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Abstract—In this paper, we investigate online distributed
job dispatching in an edge computing system residing in a
Metropolitan Area Network (MAN). Specifically, job dispatchers
are implemented on access points (APs) which collect jobs from
mobile users and distribute each job to a server at the edge
or the cloud. A signaling mechanism with periodic broadcast is
introduced to facilitate cooperation among APs. The transmission
latency is non-negligible in MAN, which leads to outdated
information sharing among APs. Moreover, the fully-observed
system state is discouraged as reception of all broadcast is time
consuming. Therefore, we formulate the distributed optimization
of job dispatching strategies among the APs as a Markov decision
process with partial and outdated system state, i.e., partially
observable Markov Decision Process (POMDP). The conventional
solution for POMDP is impractical due to huge time complexity.
We propose a novel low-complexity solution framework for
distributed job dispatching, based on which the optimization
of job dispatching policy can be decoupled via an alternative
policy iteration algorithm, so that the distributed policy iteration
of each AP can be made according to partial and outdated
observation. A theoretical performance lower bound is proved
for our approximate MDP solution. Furthermore, we conduct
extensive simulations based on the Google Cluster trace. The
evaluation results show that our policy can achieve as high as
20.67% reduction in average job response time compared with
heuristic baselines, and our algorithm consistently performs well
under various parameter settings.

I. INTRODUCTION

Edge computing is a promising solution for increasing
computation-intensive and energy-hungry applications on mo-
bile devices. Large amount of mobile devices can connect
to the access points (APs) which function as gateways to
aggregate and dispatch jobs to the edge servers [1]. The edge
servers are deployed in closer proximity to APs than cloud
infrastructures, which alleviate the communication overhead
and enable the computation of time-sensitive jobs. However,
the edge servers are usually deployed with limited computation
resources. The establishment of efficient cooperation among
edge servers is one of the major design challenges, given
the signaling overhead and latency of distributed information
exchange and decision making.

We consider an edge computing system with multiple APs
and edge servers residing in the Metropolitan Area Network
(MAN) as illustrated in Fig.1. The APs collect jobs offloaded
from the mobile users in its service area and make dispatching
decision for each job. According to the MAN performance
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Fig. 1. The Illustration of System Model

analysis in [2], the data transmission latency among APs
and edge servers varies a lot with respect to different hours
of day and devices’ locations in a MAN. In addition, each
AP also suffers from signaling latency, which is the time
consumed for each AP to collect system state information
under some signaling mechanism. There has been a number
of existing literature considering random transmission latency
of job delivery in edge computing networks (e.g., [3]–[7]).
However, there are only a few works considering signaling
latency of cooperation among distributed job dispatchers [8],
[9]. In fact, it is full of challenge to consider latency in both
job delivery and signaling. The cooperation of distributed
dispatchers suffers from significant unpredictable signaling
and transmission overhead. Therefore, aggregating the global
system state information at each AP is not practical, and
a centralized dispatcher design is discouraged. Moreover,
the latency will also lead to outdated information at each
dispatcher and information inconsistency among different dis-
patchers, which may introduce ineliminable estimation error
on the number of jobs in the system and thus discourages the
cooperative dispatcher design.

In this paper, we would like to shed some lights on the
above challenging distributed dispatcher design via proposing
the POMDP (partially observable Markov decision process)
problem formulation and a novel low-complexity approximate
MDP solution framework. Specifically, we consider a practical
scenario where the signaling latency among APs and edge
servers as well as job uploading latency from APs to edge
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servers are assumed to be random, and each AP can only
receive the broadcast system state information from part of
the APs with random latency (i.e., the global system state is
not available at the APs). Our main contributions in this new
optimization scenario are summarized as follows.

• We propose a novel low-complexity distributed solution
framework for the dispatcher design at APs. By lever-
aging partial observation at each dispatcher, we derive
the expression of approximate value function under MDP
framework and decouple the optimization problem onto
each AP. Thus, the complicated POMDP solution is
avoided. To our best knowledge, this is the first work
to address the cooperative distributed multi-agent opti-
mization problem with outdated and partial information
under MDP framework.

• We derive an analytical cost lower bound for the pro-
posed distributed dispatching policy in the above low-
complexity solution framework. In the conventional ap-
proximate MDP methods, the solution is usually eval-
uated via numerical method which are hard to obtain
analytical performance bound.

