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Abstract—Mobile edge computing (MEC)-enabled Internet of
Things (IoT) networks have been deemed a promising paradigm to
support massive energy-constrained and computation-limited IoT
devices. IoT with mobility has found tremendous new services in
the 5G era and the forthcoming 6G eras such as autonomous
driving and vehicular communications. However, mobility of
IoT devices has not been studied in the sufficient level in
the existing works. In this paper, the offloading decision and
resource allocation problem is studied with mobility consideration.
The long-term average sum service cost of all the mobile IoT
devices (MIDs) is minimized by jointly optimizing the CPU-
cycle frequencies, the transmit power, and the user association
vector of MIDs. An online mobility-aware offloading and resource
allocation (OMORA) algorithm is proposed based on Lyapunov
optimization and Semi-Definite Programming (SDP). Simulation
results demonstrate that our proposed scheme can balance the
system service cost and the delay performance, and outperforms
other offloading benchmark methods in terms of the system service
cost.

Index Terms—edge computing, mobility, Lyapunov optimiza-
tion, offloading, resource allocation.

I. INTRODUCTION

With the fast and pervasive development of Internet of

Things (IoT), we expect massive IoT devices that need to

be connected to wireless networks. It is predicted that the

global mobile data traffic will increase sevenfold in the next

five years, while the number of the global mobile devices will

be 12.3 billion by 2022 [1]. Such rapidly growing demands

necessitate the development of a new wireless architecture

that can provide ubiquitous connectivity to massive mobile

IoT devices (MIDs). To that end, small cell networks have

become a key technology to support massive connectivity and

data capacity [2]. Due to the spatial proximity between small

BSs and MIDs, this architecture can provide MIDs with better

communication qualities, i.e., less energy consumption, better

coverage, and higher capacity, especially at the edge of the

network [3]. 5G infrastructure has facilitated the evolution of

the traditional IoT towards the new generation IoT with much

higher capabilities to carry new services these days [4].

A fundamental challenge in IoT networks is how to tackle

the contention between the resource-hungry applications and

resource-restricted MIDs. Mobile edge computing (MEC) has

become a promising paradigm to address these issues [5]

[6]. By deploying edge servers with high computational and

communication capacities closer to the end users, MIDs can

offload their computation tasks to the nearby MEC servers

so that delay sensitive yet computation intensive services can

be supported and energy can be saved for battery driven

MIDs. Computation offloading in MEC systems has attracted

significant research attention from both academia and industry

in recent years [7], [8]. Mao et.al. [9] proposed an optimal

binary offloading algorithm by joint optimizing communica-

tion and computational resource allocation. Deng et.al. [10]

proposed a dynamic parallel computing algorithm to minimize

the response time and packet loss under the limitation of

energy queue stability for the green MEC framework. Wang

et.al. [11] incorporated interference management into binary

offloading as well as the allocations of physical resource blocks

and computation resources. However, all the models mentioned

above only focus on MEC systems with a single edge node.

These architectures are relatively simple and not generally

applicable to IoT networks.

There are some unique challenges for computation offloading

in a multi-MEC enabled IoT network. First, each MID can

be covered by multiple MEC servers and each MID needs to

first determine which MEC server to be associated with. User

association is very important for offloading as it directly affects

communication capacity and computation latency. Different

from user association polices in the conventional heteroge-

neous networks [12], both the communication and computation

capacity need to be considered in an MEC-enabled network.

Second, due to mobility, an MID may need to re-associate to

a different MEC server for offloading from time to time [4].

The service migration from one MEC to another MEC brings

additional operation costs, which needs to be considered when

designing an offloading scheme. Thirdly, due to user movement,

the future information on channel conditions, user location, and
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task arrival can be difficult to predict. Thus, the task offloading

decision has to be made by considering all these uncertainties.

Most existing works about offloading schemes in IoT networks

[13], [14] have focused on a quasi-static scenario and no service

migration cost due to mobility was taken into account, which

calls for in-depth study on the computation offloading design

for mobile IoT networks.

Motivated by the above-mentioned challenges, in this paper,

we investigate the problem of task offloading and resource

allocation in a multi-MEC-enabled mobile IoT network, where

computation tasks arrive at the MIDs in a stochastic manner.

