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Abstract—Federated learning (FL) has become an emerg-
ing machine learning technique lately due to its efficacy in
safeguarding the client’s confidential information. Neverthe-
less, despite the inherent and additional privacy-preserving
mechanisms (e.g., differential privacy, secure multi-party com-
putation, etc.), the FL models are still vulnerable to various
privacy-violating and security-compromising attacks (e.g., data
or model poisoning) due to their numerous attack vectors
which in turn, make the models either ineffective or sub-
optimal. Existing adversarial models focusing on untargeted
model poisoning attacks are not enough stealthy and persistent
at the same time because of their conflicting nature (large
scale attacks are easier to detect and vice versa) and thus,
remain an unsolved research problem in this adversarial
learning paradigm. Considering this, in this paper, we analyze
this adversarial learning process in an FL setting and show
that a stealthy and persistent model poisoning attack can be
conducted exploiting the differential noise. More specifically, we
develop an unprecedented DP-exploited stealthy model poison-
ing (DeSMP) attack for FL models. Our empirical analysis on
both the classification and regression tasks using two popular
datasets reflects the effectiveness of the proposed DeSMP attack.
Moreover, we develop a novel reinforcement learning (RL)-
based defense strategy against such model poisoning attacks
which can intelligently and dynamically select the privacy level
of the FL models to minimize the DeSMP attack surface and
facilitate the attack detection.

Index Terms—Privacy, Security, Differential Privacy (DP),
Federated Learning (FL), Reinforcement Learning (RL)

I. INTRODUCTION

Federated Learning (FL), also known as collaborative learn-
ing, has caught a lot of attention from the research com-
munity since it has been first introduced back in 2016 by
McMahan et al. [1]. It is mostly because of the inherent
privacy protection that FL offers to its users. In the FL
process, a model is trained on a diffuse network of edge
nodes using their local data; rather than the traditional
centralized training fashion. This provides a level of data
privacy assurance to the users since the confidential data do
not leave the edge nodes.

However, the process of FL can be vulnerable to differ-
ential attacks (e.g., membership inference attacks (MIA))
which aim to reveal the sensitive information of a node by
analyzing the distributed model parameters [2] or gradients
[3]. To alleviate this privacy issue, extensive research have
been carried out lately, focusing on developing secure multi-
party computation (SMPC) [4], trusted execution environ-
ments (TEEs) [5], cryptographic encryption [6]–[8], and dif-
ferential privacy (DP)-based privacy-preservation techniques

[9]–[11] for FL. Among these, DP is considered a very
promising technique to preserve the data privacy and prevent
MIA [12]. Existing works along this research line include
DP-based distributed SGD [13], local DP (LDP) [14],

Although DP is providing a level of privacy guarantee,
an adversary can exploit the DP noise to inject false data
into the original data and hide the attack identity exploiting
the noise range [15]. In this paper, we investigate this
vulnerability of DP-based applications and show that in
a differentially private FL setting (we call it ‘DPFL’), a
malicious actor can inject the false data either into the differ-
entially private training data (i.e., data poisoning attack [16]
or into the model parameters (i.e., model poisoning attack
[11], [17]). More specifically, we demonstrate a stealthy
model poisoning attack in the FL model exploiting the noise
of the DP mechanism that (1) reduces the overall accuracy of
the global federated model, and (2) deceives the traditional
anomaly detection mechanisms by hiding the false data into
the DP-noise. The results in this paper reveal a new backdoor
for stealthy and untargeted model poisoning attacks in FL
through the exploitation of the DP mechanism.

A. Motivations

Poisoning attacks in any machine learning (ML) setting can
be broadly divided into two major categories: targeted and
untargeted attacks [10]. Targeted poisoning attacks [11], [17]
aim to change the outcome or behavior of the model on
particular inputs while maintaining a good overall accuracy
on all other inputs, thus makes the attack and defense pro-
cesses more difficult. On the contrary,the untargeted model
poisoning attacks [16], [18] have the power to make a model
unusable and eventually leads to a denial-of-service attack
[18]. For instance, an adversary may perform untargeted
attacks on its competitor’s FL model with an intention to
make the model unfeasible.