• We conduct extensive simulations based on the Google
Cluster trace, compared with three heuristic benchmarks.
The evaluation results show that our proposed job dis-
patching policy can achieve 20.67% reduction in average
job response time, and our algorithm consistently per-
forms well under various parameter settings of signaling
latency, job arrival intensity and job processing time.

Paper Organization: The remainder of this paper is organized
as follows. In Section II, the related works are elaborated. In
Section III, we illustrate the system model and the signaling
model with random latency. In Section IV, we formulate the
global optimization of dispatching decisions at all APs as an
POMDP. In Section V, we introduce the novel low-complexity
distributed solution framework for the above POMDP. The
numerical analysis of the proposed solution is provided in
Section VI, and the conclusion is drawn in Section VII.

II. RELATED WORK

There have been a number of works considering the cen-
tralized job dispatching with updated and complete knowledge
on the system states of edge computing systems. For example,
in order to minimize the average job response time in the
worst case, the authors in [10] designed an online algorithm
for job dispatching in edge computing systems with fixed
uploading latency. In the scenario that APs and edge servers
are connected via software defined network (SDN), the authors
in [5] proposed a heuristic algorithm to dispatch the jobs to the
closest edge servers according to their locations. Considering
random jobs arrival and job offloading to a single edge server,
the authors in [11], [12] formulate the offloading problem
as an infinite-horizon Markov decision process (MDP). In
the above works, a centralized dispatcher with complete and
updated knowledge of the system states was assumed in the
edge computing systems, which might be impractical.

Hence, there are also some works considering the distributed
job dispatching in edge computing systems. For example, in
order to minimize a weighted sum of total energy consump-
tion and uploading latency, the authors in [13] proposed a
distributed job dispatching algorithm based on game theory
to achieve the Nash equilibrium. Considering job migration at
edge servers, the authors in [14] optimized the edge computing
performance in a distributed manner with limited energy re-
sources via a congestion game framework. In the scenario that
APs cooperatively dispatch jobs with multiple edge servers, the
authors in [15] proposed a novel approximate MDP solution
framework to alleviate the algorithm complexity and minimize
the average job response time. However, in the above works,
the latency of information exchange among APs and edge
servers is ignored. In fact, due to the complicated network
traffic, this latency might be significant, and the staleness of
system state information at the dispatcher of a edge computing
systems should be considered.

The staleness of information sharing among APs and edge
servers may degrade the performance of the job dispatching
algorithm in edge computing systems. To the best of our
knowledge, there are very limited works investigating this
issue. For example, the authors in [8] proposed a randomized
policy via Lyapunov optimization approach to stabilize the
queues in a MEC system with multiple IoT devices offloading
jobs to one edge server, where signaling latency is considered.
In [9], the above approach was applied to the scenario that
mobile devices offload jobs to each other via D2D link. In
the above two works, there is one centralized dispatcher in
the system and the objective is to stabilize the transmission
queues. Hence, the existence of signaling latency may not raise
significant challenge to the algorithm designs.

However, the design of distributed dispatchers with sig-
naling latency could be more challenging. For example, the
signaling latency at distributed dispatchers could be differ-
ent, and the synchronization of their dispatching decisions
become infeasible. Furthermore, taking the signaling overhead
in consideration, it is of more practical significance favor
for the distributed dispatchers to make decisions based on
locally observed system state information, instead of global
system state information. To our best knowledge, there is
no appropriate optimization framework for the distributed
dispatcher design with both signaling latency and partially
observable system state information to date.

III. SYSTEM MODEL

A. Network Model

We consider an edge computing system with K Access
Points (APs), M edge servers, and 1 cloud server as illustrated
in Fig.1. The sets of APs and processing servers are denoted
as K , {1, . . . ,K} and M , {0, . . . ,M}, respectively.
Specifically, we have processing server denote both edge
servers and the cloud server for job processing and the 0-th
processing server denote the cloud server. One edge server
is always collocated with one AP, i.e., the edge server is
deployed at the same place with the access point. Each AP



collects the jobs from the mobile users within its coverage,
and makes dispatching action on the processing servers for
each job. Furthermore, it is assumed that one AP could only
access to the cloud server, the collocated edge server if existed,
and neighbor edge servers (i.e., the pair of edge servers
connected via the routing path as illustrated in Fig.1) due
to transmission latency limitation. We refer to Mk ⊆ M
as the candidate server set of the k-th AP, Km ⊆ K as the
potential AP set of the m-th edge server, and ρk,m as the
collocation indicator (i.e., ρk,m = 1 if k-th AP and m-th edge
server collocated, otherwise ρk,m = 0) (∀k ∈ K,m ∈ M).
We consider cloud server as one special processing server
with stronger computation capability, but also with larger
transmission latency compared with the edge servers.