User association and re-association due to mobility are consid-

ered during the task offloading design, and service migration

cost is also taken into account. The objective is to minimize the

average sum long-term service cost of all the MIDs under the

constraints of resource availability, minimum rate requirement,

and task queue stability. To solve this problem, we design an

online mobility-aware offloading and resource allocation algo-

rithm (OMORA) based on the Lyapunov optimization method

and Semi-Definite Programming (SDP), which jointly optimize

the transmit power, the CPU-cycle frequencies of MIDs, as

well as the user association vector for offloading. Simulation

results demonstrate that the proposed algorithm can balance

the service cost (the weighted sum of the power consumption

and the service migration cost) and the delay performance in

the IoT network, and outperforms other offloading benchmark

methods in terms of the system service cost.

The rest of the paper is organized as follows. In Section

II, the system model is presented. Section III formulates the

average service cost minimization problem. In Section IV,

an online mobility-aware offloading and resource allocation

algorithm is developed. Simulation results are given in Section

V. Finally, the paper is concluded in Section VI.

II. SYSTEM MODEL

As illustrated in Fig. 1, an MEC-enabled IoT network is

considered with M densely deployed Small Base Stations

(SBS), denoted as M = {1, 2, ...,M}, to serve a set of U
MIDs, denoted as U = {1, 2, ..., U}. Each SBS is equipped

with an MEC server to provide computation offloading service

to the resource-constrained MIDs, such as smartphones, tablets,

and wearable devices. Due to the constrained computation

capabilities, each MID can offload partial computation tasks

to an MEC server from one of the nearby SBSs it is associate

to.

We focus on a multi-user mobility scenario. The MIDs are

randomly distributed and move continuously in the network,

whereas the MEC servers are static. The system is assumed to

operate in a time-slotted structure and the time slot length is τ ,

i.e. t ∈ T = {1, 2, ..., T }. Let the binary indicator xm
u (t) denote

the different user association variable, where xm
u (t) = 1 if MID

u ∈ U chooses to associate with MEC server m, otherwise,

xm
u (t) = 0. Each MID can only associate with one MEC server
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Fig. 1. System model.

at one time. The constraints for the user association policy are

given as follows:

M
∑

m=1

xm
u (t) = 1, ∀u ∈ U, t ∈ T , (1)

xm
u (t) ∈ {0, 1}, ∀m ∈ M, u ∈ U, t ∈ T . (2)

The number of MIDs concurrently served by the MEC server

m at t is given by Nm(t) =
∑U

u=1 x
m
u (t), which satisfies

Nm(t) ≤ Nmax
m , ∀ m ∈ M, t ∈ T . (3)

A. Computation Task Queueing Models

For MID u ∈ U , let Au(t) represent the number of the arrival

computation tasks. Note that the prior statistical information

about Au(t) is not required to be known, which is usually

difficult to be obtained in practical systems.

At the beginning of each time slot, MID u firstly associates

with an appropriate MEC server and executes partial com-

putation tasks Dl
u(t) at the local CPU. Meanwhile Do

u(t) is

offloaded to the associated MEC server. The arrived but not

yet processed data is queued in the task buffer for the next or

future time slot processing. Let Qu(t) be the queue backlog

of MID u at time slot t, and its evolution equation can be

expressed as

Qu(t+ 1) = max{Qu(t)−Du(t), 0}+Au(t), (4)

where Du(t) = Do
u(t)+Dl

u(t) is the total executed amount of

computation tasks for MID u at time slot t.

B. Local Execution Model

Let fu(t) denote the local CPU-cycle frequency of MID

u with a maximum value fmax. Let γu be the computation

intensity (in CPU cycles per bit). Thus, the local task processing



rate can be expressed as rlu(t) = fu(t)/γu, The available

amount of computation tasks executed locally by MID u at

time slot t is Dl
u(t) = rlu(t)τ .

We use the widely adopted power consumption model

P l
u(t) = κmobfu(t)

3 to calculate the power consumption of

MID u for local execution, where κmob is the energy coefficient

depending on the chip architecture [18].