However, traditional untargeted poisoning attacks mainly
utilize the hyperparameters of the targeted model to scale up
the effectiveness of the malicious model [11]. To attain the
goal of poisoning, the adversary may use explicit boosting
that deforms the weights’ distribution, however, then it can
be easily detected by the server through simple server-side
model checking [19]. Hence, untargeted model poisoning
attacks in a stealthy manner remain an open problem in FL
[20]. Moreover, since an FL system usually consists of a
huge number of clients and only a portion of clients are
chosen for any particular round [21], the odds of impacting

ar
X

iv
:2

10
9.

09
95

5v
1 

 [
cs

.C
R

] 
 2

1 
Se

p 
20

21



the global model accuracy significantly by a single malicious
contribution is very low. This leads us to the question- “How
can the adversary perform an untargeted model poisoning
attacks in a stealthy but persistent fashion?”. Motivated by
this, in this paper, we investigate the DP mechanism as a
tool to conduct such adversarial poisoning attacks in FL. In
the rest of the paper, the ‘false data injection (FDI)’ attack
and ‘model poisoning’ attack is mentioned interchangeably.

B. Contributions

In this paper, we show that the DP mechanism is creating
a new attack avenue for stealthy false data injection (FDI)
or model poisoning attacks in a DPFL environment. We
name this attack model as ‘DP-exploited stealthy model
poisoning’ (in short, DeSMP) attacks. Particularly, we make
the following contributions:
• We demonstrate that DP, as a privacy-preserving tool,

is opening a new backdoor for untargeted model poi-
soning attacks in the FL setting. Our proposed attack
strategy (DeSMP) is stealthy and persistent in nature.

• To tackle the proposed DeSMP attack, we develop
a reinforcement learning (RL)-based defense strategy.
The proposed RL-based defense approach intelligently
selects the differential privacy level for the clients’
model update. It also minimizes the attack vectors and
facilitates attack disclosure.

Section II of this paper covers preliminaries of FL and a brief
review of the related works while section III outlines the
research problem and threat model. Section IV formulates
the proposed DeSMP attack and defense model and their
working principle. In section V, we analyze and evaluate the
effectiveness of our proposed model. Finally, in section VI,
we conclude the paper with some future research directions.

II. PRELIMINARIES AND LITERATURE REVIEW

Here, we discuss the basic mechanism of FL while pointing
out some significant contrasting contributions between this
work and existing notable research work in adversarial FL.
Table I describes the major symbols used in this paper.

A. Mechanism of Federated Learning with DP

FL introduces a collaborative zone for training a model
among a set of workers. Here, each participating node
maintains a local model for its local training dataset. Addi-
tionally, FL incorporates a server that aggregates all the local
models to form a global model [1]. Furthermore, to tackle
MIA through analyzing the model weights, the FL server
generally includes a privacy-preserving mechanism such as
DP [2]. Here, DP adds the random Laplacian (LAP (∆f

ε ))
or Gaussian noise (N (θ = 0, σ2 = 2ln(1.25/δ).(∆f)2

ε2 )) to
the model weights. Nonetheless, while deploying the DP
mechanism, researchers [2], [21] have suggested using norm
clipping or early stopping methods to compensate for the
high level of random differential noise and prevent the
model to be completely unusable. Once a pre-defined testing
criterion (e.g., model accuracy is greater than a threshold

TABLE I: List of major symbols and their description
Symbols Description Symbols Description

τ Accuracy or loss threshold θ Mean
µa Attack impact DM Measurement data
γ Attacker’s tolerance ζ Norm of model updates
b Batch k Participating clients in each round
t Communication round fa PDF of attack distribution