The dispatchers are implemented on the APs in a distributed
manner. Without loss of generality, it is assumed that there are
J types of jobs computed in this system, which are denoted
via the set J , {1, . . . , J}. The time axis is organized by
time slots. The arrivals of the type-j jobs at the k-th AP
in different time slots are assumed to be independent and
identically distributed Bernoulli random variables, and the
arrival probability are denoted as λk,j . Each AP immediately
dispatches each type of arrived jobs to one processing server.
It’s assumed that the network traffic over the routing path is
random, and the job uploading from one AP to one edge server
consumes a random number of time slots. Let Uk,m,j(Ξ) be
the uploading latency distribution of the type-j jobs from the
k-th AP to the m-th server with finite support {1, . . . ,Ξ},
whose expectation is denoted as uk,m,j . Specifically, the
uploading latency is fixed as 0 if ρk,m = 1 for job uploading
to the collocated edge server (∀k ∈ K,m ∈M, j ∈ J ).

We adopt the unrelated machines assumption as in [10]
for job computation process, where the computation time
on different processing servers would follow independent
distribution. Specifically, there are J parallel virtual machines
(VMs) running on each processing server for the J job
types, respectively. It is assumed that the computation time
of different job types on different edge servers follows in-
dependent memoryless geometric distribution with different
expectations as in [16]. Let G(1/cm,j) be the distribution of
the computation time slots for the type-j jobs on the m-th
processing server, where G denotes the geometric distribution,
cm,j is the expectation, and 1/cm,j represents the parameter
of geometric distribution. For each job type, the uploaded jobs
are computed in a First-Come-First-Serve (FCFS) manner, and
a processing queue with a maximum job number Lmax is
established for each VM. The arrival jobs will be discarded
on processing server when the processing queue is full.

B. Signaling Mechanism with Periodic Broadcast

In order to facilitate distributed dispatching for the APs, the
signaling mechanism with periodic broadcast is introduced.
We refer to every tB time slots as a broadcast interval.
At the beginning of each broadcast interval, the local state
information (LSI) of APs and processing servers are broadcast,
and each AP updates its dispatching strategy of job dispatching

when observing the broadcast LSIs from some APs and
processing servers. The contents of the LSI at the APs and
processing servers are given in the following definitions.

Definition 1 (LSI of APs). Let R(k)
m,j(ξ, t, n) ∈ {0, 1} be the

indicator of the type-j jobs at the n-th time slot of the t-th
interval. Its value is 1 when there is one job being uploaded
from the k-th AP to the m-th server which has been delivered
for ξ time slots, and 0 otherwise (∀k ∈ K,m ∈ M, j ∈ J ).
Let ωk,j(t) be the target processing server for the type-j jobs
of the k-th AP dispatched at the beginning of the t-th broadcast
interval. And the LSI of the k-th AP at the beginning of the
t-th broadcast interval is defined as

Rk(t) ,

({
R

(k)
m,j(t, 0)

∣∣∣∀m ∈M, j ∈ J
}
,Ak(t)

)
, (1)

where

R
(k)
m,j(t, 0) ,

(
R

(k)
m,j(0, t, 0), . . . , R

(k)
m,j(Ξ, t, 0)

)
, (2)

Ak(t) ,

{
ωk,j(t)

∣∣∣∀j ∈ J} (3)

are referred as status of the type-j job from the k-th AP to the
m-th processing server, and dispatching actions of the k-th AP
at the beginning of the t-th broadcast interval, respectively.

Definition 2 (LSI of Processing Servers). Let Qm,j(t, n) be
the number of type-j jobs on the m-th processing server at
the n-th time slot of the t-th interval (∀m ∈ M, j ∈ J ).
The LSI of the m-th processing server at beginning of the t-th
broadcast interval is defined as

Qm(t) ,

{
Qm,j(t, 0)

∣∣∣∀j ∈ J}. (4)

Moreover, we refer to global state information (GSI) as the
aggregation of LSIs of all the APs and processing servers in
one broadcast interval.

