G. Pang, C. Shen, L. Cao, A.V.D. Hengel, Deep learning for anomaly detection: a
review, ACM Comput. Surv. 54 (2) (2021) 1-38.

http://refhub.elsevier.com/S2352-8648(22)00019-0/sref1
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref1
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref1
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref1
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref1
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref2
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref2
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref2
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref2
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref2
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref3
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref3
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref3
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref3
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref4
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref4
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref4
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref4
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref4
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref5
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref5
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref5
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref5
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref7
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref7
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref7
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref7
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref7
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref9
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref9
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref9
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref10
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref10
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref11
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref11
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref11
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref11
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref13
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref13
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref13
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref14
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref14
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref14
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref15
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref15
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref15
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref16
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref16
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref16
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref16
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref16
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref17
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref17
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref17
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref17
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref18
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref18
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref18
https://research.unsw.edu.au/projects/toniot-datasets
https://www.kaggle.com/francoisxa/ds2ostraffictraces/
https://www.kaggle.com/francoisxa/ds2ostraffictraces/
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref21
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref21
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref21
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref23
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref23
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref23
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref23
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref23
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref24
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref24
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref24
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref24
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref25
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref25
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref25
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref26
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref26
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref26
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref26
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref27
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref27
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref27
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref28
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref28
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref28
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref28
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref28
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref29
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref29
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref29
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref29
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref31
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref31
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref31
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref32
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref32
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref32
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref32
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref33
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref33
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref33
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref33
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref33
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref34
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref34
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref34
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref34
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref35
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref35
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref35
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref35
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref36
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref36
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref36
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref36
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref36
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref37
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref37
http://refhub.elsevier.com/S2352-8648(22)00019-0/sref37

	Enhancing IoT anomaly detection performance for federated learning
	1. Introduction
	2. Background
	2.1. Anomaly detection
	2.2. Federated Learning
	2.3. Related work

	3. Data description and learning models
	3.1. Description of IoT datasets
	3.2. Feature engineering
	3.3. Limitation of naive Federated Learning

	4. Data augmentation
	4.1. Uniform and stratified random sampling
	4.2. SMOTE and ADASYN
	4.3. Generative adversarial networks
	4.4. FL with data augmentation

	5. Experiments
	5.1. IoT modbus results
	5.2. IoT weather results
	5.3. DS2OS results
	5.4. GANs for data augmentation
	5.5. Heterogeneous setting

	6. Conclusion and future directions
	Declaration of interest
	Acknowledgements
	References