PDP DP parameters f0 PDF of benign Gaussian distribution
MPSG Final global model B Privacy budget
PFL FL parameters ε Privacy loss
MG Global model δ Privacy spent in each round
∇L Gradient descent PRL RL parameters
x Input data ∆f or S Sensitivity

DKL Kullback-Leibler divergence σ Standard deviation
η Learning rate K Total clients

ML Local Model w Weights
ml Attacker loss fl Federated loss
R Agent reward S Agent state
a Action α Learning rate of RL agent
π∗ Optimal policy χ Discount factor

Q∗(s, a) converged Q table ψ Reward balancing parameter

or privacy budget exceeds) is met, the server finalizes the
global model and stops the training procedure; otherwise,
the training process re-initiates.

B. Adversarial Federated Learning

Although the DP-based FL models do not expose the client’s
training data to the rest of the world, there exist several
attack vectors that an adversary can exploit to perform
malicious modification or gain unauthorized access to con-
fidential information. For instance, there could be some
malicious clients who might inspect all messages received
from the server and then, in the training phases, selectively
poison the local models to reduce the efficiency of the
global model [10]. Other examples of the adversarial FL
include the targeted and untargeted model poisoning attacks
[11], [18]. However, unlike the centralized ML schemes,
the FL systems may employ a large number of untrusted
devices which may facilitate the training-time attacks and
inference-time attacks [10]. In this paper, we focus on
one of the powerful attack classes which is an untargeted
model poisoning attack [18]. The adversary can conduct
this model poisoning attack either by directly manipulating
a client’s model or through the widely known man-in-the-
middle attack formation leveraging the network and system
vulnerabilities [10].

C. Related Research Work

In this part, we discuss some notable prior research related
to the untargeted model poisoning attacks and defenses in
FL while outlining some contrasting points with ours.

1) Byzantine-robust Aggregation in Adversarial Setting:
Byzantine threat models [22] produce arbitrary outputs for
any wrong inputs (either by an honest participant or a mali-
cious actor). These arbitrary outputs can lead to converging
the model to a sub-optimal model. Moreover, the Byzantine
clients may need to have the white-box access or the non-
Byzantine client updates to make their attack stealthy [10].
Nonetheless, to the best of our knowledge, none of the
existing works explore the vulnerabilities of the DP-based
applications in tailoring such stealthy attacks. In contrast,
we demonstrate that the Byzantine clients or the server can
conduct stealthy and persistent untargeted model poisoning
attacks by hiding behind the DP mechanism. In particular,
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we demonstrate the DP-exploited stealthy model poisoning
(DeSMP) attacks in an untargeted manner for FL models.

2) DP-assisted FL Frameworks in CPSs: Another related
line of research focus on developing novel FL frameworks
for cyber-physical systems (CPSs) such as power IoT [23],
internet of vehicles (IoV) [24], smart grids [25] etc. They
pave the way for adopting FL into the CPS domain. Par-
ticularly, [25] shows that the FL models, coupled with
edge computing, perform very efficiently in short-term load
forecasting while significantly reducing the networking load
compared to a centralized model. Nevertheless, they do
not cover the adversarial analysis of the FL systems for
model update poisoning attacks in CPSs. Since, in CPSs
like smart grids, many mission-critical operations depend
on the model accuracy, the DP-assisted poisoning attacks
may create devastating consequences through the failure
of physical layer devices. Therefore, it is non-trivial to
investigate the attack surfaces of a DPFL model in CPSs.
In this context, we focus on the adversarial analysis of the
DP-technique in the CPS domain, which will facilitate the
future development of novel and effective defense strategies.