C. Task Offloading Model

The amount of Do
u(t) at time slot t is offloaded from MID u

to its associated MEC through the uplink channel. The wireless

channel is assumed to be independent and identically distributed

(i.i.d) frequency-flat block fading, i.e., the channel remains

static within each time slot, but varies among different time

slots. The small-scale Rayleigh fading coefficient from MID u
to its serving MEC m is denoted as hu,m(t), which is assumed

to be exponentially distributed with a unit mean. Thus, the

channel power gain from MID u to its serving MEC m can

be represented by Hm
u (t) = hu,m(t)g0(d0/du,m)θ , where g0

is the path-loss constant, θ is the path-loss exponent, d0 is

the reference distance, and du,m is the distance from MID

u and MEC server m. The system uses Frequency Division

Multiple Access (FDMA) in each cell and there is no intra-

cell interference. According to the Shannon-Hartley formula,

the achievable rate of MID u to its associated MEC server at

time slot t is given as

rou(t) =

M
∑

m=1

xm
u (t)ωlog2(1 +

Hm
u (t)ptxu (t)

χ+ σ2
), (5)

where ω is the system bandwidth of each MID. σ2 is the back-

ground noise variance and the variable χ is the average inter-

cell interference power which is assumed to be a constant by

applying intelligent interference management scheme according

to the different cell size [15] [16]. Then, the available amount of

computation tasks offloaded from MID u to its associated MEC

is Do
u(t) = rou(t)τ . The power consumption for offloading is

P o
u(t) = ζptxu (t) + pr, (6)

where ζ is the amplifier coefficient and pr is the constant circuit

power consumption.

D. Service Migration Cost Model

With user mobility, the associated MEC server changes

from time to time in order to best serve the user. However,

the handover results in an additional cost. Especially, when

transferring the service profile of each MID across edges,

it incurs extensive usage of the network resources and also

increase the energy consumption of network devices [19]. To

model the service migration cost incurred by the handover, let

cu(t) be the service migration cost from source MEC server

j ∈ M at t − 1 to the target MEC server i ∈ M of MID u
at t. If ∀j = i, then cu(t) = 0; otherwise cu(t) = ε. Thus, the

service migration cost of MID u at t can be expressed as

cu(t) =

M
∑

m=1

ε

2
[(1−xm

u (t−1))xm
u (t)+(1−xm

u (t))xm
u (t−1)].

(7)

III. SERVICE COST MINIMIZATION PROBLEM

FORMULATION

We define the service cost for each MID as the weighted sum

of the power consumption and service migration cost, which

can be expressed as

Wu(t) , Pu(t) + φcu(t), (8)

where Pu(t) , P o
u (t) + P l

u(t) is the total power consumption

of MID u at t, and φ ≥ 0 is the weighted coefficient of the

service migration cost, which can be adjusted to address the

cost of the service migration cost of MID u, as well as to

balance the power consumption and service migration cost.

We aim to minimize the long-term average sum service cost

of all the MIDs under the constraint of resource limitation

and QoS requirement while guaranteeing the average queuing

latency. The controller operation at t is expressed as O(t)
∆
=

{x(t),ptx(t), f(t)}. The average sum service cost minimization

problem can be formulated as

P1: min
O(t)

lim
T→∞

1

T
E

[

T
∑

t=1

U
∑

u=1

Wu(t)

]

s.t. (1)− (3),

Ru(t) ≥ Rth, (9a)

lim
t→∞

1

t
E[| Qu(t)|] = 0, ∀u ∈ U , (9b)

fu(t) ≤ fmax, ∀u ∈ U , (9c)

0 ≤ ptxu (t) ≤ P tx
max, ∀u ∈ U , (9d)

where Ru(t) , rou(t) + rlu(t) is the total achievable rate of

MID u. The constraint (9a) indicates that the total achieved

rate at t should be no less than the required minimum rate

threshold Rth. (9b) enforces the task buffers to be mean rate

stable, which also ensures that all the arrived computation

tasks can be processed within a finite delay. (9c) and (9d)

are the ranges of local computing frequency and the maximum

allowable transmit power of each MID, respectively.

IV. ONLINE MOBILITY-AWARE OFFLOADING AND

RESOURCE ALLOCATION ALGORITHM

A. Lyapunov Optimization Framework

To stabilize the virtual queues, we first define a quadratic

Lyapunov function L(Q(t))
∆
= 1

2

∑U

u=1 Qu(t)
2 [17]. We further

introduce the one-step conditional Lyapunov drift function to

push the quadratic Lyapunov function towards a bounded level

so that the virtual queue is stabilized.