Definition 3 (Global State Information). At the t-th broadcast
interval, global state information (GSI) is defined as follows.

S(t) ,

({
Rk(t)

∣∣∣∀k ∈ K},{Qm(t)
∣∣∣∀m ∈M}). (5)

As a remark notice that the observable LSI may be outdated
due to signaling latency among APs and processing servers.
As the APs and processing servers may reside in different
locations of a MAN, the transmission latency of LSI is not
negligible. It might be inefficient for one AP (say the k-th AP)
to collect the complete GSI before updating the dispatching
policy. For example, the transmission latency of the LSI from
the edge servers out of its candidate server set Mk may be
large, and some broadcast information may be discarded by the
routers after a certain number of hops. Here, we firstly define
conflict AP set and notice that only the LSIs of a subset of APs
are interested for one single dispatcher, and then we define the
interested partially-observable information as observable state
information (OSI) based on the conflict AP set and candidate
server set. The definitions of conflict AP set and OSI are given
below, respectively.

Definition 4 (Conflict AP Set). The conflict AP set to the k-th
AP consists of the neighboring APs who have direct impacts on



the queueing time of the jobs on processing servers dispatched
from the k-th AP, i.e., Xk ,

⋃
m∈Mk

Km.

Definition 5 (Observable State Information). The observable
state information (OSI) of the k-th AP (∀k ∈ K) at the t-th
broadcast interval is defined as the aggregation of LSIs of the
APs in conflict AP set and the edge servers in candidate server
set of the k-th AP, i.e.,

Sk(t) ,

({
Rk′(t)

∣∣∣∀k′ ∈ Xk

}
,

{
Qm(t)

∣∣∣∀m ∈Mk

})
. (6)

The k-th AP is able to collect its OSI Sk(t) at the Dk(t)-th
time slots of the t-th broadcast interval, where Dk(t) denotes
the signaling latency of the k-th AP at the t-th broadcast
interval which is a random variable in the unit of timeslot.
It is assumed that Dk(t) follows identical and independent
distribution in different broadcast interval.

IV. POMDP-BASED PROBLEM FORMULATION

In this section, we formulate the optimization of job dis-
patching at all APs as a Markov decision process (MDP)
problem. Since each AP updates the job dispatching actions
according to OSI instead of GSI, the MDP problem is a
partially observable MDP (POMDP). Firstly, we give the
definitions of dispatching policy and cost function, together
with the system state (i.e., the GSI) defined previously, to
complete the MDP problem formulation.

Definition 6 (Dispatching Policy). The individual dispatching
policy of the k-th AP, denoted as Ωk (∀k ∈ K), maps from its
OSI Sk and its signaling latency Dk to the dispatching action
for each job type, i.e.,

Ωk

(
Sk(t),Dk(t)

)
, Ak(t+ 1) (7)

The aggregation of individual policy of all APs is referred
to as the system dispatching policy Ω. Thus,

Ω

(
S(t),D(t)

)
,

{
Ω1(S1(t),D1(t)), . . . ,ΩK(SK(t),DK(t))

}
,

(8)

where D(t) , {D1(t), . . . ,DK(t)}.

According to the Little’s law [17], the average response time
per job, counting the number of broadcast intervals from job
arrival to the accomplishment of computation, is proportional
to the number of jobs in the system, given the job arrival rates
at all the APs. Hence,we define the cost function per broadcast
interval, which consists the cumulative cost to be minimized
in the MDP problem, as follows.

Definition 7 (Cost Function per Broadcast Interval). The cost
function of the t-th broadcast interval with S(t) is defined as

g

(
S(t)

)
,

∑
m∈M,j∈J

{∑
k∈K

‖R(k)
m,j(t, 0)‖1 +Qm,j(t, 0)

+ β · I[Qm,j(t, 0) = Lmax]

}
, (9)

where ‖x‖1 denotes the L1-norm of the vector x, β is the
weight of overflow penalty, and I[·] denotes the indicator

function which is equal to 1 when the inner statement is true
and 0 otherwise.

Then, since the job dispatching in one broadcast interval will
affect the cost of the successive broadcast intervals, we should
consider the joint minimization of the cumulative costs of all
the broadcast intervals. Specifically, we consider the following
discounted sum of the costs of all the broadcast intervals as
the system objective.