3) Attack Mitigation Strategies in Adversarial DP: Al-
though some recent works [15], [26] consider active attacks
(e.g., FDI attacks, poisoning attacks, etc.) in DP-based CPSs
(e.g., smart grids, transportation systems, etc.), they neither
discuss the stealthy model poisoning attacks nor develop any
defense strategies based on intelligent decision making for
differential privacy level through RL. In particular, they dis-
cuss and successively solve the optimal FDI attack problems
by developing defense mechanisms based on the anomaly
detection schemes for the post-attack phases; instead of
taking any initiative to reduce the attack surface beforehand.

In contrast, we analyze the correlation of the DP and FL
parameters under adversarial settings; then, leveraging the
correlation, we facilitate deployment of the desired level of
privacy, utility, and security among the participating nodes
in a DPFL system through RL. Following the adversarial
analysis and our proposed RL-assisted defense strategy, the
large-scale poisoning attacks can be detected and the attack
surface can be minimized, i.e., the incentive of the attacker
can be reduced, which in turn reduces attack motivations
while assisting attack prevention. In short, we develop our
RL-assisted defense strategy as a part of the design process
(pre-attack phase) to prohibit the untargeted model poisoning
attacks. To the best of our knowledge, this is the first work
that addresses the DP-exploitation issue in FL setting and
successively develops the RL-based defense strategy.

III. PROBLEM FORMULATION AND THREAT MODEL

Suppose, we have K clients, among which k number of
clients are selected in each communication round by the
server. If the local model updates are {∆w1,∆w2, ...,∆wi},
then the global model update at (t+1) communication round
is: ∆wt+1 = 1

k

∑k
i=1 ∆wi where the ith local model update

at (t + 1) round is: ∆wit+1 = wi − ∆wt. In an alternative
fashion, the loss of the predication can also be calculated as
fi(w) = `(xi, yi;w) where (xi, yi) is the examples set and

w represent the weights of global model. Now, according to
the FederatedAveraging algorithm [1], the objective of
the federated server is to minimize the following function:
minw∈Rd f(w) where f(w) = 1

k

∑k
i=1 fi(w). The server

continues the process until the objective is met.
To introduce DP for preventing model privacy leakage

while keeping the model usable, we need to (a) clip the
local model updates using the median norm of the un-
clipped contributions (S) so that the norm is limited and
learning is progressing, and (b) add noise from a DP-
preserving randomized mechanism (e.g., Laplace or Gaus-
sian mechanism). Therefore, the new global model update
with Gaussian noise at (t + 1) round becomes: wt+1 =
wt + 1

k (
∑k
i=1 clip(∆wi,S) + N (0, σ2S2)). Here, σ2 is

the variance and S is the sensitivity of the dataset with
respect to the aggregation operation. The value of S needs
to be selected in an optimal way so that the noise variance
stays sufficient while the aggregated weight’s distribution
remains as close as possible to the original distribution.
Following the related previous research [2], [13], we set
S = median{∆wi}i∈k. We draw the noise from a Gaussian
distribution with mean (θ = 0), variance σ2 and PDF
(probability density function) as:

f0(x) =
1√

2πσx
e
− (x−θ)2

2σ2x (1)

However, a malicious actor (if presents) may modify (in-
crease or decrease) the randomized noise in such a fashion
that would facilitates (a) maximum damage, and (b) avoid
detection. To perform such stealthy but strong malicious
modification, the adversary needs to craft a fake noise profile
from either the same or at least, similar distribution function
as (1). Earlier research on adversarial differential privacy
[15], [27] present us with such optimal attack distribution
(f∗a ) and impact (µ∗a) as follows:

f∗a (x) =
1√

2πσx
e
− (x−θ−

√
2γσx)2

2σ2x and µ∗a = θ+
√

2γσx (2)

Here, a high value of attacker’s tolerance (γ) represents
that the adversary does not care to be detected whereas
a low value γ means the adversary wants to keep a low
profile to avoid detection, and thus sacrifices the attack
impact (µa). More specifically, the adversarial objective of
stealthiness can be formulated as: DKL(fa || f0) ≤ γ, where
DKL(fa || f0) is the Kullback-Leibler divergence between
the PDF of attack distributions (fa) and benign distribution
(f0) and indicates the classifier’s ability to correctly identify
the inputs. Moreover, it can be inferred from (2) that during
a data or model poisoning attack, the optimal attack impact
(µ∗a) is shifting the benign mean from θ to θ +

√
2γσx.