∆(Q(t))
∆
=E[L(Q(t+ 1))− L(Q(t))|Q(t)]. (10)

To incorporate queue stability, we define a Lyapunov drift-plus-

penalty function [17] to solve the real-time problem

∆V (Q(t)) = ∆(Q(t)) + V · E

[

U
∑

u=1

(Pu(t) + φcu(t))|Q(t)

]

,

(11)



Algorithm 1 The Proposed OMORA Algorithm

1: At the beginning of the tth time slot, obtain {Qu(t)}, {Au(t)}.
2: Determine f(t),ptx(t), and x(t) by solving

P2: min
O(t)

U∑

u=1

Q(t)[Au(t)−Du(t)]

+ V

U∑

u=1

[Pu(t) + φcu(t)]

s.t. (1)− (3), (9a), (9c), (9d)

3: Update {Qu(t)} according to (4) and set t = t+ 1.

where V is a control parameter greater than zero in the

proposed algorithm. For an arbitrary feasible decision O(t) that

is applicable in all the time slots, the drift-plus-penalty function

∆V (Q(t)) must satisfy

∆V (Q(t)) ≤ C + E

[

U
∑

u=1

(Qu(t)(Au(t)−Du(t)))|Q(t)

]

+ V · E

[

U
∑

u=1

(Pu(t) + φcu(t))|Q(t)

]

,

(12)

where C = 1
2

U
∑

u=1
(Dmax

u
2 +Amax

u
2), Dmax

u and Amax
u are the

maximum achievable data and arrival workload respectively.

The main principle of the proposed online optimization

algorithm based on the Lyapunov optimization is to minimize

the upper bound of ∆V (Q(t)) on the right side of (12). By

doing so, P1 is converted to a series of per time slot based

optimization problems. Meanwhile, the long-term average sum

service cost can be minimized, and the amount of tasks waiting

in the task buffers can be maintained at a low level, which ef-

fectively guarantees the average queuing latency. The proposed

algorithm is summarized in Algorithm 1, where a deterministic

optimization problem P2 needs to be solved at each time slot.

B. Optimal Solution For P2

One can readily identify that P2 is a mixed-integer program-

ming problem involving three sets of optimization variables,

namely, the local CPU-cycle frequency f(t), the transmit power

ptx(t), and the association indicator x(t). The computational

complexity is prohibitively high for a brute force approach.

Motivated by this, we propose to solve P2 by optimizing

these three variables alternately in an iterative way. In each

iteration, the optimal local CPU-cycle frequencies and the

optimal transmission power are obtained in the closed forms,

and the optimal user association indicator is determined by the

proposed algorithm based on semidefinite programming (SDP)

relaxation.

Optimal Local CPU-cycle Frequencies: By fixing ptxu (t)
and xm

u (t), the optimal local CPU-cycle frequencies f(t) can

be obtained by solving the following sub-problem P2.1:

P2.1: min
0≤fu(t)≤fmax

V ·

U
∑

u=1

[

κmobf
3
u(t)

]

−Qu(t)fu(t)τ/γu

s.t. fu(t)/γu ≥ max{Rth − rou(t), 0}. (13)

Since the objective function of P2.1 is a convex function, the

optimal fu(t) can be derived as

fu(t) = max

{

(Rth − rou(t))γu, 0,min{

√

Qu(t)τ

3V κmobγu
, fmax}

}

.

(14)

Transmission Power Allocation: With a fixed associated

indicator x(t) and local CPU-cycle frequency f(t), the problem

P2 is reduced to the problem P2.2 given as

P2.2: min
0≤ptx

u
(t)≤P tx

max

Qu(t)(Au(t)− ωτ log2(1 +
ptxu (t)Hm

u (t)

χ+ σ2
))

+ V (ζptxu (t) + pr)

s.t. ptxu (t) ≥ (2
R

th
−r

l
u
(t)

ω − 1)
χ+ σ2

Hm
u (t)

. (15)

Since the objective function and the constraints are all convex,

the solution of ptxu (t) can be given as

ptxu (t) =max{(2
(R

th
−r

l
u
(t))

ω − 1)
χ+ σ2

Hm
u (t)

,

min{
Qu(t)ωτ ln 2

ζV
−

χ+ σ2

Hm
u (t)

, P tx
max}}.

(16)

User Association: The problem P2 can be solved based on the

given (ptxu (t), fu(t)) to determine the value of the association

index xm
u (t), which gives the user association result. By merg-

ing the term with respect to xm
u (t) and removing the unrelated

part, problem P2 can be transformed into

P2.3 : min
xm
u
(t)

U
∑

u=1

M
∑

m=1

[
1

2
V φε(1 − 2xm

u (t− 1))

−Qu(t)r
o
u(t)τ ]x

m
u (t)

s.t. (1)− (3).