Ḡ(S,Ω) , lim
T→∞

EΩ
{S(t)|∀t}

[ T∑
t=1

γt−1g

(
S(t)

)∣∣∣S(1)

]
, (10)

where EΩ
{S(t)|∀t}[·] denotes the expectation with respect to all

possible system states in the future given scheduling policy Ω,
and γ ∈ (0, 1) is the discount factor. Hence, the optimization
of job dispatching policy can be formulated as the following
minimization problem.

P1: min
Ω

Ḡ(S,Ω). (11)

Finally, if the GSI S(t) and signaling latency D(t) are
known to all the APs, the MDP in problem P1 can be solved
via the following Bellman’s equations as in [18]:

V

(
S(t)

)
= g

(
S(t)

)
+ γED

{
min

Ω(S(t),D(t))∑
S(t+1)

Pr
{

S(t+ 1)
∣∣∣S(t),Ω(S(t),D(t))

}
· V
(
S(t+ 1)

)}
, (12)

where the value function V (S(t)) of the optimal policy Ω∗ is
defined as follows.

V

(
S(t)

)
, lim

T→∞
EΩ∗

{S(t)|∀t}

[ T∑
t=1

γt−1g
(
S(t)

)∣∣∣S(1)

]
. (13)

Moreover, the optimal policy Ω∗ can be obtained by solving
the right-hand-side (RHS) of the above Bellman’s equations.

However, it is infeasible to solve the above Bellman’s
equations because each AP only has the knowledge of its
own OSI and local signaling latency in our considered edge
computing system. Thus problem P1 is actually a POMDP,
whose general solution is of huge complexity [19], [20].

V. DISTRIBUTED ALGORITHM WITH PARTIAL
INFORMATION

In this section, we shall introduce a novel approximation
method to decouple the centralized optimization on the RHS
of the Bellman’s equations in equation (12) to each AP
for arbitrary system state. For the APs outside the conflict
AP sets of each other, the update of dispatching actions at
one AP will not affect the task computation originated from
other APs. On the other hand, for the APs within the same
conflict AP set, the optimization of their dispatching actions
is coupled. Hence, we introduce an alternative actions update
algorithm to optimize the dispatching actions of subset of K in
each broadcast interval periodically, while other APs maintain
their dispatching actions in the previous broadcast interval.
Specifically, the proposed distributed algorithm consists of the
following two steps:

1) We first introduce a time-variant baseline policy, use
its value function to approximate the value function of



the optimal policy Ω∗ in each broadcast interval, and
derive the analytical expression of the approximate value
function for arbitrary GSI in Section V-A.

2) With the approximate value function, an alternative ac-
tions update algorithm, where only a subset of APs are
selected to update their dispatching actions distributedly
in each broadcast interval, is proposed in Section V-B.
Moreover, the analytical performance bound is derived
in Section V-C.

A. Baseline Policy and Approximate Value Function

To alleviate the curse of dimensionality, we first use the
baseline policy with fixed dispatching actions to approximate
the value function at the RHS of the Bellman’s equations in
equation (13). The baseline policy is elaborated below.

Policy 1 (Baseline Policy). In the baseline policy Π, each
AP fixes its dispatching actions as in the previous broadcast
interval. Specifically, at the t-th broadcast interval,

Π

(
S(t),D(t)

)
,

{
Π1(S1(t),D1(t)), . . . ,ΠK(SK(t),DK(t))

}
,

(14)

where

Πk

(
Sk(t),Dk(t)

)
,

{
ωk,j(t+ 1)

∣∣∣∀j ∈ J}, ∀k ∈ K. (15)

Let WΠ(·) be the value function of the baseline policy Π,
we shall approximate the value function of the optimal policy
V (·) via WΠ, i.e.,

V

(
S(t+ 1)

)
≈WΠ

(
S(t+ 1)

)
=

∑
m∈M,j∈J

{∑
k∈K

W̃ †k,m,j(S(t+ 1)) + W̃ ‡m,j(S(t+ 1))

}
, (16)

where W̃ †k,m,j(S(t + 1)) denotes the cost raised by the type-
j jobs which are being transmitted from the k-th AP to the
m-th processing server with the baseline policy Π and initial
system state S(t + 1), and W̃ ‡m,j(S(t + 1)) denotes the cost
raised by the type-j jobs on the m-th server. Their definitions
are given below.