However, µ∗a is equal to the actual mean (θ) when γ is zero.
In short, it implies that when there is no attack or no DP
mechanism, the results (in this case, the model weights)
remain intact. The optimal attack distribution of (2), f∗a
has been obtained by solving the functional multi-criteria
optimization problem of the attacker (i.e., maximum attack
while minimum disclosure) and the defender (i.e., maximum
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privacy with maximum utility). Therefore, if the adversary
deviates from the strategy as given by (2), he could end up
with even lower payoffs [15].

This observation on adversarial DP analysis motivates us
to first raise the question- “what would be the adversarial
impact on the DPFL system if the adversary follows the
optimal attack strategy, f∗a?” and then, answer it through
theoretical and empirical analysis. Moreover, this potential
research problem motivates us to develop a novel and
effective defense strategy against such attacks using RL-
based intelligent differential privacy level selection.

A. Threat Model

Our proposed threat model has been depicted in Fig. 1. Here,
we are considering a simplified smart grid data transmission
architecture which consists of some edge devices (e.g.,
distribution energy resources (DERs), intelligent electronic
devices (IEDs), phasor measurement units (PMUs), etc.),
data aggregators (e.g., phasor data concentrators (PDCs)),
and a central server. The adversary can mark his presence in-
(1) the edge nodes (i.e. disguise as an edge device), (2) the
communication pathway between the clients and the server,
and (3) the server-side. In case of data poisoning attacks,
it is convenient for the adversary to compromise some
edge devices (i.e., position 1), manipulates local training
data, and disguises them as honest edge nodes. However,
for model poisoning attacks, the suitable positions for the
attacker are positions 2 and 3 since from those positions, the
adversary can directly manipulate the FL models through
compromising the communication path, sieging the model
parameters, and then injecting fake noise into the parameters.

In the proposed setting, we assume that the adversary
can manipulate the model updates regardless of the attack
vectors (i.e., through man-in-the-middle or server-side attack
formation). However, the adversary cannot directly change
the models that are already on the server. He has white-box
access (i.e., full knowledge of the global and local model
parameters). The adversary might have partial knowledge of
the training and testing data (i.e., distributions of the data);
however, this is not a strict requirement in our threat model.
In addition, we assume that the adversary has the knowledge
of the imposed DP mechanism and privacy budget (ε).
This assumption is particularly important and realistic as
many researchers including Dwork et al. [28] emphasize
the necessity of publishing the privacy budget in order to
increase the trustworthiness of the system.

IV. MODELING DeSMP ATTACK AND DEFENSE IN DPFL

In this section, we first describe the methodology of our
proposed system development from an algorithmic point of
view, and then, we model the proposed DeSMP attack and
RL-assisted defense strategy.

A. Development of DPFL Systems

As discussed in section II-A, in a DPFL system, the global
model is first constructed by aggregating all the local models
from the randomly selected clients, and then, DP-noise is

Fig. 1: Threat model: The adversary is exploiting DP to
inject false data into the model weights by compromising
either the communication path or acting as a server.

added into the model parameters to obfuscate the individual
contribution of the clients. The working principle of a DPFL
system with RL-based privacy selection is described through
the pseudocodes of algorithm 1. The algorithm simply takes
the measured data and the parameters of FL, RL, and DP as
input. Then, through some intermediary functions (i.e., LM:
local model,RL: reinforcement learning model, GM: global
model), the global model is computed. If the computed
global model passes the accuracy-test (i.e., accuracy is more
than a pre-defined threshold, τ ), the global model is finalized
and the DPFL process completes.