The problem is non-convex since the first constraint is a non-

convex quadratic constraint. Here, we propose a separable

Semi-Definite Program (SDP) approach to obtaining the binary

association index xm
u (t) for each MID u at t. The problem

is first transformed into a convex problem based on QCQP

transformation and semidefinite relaxation (SDR) to obtain the

fractional solution. Then, based on the solution, the Shmoys

and Tardos rounding technique is used to recover the optimal

value for xm
u (t) [20].

Define wu(t) = [x1
u(t), x

2
u(t), · · · , x

M
u (t)]T and em as the

M × 1 standard unit vector with the mth entry being 1. Let

amu (t) = 1
2V φε(1 − 2xm

u (t − 1)) − Qu(t)r
o
u(t)τ , P2.3 can



be further transformed into an equivalent QCQP problem as

follows.

P2.3.1 : min
wu(t)

U
∑

u=1

vo
u
T (t)wu(t)

s.t.wT
u (t)diag(em)wu(t)− eTmwu(t) = 0, ∀u ∈ U ,m ∈ M,

(17a)

M
∑

m=1

eTmwu(t) = 1, ∀u ∈ U , t ∈ T , (17b)

U
∑

u=1

eTmwu(t) ≤ Nmax, ∀m ∈ M, t ∈ T , (17c)

where vo
u(t) = [a1u(t), a

2
u(t), · · · , a

M
u (t)]T . The problem is still

non-convex. By applying the separable SDR, the approximate

solution can be obtained from the following convex problem.

Let Wu(t) = [wu(t)
T , 1]T × [wu(t)

T , 1] and release the

rank constraint rank(Wu) = 1, then the problem can be given

as

P2.3.2 : min
Wu(t)

U
∑

u=1

Tr(Vo
u(t)Wu(t))

s.t. Tr(Vx
u,m(t)Wu(t)) = 0, ∀u ∈ U ,m ∈ M, (18a)

M
∑

m=1

Tr(Ve
u,m(t)Wu(t)) = 1, ∀m ∈ M, (18b)

U
∑

u=1

Tr(Ve
u,m(t)Wu(t)) ≤ Nmax, ∀m ∈ M, (18c)

where Vo
u(t) =

[

0 1
2v

o
u(t)

1
2v

o
u
T (t) 0

]

,Vx
u,m(t) =

[

diag(em) − 1
2em

− 1
2e

T
m 0

]

, Ve
u,m(t) =

[

0 1
2em

1
2e

T
m 0

]

.

The problem P2.3.2 is a convex problem and can be solved

in a polynomial time using a standard SDP solver. Since the

problem P2.3.2 is a relaxation of problem P2.3.1, its solution

is the lower bound of the solution of the original association

problem if rank(W∗
u(t)) 6= 1. To recover the integer xm

u (t),
the rounding technique [20] is applied as follows. Firstly,

zu(t) = [z1u(t), ..., z
M
u (t)] = diag(W∗

u(t)) and zmu (t) ∈ [0, 1]
are defined as the fractional association solution of MID u.

After the fractional association solution of each u is obtained,

we then construct the weighted bipartite graph G(U, V,E)
to establish the relationship between mobile users and MEC

servers. Let U denote the mobile users in the network and

V = {vm,s : m = 1, 2, · · · ,M, s = 1, ..., Jm} , where

Jm =

⌈

U
∑

u=1
zmu (t)

⌉

denotes that there are Jm MIDs associated

to the MEC server m. The nodes {vm,s : s = 1, 2, ..., Jm}
correspond to MEC server m. Then, the graph G which

includes the weighted edges between U and V needs to be

constructed by the following Algorithm 2. After obtaining

E , Hungarian algorithm is utilized to find a complete max-

weighted bipartite matching Mmatch. Mmatch can be denoted

as {(uu, vm,s, e
m,s
u ) : uu ∈ U, vm,s ∈ V, em,s

u ∈ E}, whose

Algorithm 2 THE CONSTRUCTION OF BIPARTITE GRAPH G.

1: Set: E ← ∅.
2: Initialization:Sort the zmu (t) in descent order for each m as

x
′m
1 (t) ≥ x

′m
2 (t) ≥ · · · ≥ x

′m
U (t) for each m.

3: if Jm ≤ 1 then

4: for each x
′m
u ≥ 0 do

5: Add the edge (uu, vm,1) into E and set em,1
u = x

′m
u .

6: end for
7: else
8: for s = 1, 2, ..., Jm do

9: find the minimum index us such that
∑us

u=1 x
′m
u ≥ s.