W̃ †k,m,j

(
S(t+ 1)

)
,
∞∑
i=0

γi+1EΠ

[
‖R(k)

m,j(t+ i+ 1)‖1
]
, (17)

W̃ ‡m,j

(
S(t+ 1)

)
,
∞∑
i=0

γi+1EΠ

[
Qm,j(t+ i+ 1)+

βI[Qm,j(t+ i+ 1) = Lmax]

]
. (18)

B. Distributed Actions Update

Although the optimal value function has been approximated
via the baseline policy in the previous part, it is still infeasible
to solve the RHS of the Bellman’s equations as the evaluation
of equation (17) and (18) requires the knowledge of GSI and
signaling latency at all APs. Instead, it is feasible for part of
APs to update their dispatching actions distributedly in each
broadcast interval and achieve a better performance compared
with baseline policy. Hence, we first define the following

sequence of AP subsets, where each subset are selected to
update dispatching actions periodically.

Definition 8 (Subset Partition). Let Y1, . . . ,YN ⊆ K be a
collection of subsets of AP set K, which satisfy⋃

n=0,...,N−1

Yn = K (19)

My ∩My′ = ∅, y′ 6= y (∀y′, y ∈ Yn). (20)

The subset partition is not trivial and a partition to minimize
the update period N is preferred. A heuristic greedy algorithm
is given in Algorithm 1.

Algorithm 1: Greedy Subset Partition Algorithm
Input: K, {Mk,∀k ∈ K}
Output: a subset partition {Yn}

1 Initialize a subset partition as Yn = {n} (∀n ∈ K).
2 while ∃Ya and Yb (a 6= b) that
∪{My|y ∈ Ya}

⋂
∪{My|y ∈ Yb} 6= ∅ do

3 Count number of subsets in the current subset
partition which have disjoint candidate set with
Yn (∀n), denoted the number as In.

4 ñ← arg minn In
5 Merge subset Yñ with one of its disjoint subsets.

At the t-th broadcast interval, the APs in the subset indexed
with n , t (mod N) update their dispatching actions, while
the other APs keep the same dispatching actions as the
previous broadcast interval. Hence, let

Ã(t) ,

{
ωy,j(t+ 1)

∣∣∣∀y ∈ Yn, j ∈ J
}

(21)

be the aggregation of dispatching actions of the APs in the
subset Yn, and

Â(t) ,

{
ωy,j(t+ 1)

∣∣∣∀y /∈ Yn, j ∈ J
}

(22)

be the aggregation of dispatching actions of the rest APs,
which are same as in the previous broadcast interval. At the
t-th broadcast interval, the optimization of dispatching actions
Ã(t) at the RHS of the Bellman’s equations can be rewritten
as the following problem.

P2: min
Ã(t)

∑
S(t+1)

Pr

{
S(t+ 1)

∣∣∣S(t), Â(t), Ã(t)

}
·WΠ

(
S(t+ 1)

)
.

(23)

Moreover, we have the following conclusion on the decom-
position of P2.

Lemma 1. The optimization problem in P2 can be equiva-
lently decoupled into local optimization problems at APs for
each subset partition. Specifically, the local optimization for
the y-th AP in the n-th subset (∀n) can be written as

P3: min
Ay(t+1)

E{Sy(t+1)|Sy(t),Â(t),Ay(t+1)}∑
j∈J ,m∈My

{
W̃ †k,j

(
Sy(t+ 1)

)
+ W̃ ‡m,j

(
Sy(t+ 1)

)}
. (24)



Proof. At the t-th broadcast interval, the y-th AP in the subset
Yn updates its dispatching actions, which could only affect the
future cost raised on itself and its corresponding candidate
server set, i.e., the part of its OSI. Hence, it’s obvious that the
equation (17) and equation (18) on the RHS of the Bellman’s
equations could be reduced into the form based only on the
OSI of the y-th AP (∀y ∈ Yn).

The optimization of dispatching actions Ay(t + 1) for the
y-th AP (∀y ∈ Yn) in P3 could be achieved via searching
all the processing servers in My , whose computational com-
plexity is O(J |My|). As a result, the overall algorithm of job
dispatching is elaborated in Algorithm 2.