1) Local Model (LM): The LM function takes the
measurement data and learning parameters as inputs. Each
client shares a portion of data (i.e., mini-batch) and train the
global model with their local data. Finally, the local model
and norm updates are calculated and sent back to the server.

2) Reinforcement Learning Model (RL): The purpose
of the RL function is to generate the optimal policy for
determining the privacy budget (ε) considering the trade-off
among the privacy, utility, and security in a DPFL system.
The input of this function is the state of the system which
comprises of (ml, fl, ε). The function exploits the converged
Q-table to determine the optimal action (or value of ε) at
each state of the learning process.

3) Global Model (GM): The sole purpose of GM func-
tion is to produce the global model (MG) after each commu-
nication round through FederatedAveraging procedure
[1] until the model finally converges around a pre-defined
threshold value, τ . The function also checks if the privacy
budget is expired on it. Another important task of this
function is to clip the gradient to avoid over-fitting or
gradient exploding and add Gaussian noise accordingly.

B. Modeling DeSMP Attack

To perform the proposed DeSMP attack, the adversary needs
to choose the level of his stealthiness or attacker’s tolerance
(γ). Here, the adversarial goal is to perform the attack so
that the model is unusable and ineffective (i.e., converges to
a bad-minimum or starts denial-of-service) and the attack is
stealthy. For instance, in a classification problem, if the test
inputs are {Xi}ni=1, output labels are {Yi}ni=1, global weight
vector is WGt, global model is MPSG , benign and attack
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Algorithm 1: DP- and RL- assisted FL process

Inputs: DkM,PFL,PDP ,PRL
Output: Final Global FL model (MPSG )
Function LM(DkM,PFL):

wk ← wt ← PFL;
for local epoch i = 1, 2, ...n do

for batch bki ∈ DkM do
wk ← wk − η∇L(wk, bki )

end
end
return
Mk
L ← (∆wkt+1, ζ

k)← (wk − wt, ‖∆wkt+1‖2);
End Function
Function RL(Mk

L,PRL):
St = (ml, fl, ε0)← (Mk

L,PRL);
Choose action using epsilon-greedy policy;
Observe Rt+1, St+1;
π∗(s) = arg max

π Q∗(s, a);
return a← π∗(s);

End Function
Function GM(Mk

L, ε,PDP):
(∆wkt+1, ζ

k)←Mk
L;

(δ,∆f,B)← PDP , n← count(k);
σ ← {ε, δ,∆f}, Sk = median{ζk}k∈K;
if δ > B then return wt ;
else
wkt+1 ← wkt + 1

n (
∑K
k=1

∆wkt+1

max(1, ζ
k

S )
+N (0, σ2S2);

return MG ← wkt+1;
End Function

while TestAccuracy(MG) < τ do
if DM is available then
Mk
L = LM(DkM, PFL)

ε = RL(Mk
L,PRL)

MG = GM(Mk
L, ε,PDP)

else
wait for DkM to be available

end
end
return MPSG =MG

distributions are f0 and fa respectively, then the adversarial
objective is-

A(WGt) = max
fa

n∑
i=1

[MPSG (Xi)− Yi]

s.t. DKL(fa || f0) ≤ γ
(3)

It means the adversary wants to maximize the num-
ber of misclassification ([MPSG (Xi) − Yi]) while keeping
DKL(fa || f0) divergence value below his tolerance level
(γ). To achieve this goal, the adversary carefully selects
the tolerance value (γ) and draws noise from the optimal
attack distribution, f∗a as represented by (2). In other words,
the adversary replaces the benign Gaussian noise mecha-
nism, N (θ, σ2S2) by malicious noise adding mechanism

Na(θ +
√

2γσ, σ2S2) following (2). Here, θ represents the
mean value or location parameter of the Gaussian distribu-
tion while σ2S2 indicates the scaling factor of the same
distribution. By controlling the value of the tolerance level
(γ), the adversary can control the attack impact level (µa)
and shift the mean value further from the actual value (i.e.,
θ to θ +