10: if u = us−1 + 1, ..., us − 1, and x
′m
u ≥ 0 then

11: Add edge (uu, vm,s) into E with weight em,s
u = x

′m
u .

12: else if u = us then
13: Add edge (uu, vm,s) into E with weight em,s

u = 1 −∑us−1
u=us−1+1 x

′m
u .

14: Add edge (uu, vm,s+1) into E with weight em,s+1
u =∑us

u=1 x
′m
u − s.

15: end if
16: end for
17: end if
18: Output: E .

total edge weight is the maximum among all the matchings.

Since this is a complete matching, each MID u can find a

unique matching point vm,s. Based on Mmatch, the integer user

association decision can be extracted. Let X = [x1, ...,xU ]
T

,

where xu = [x1
u, ..., x

M
u ]. If (uu, vm,s, e

m,s
u ) is in Mmatch, set

xm
u = 1, otherwise, xm

u = 0.

V. SIMULATION RESULTS

In this section, simulation results are provided to evaluate

the proposed algorithm. The simulation settings are based on

the work in [9], [18]. There are 3 MEC servers and 10 MIDs

randomly deployed in a 100×100m2 area. The MID trajectory

is generated by the random walk model. The arrival workload

Au(t) is uniformly distributed within [0.95, 1.5] × 106 bits.

The channel power is exponentially distributed with the mean

of g0 · (d/d0)
−4, where the reference distance d0 = 1 and

g0 = −40 dB. κmob = 10−28, ω = 1 MHz, σ2 = 10−13 W,

χ = 10−10 W, Pmax = 1 W, fmax = 2.15 GHz, γu = 737.5
cycles/bit, the amplifier coefficient ζ = 1, ε = 10−1, φ = 0.1.

We consider two cases as benchmarks to evaluate the pro-

posed algorithm. The first benchmark, marked as ”NL”, has no

local computation but has a dynamic user association policy.

The second benchmark, marked as ”NM”, has no service

migration by keeping initial association decision unchanged.

A comparison of the achievable service cost/task queue

length versus the control parameter V is presented in Fig. 2.

The service cost and task queue length are first maintained at a

stable level when V is small. With the increase of V , the system

gives more incentive to minimize the service cost than to lower

down the queue length. Thus, the service cost decreases and the

queue length increases. The best trade-off to maintain a lower

service cost, as well as the lower queue length occurs around
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Fig. 2. Service cost/queue length v.s. control parameter V .
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Fig. 3. Service cost.

V = 1010. Therefore, in the following simulation, the control

parameter V is set as 1010.

A comparison of the average service cost versus time slot

is presented in Fig. 3. As shown in the figure, the proposed

method can achieve the lowest service cost compared with

the other two methods. This is because with the assistance of

local processing and user association, the system can save more

power through local computing and receive a better service

from MEC.

The service cost versus the minimum computation rate

requirement Rth is presented in Fig. 4. The proposed method

can achieve the lowest service cost. With the increase of

Rth, the computation rate constraint forces each method to
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Fig. 4. Service cost v.s. minimum required rate Rth.

increase its powers, which causes a higher service cost. It is

worth noting that the gaps between those three methods keep

increasing with the increase of Rth. The reason is that when

the required rate is at a low level, all the methods consume a

lower power to meet the service requirement. However, when

the rate keeps increasing, the system needs to allocate more

power and to choose the best method to achieve a lower service

cost. Therefore, the proposed method is more adaptable and can

achieve a better performance.
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Fig. 5. Service cost v.s. migration cost ε.

Fig.5 illustrates the average system service cost versus

migration cost ε. It can be seen that the average service cost

of all the methods except ‘NM’ increases with ε, which is in



accordance with our intuition. The service cost of the proposed

scheme keeps increasing and finally approaches the service

cost of “NM” when the migration cost is at a large value. This

observation confirms that our proposed scheme can achieve

a better trade-off between service migration cost and energy

consumption.

VI. CONCLUSIONS

In this paper, we investigated task offloading and resource

allocation in an MEC-enabled IoT network. The average

service cost minimization problem with QoS constraint and the

task queue stability constraint was formulated as a stochastic

optimization problem. A mobility-aware task offloading and

resource allocation algorithm based on Lyapunov optimization

and SDP was developed, which jointly optimizes the transmit

power, the CPU-cycle frequencies, and the user association

vector of IoT MIDs. It was shown that the proposed algorithm

outperforms other benchmarks and is capable of balancing the

service cost and the delay performance in a MEC-enabled IoT

network with mobility consideration.
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