Algorithm 2: Online Alternative Actions Update Al-
gorithm

1 Initialize all the APs with heuristic dispatching actions
{ωk,j(0)|∀k ∈ K, j ∈ J }.

2 for t = 0, 1, 2, . . . do
3 n← t (mod N)
4 for y ∈ Yn do in parallel
5 The y-th AP observes Sy(t) after Dy(t).
6 Solve P3 with Sy(t),Dy(t) and obtain

optimized actions {ω̃y,j(t+ 1)|∀j ∈ J }
7 Ã(t+ 1)← {ω̃y,j(t+ 1)|∀y ∈ Yn, j ∈ J }.
8 Â(t+ 1)← {ωy,j(t)|∀y ∈ Yn−1, j ∈ J }
9 ∪ {ωy,j(t)|∀y /∈ Yn−1, j ∈ J }

As a remark notice that since in Algorithm 2, the compu-
tation complexity at each AP scales linearly with respect to
the size of candidate edge server set, it can be deployed in a
scenario with massive APs and edge servers, as long as the
the available number of edge servers for each AP is limited.

C. Analytical Performance Bound

In most of the existing approximate MDP solutions [21]–
[26], the performance is difficult to bound analytically as the
approximate value function has no accurate meaning on the
system cost or utility. In the proposed algorithm, however, we
derive the analytical expression for the baseline policy as the
approximate. Hence, the alternative dispatching actions update
can ensure to achieve a better performance than the baseline
policy. This conclusion is summarized below.

Lemma 2 (Analytical Cost Upper Bound). Let WΩ̃(·) be the
value function (average cost) of the proposed policy Ω̃, i.e.,

WΩ̃(S) ,
∞∑
t=1

γt−1EΩ̃
{S(t)|∀t}

[
g

(
S(t)

)∣∣∣S(1) = S

]
, (25)

we have

V (S) ≤WΩ̃(S) ≤WΠ(S),∀S. (26)

Proof. V (S) ≤WΩ̃(S) is straightforward as Ω̃ is not optimal
policy. The proof of WΩ̃(S) ≤WΠ(S) is equivalent to prove
the improvement of one-step policy iteration, which is similar
to the proof of Policy Improvement Property in [27].
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Fig. 2. Illustration of performance metrics comparison with benchmarks.
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Fig. 3. Illustration of cost versus index of broadcast interval.

Therefore, WΠ(S) derived in equation (16) can be used
as the analytical cost upper bound of the proposed policy Π.
Moreover, Lemma 2 also implies that the proposed policy with
fixed service edge server for each AP, as long as the static
dispatching policy is used as the baseline policy.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
low-complexity dispatching policy Ω̃ by numerical simula-
tions. The experiment setup and performance benchmarks
are elaborated in Section VI-A. The simulation results are
illustrated in Section VI-B. The sensitivity study on parameters
is also applied to provide some insights on the robustness of
the proposed policy in Section VI-C.

A. Experiment Setup

In the simulation, we assume that there are K = 15 APs,
M = 10 processing servers and J = 10 types of jobs in the
system. One broadcast interval is consist of tB = 25 time slots.
The network topology among APs is generated according to
Barabási-Albert (BA) model [28] and the processing servers
are randomly placed collocated with the APs. The arrival
traces and job processing time for each job type are extracted
from Google cluster traces [29] and then randomly assigned on
APs and edge servers, respectively. The maximum uploading
latency is Ξ = 3tB , and the distribution of Uk,m,j(Ξ)
(∀k ∈ K,m ∈ Mk, j ∈ J ) is arbitrarily generated within the
support {0, 1, . . . ,Ξ}. The signaling latency is with an integer
support from 0.7tB to 0.9tB time slots. Each queue for VMs
on edge server is with maximum queue length Lmax = 50,
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(a) signaling latency as 5 time slots.
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(b) signaling latency as 12 time slots.
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(c) signaling latency as 25 time slots.

Fig. 4. Algorithm Robustness versus Signaling Latency.

i.e., there would be at most 50 jobs on one edge server. The
discount factor γ is 0.95 and the overflow penalty β is 120.

We also propose three heuristic benchmarks to profile the
performance of the proposed MDP policy.
• Random Dispatching Policy: Randomly choose a dis-

patching edge server in each time slot;
• Selfish Policy: Always choose the edge server with

the minimum sum of the expected uploading time and
processing time;

• Queue-aware Policy: Always choose the edge server
with the minimum sum of expected uploading time, pro-
cessing time and queueing time based on the observation
of outdated queue states.

Moreover, we choose the Selfish Policy as the initial dispatch-
ing actions for our proposed algorithm (Algorithm 2).

B. Performance Analysis

As illustrated in Fig.2(a), the proposed algorithm (MDP
Policy) outperforms all the benchmarks in the average system
cost. More insights on the performance comparison are pro-
vided in Fig.2(b) and (c). In the former figure, the average job
response times, measuring the average number of broadcast
intervals from job’s arrival at one AP to the completeness
of computation at one edge server, are compared. It can be
observed that the proposed policy still outperforms all the
benchmarks. In Fig.2(c), the job dropping rates, measuring
the ratio of jobs dropped by edge servers due to queue
overflow, are also compared. It is shown that the proposed
policy outperforms other three benchmarks with the minimum
average cost and job response time. And there is no dropping
jobs incurred compared with the Selfish policy, which is the
initial baseline policy for our proposed algorithm. Finally, an
realization of job dispatching is illustrated in Fig.3, where
the number of jobs in the system is plot versus the index
of broadcast interval. It can be observed that the proposed
policy manage to keep the number of jobs in lower level,
compared with the other benchmarks. This demonstrates its
high dispatching efficiency.

C. Sensitivity Study

Signaling Latency. The simulation results with different sig-
naling latency Dk (∀k ∈ K) are illustrated in Fig.4, where
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Fig. 5. Illustration of average system
cost versus job arrival intensity.
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Fig. 6. Illustration of average system
cost versus mean processing time.

the cumulative distribution function (CDF) of the job number
in the system is plotted. Specifically, the signaling latency of
all the APs is set to 5, 12, 25 in Fig.4(a), Fig.4(b), Fig.4(c),
respectively. It can be observed that with the increasing of
signaling latency, the performance of Queue-aware Policy
becomes worse. The Queue-aware policy slightly outperforms
the Random Policy in Fig.5(a) with smaller signaling la-
tency (achieving a smaller number of jobs in the system),
and becomes worse in Fig.5(c) with large signaling latency.
This demonstrates that the Queue-aware Policy is sensitive to
signaling latency. In all the figures, the proposed policy outper-
forms all the benchmarks, which demonstrates its robustness
versus signaling latency.
Job Arrival Intensity. We carry out the sensitivity study of job
arrival intensity by integer scaling the interval of jobs arriving
in Google cluster traces. The average system cost versus the
number of APs is illustrated in Fig.5. With the increasing of
job arrival intensity, the average system cost increases in all
the benchmarks and our proposed policy. It can be observed
that our policy performs the best. Moreover, the performance
gain becomes significant when the computation load is heavy.
Mean Processing Time. The simulation results of various
mean processing time are illustrated in Fig.6, where the
mean processing time is taken as cm,j of the processing time
distribution G(1/cm,j) in our computation model assumption.
Generally speaking, with the increasing average processing
time, the average system cost increases in all the benchmarks
and our proposed policy. The simulation results are consistent
with that in Fig.5.



VII. CONCLUSION

In this paper, we consider an online distributed job dis-
patcher design problem for an edge computing system residing
in a Metropolitan Area Network. In this edge computing
system, the job dispatchers are implemented in a distributed
manner on multiple access points (APs) which collect jobs
from mobile users and then dispatch jobs to one edge server
or cloud server for processing. To facilitate the cooperation
among distributed job dispatchers, a signaling mechanism is
introduced where the APs and edge servers would periodically
broadcast their local state information to the job dispatchers.
However, the reception of updated and fully-observed global
system state is discouraged as the transmission latency is non-
negligible in MAN and reception of all broadcast is time
consuming. Hence, we formulate the distributed optimization
problem of job dispatching strategies as a POMDP problem,
with outdated and partially-observable information. The con-
ventional solution for POMDP is impractical due to huge
time complexity. In this paper, we propose a novel low-
complexity solution framework for distributed job dispatching,
based on which the optimization of job dispatching policy can
be decoupled via an alternative policy iteration algorithm and a
theoretical performance lower bound is obtained. The evalua-
tion results show that our proposed policy can achieve obvious
and robust performance gain compared with heuristic base-
lines. Furthermore, this work assumes available knowledge on
the distributions of signaling latency, uploading latency and
computation time. As an extension, the reinforcement learning
could be integrated with the proposed solution framework
when the above statistics are absent.
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