√
2γσ). In short, increasing/decreasing the value

of γ increases/decreases the level of noise and vice versa.
Nevertheless, since the attack distribution (f∗a ) follows the
same statistical properties of a benign distribution (f0), the
adversarial noise (Na) as well as the poisonous weights will
not be very different statistically from other weights. More
specifically, unless the adversary chooses a very large γ,
the proposed DeSMP attack will achieve stealthiness while
remaining persistent. We empirically observe and evaluate
the proposed DeSMP attack on the FL models in section V.

C. Modeling RL-assisted Defense Strategy:

RL [30] is an adaptive ML algorithm that can facilitate
conventional mechanisms with intelligence without the need
for any supervision. Distinguishable attributes of RL is a
feedback loop (or trial and error) based on the search for
optimal action set and delayed rewards. These attributes
motivate researchers in deploying RL in divergent sectors,
i.e., mmWave communications, smart grid, IoV [31], etc.

The addition of DP during the training process will
enable the adversary in launching stealthy FDI or poisoning
attacks. Moreover, DP will cause degradation in federated
accuracy which is difficult to understand and balance the
trade-off between privacy, and model performance, both
theoretically and empirically [32]. On top of this, the FDI
attack vector extends the requirement for a trade-off among
three different parameters, e.g., privacy, utility, and security.
Therefore, selecting the privacy loss (ε) level optimally is
a crucial requirement in a DPFL system considering the
privacy, utility, and security aspects. Our proposed RL-based
model assists this optimal privacy policy selection process.
Moreover, it defends the learning process from the DeSMP
attacks by reducing the incentive of the adversary, which
in turn reduces attack motivations while assisting attack
prevention. In short, in this pa e., S = (ml, fl, ε).

Action Space: We assume that the agent makes a decision
in an event-driven manner. By observing the federated envi-
ronment’s current state, the agent makes one of the decisions
as described in the action set (A). We can define the action-
space as, A = {increase, decrease, static}. To fine grain
the agent’s action making process, we assume that the agent
can increase or decrease privacy loss (ε) by multiple steps
(alternatively, a single unit or double unit at any state).

Reward Function: Reward motivates an agent to make
decision towards the learning objectives. For defense against
DeSMP attack, the objective for the agent is to minimize
the maximum attack accuracy as well as maximize the
federated accuracy. We assume that the maximum and min-
imum thresholds are set and regulated by the DPFL system
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designer. We define the reward function for the agent as in
equation (4),

β1 = ψ1
fmaxl

fl
+ ψ2

mmax
l

ml
+ ψ3

1

ε
(4)

where fmaxl and mmax
l denotes the maximum value of

FDI attack loss and federated loss whereas ψ1, ψ2, and ψ3

denotes the balancing parameters.
Here, we use epsilon-greedy policy [33] for determining

the trade-off between exploration and exploitation. We set
the initial exploration probability at 1.0, and gradually
reduce the exploration probability over episodes until it
matches with the minimum exploration probability (which
we assume 0.05 in this paper).

V. EXPERIMENTAL ANALYSIS

We simulate an FL environment in order to test our proposed
algorithm. Moreover, for comprehensive evaluation of our
proposed DeSMP attack model, we focus on the persistence,
effectiveness, and stealthiness of the proposed attack under
different scenarios for two well-known dataset.

A. Dataset Description and Experimental Setup:

We utilize the benchmark dataset MNIST (with Non-I.I.D.
distributions) [29], Individual household electric power con-
sumption dataset [34] to evaluate our proposed DeSMP
attack. For MNIST, we have used 10,000 test images to
evaluate the performance of the attack model whereas In all
of the experiments using these two datasets, following the
standard FL setup, each selected participants use the SGD
(stochastic gradient descent) optimizer to train their local
model for internal epoch with local learning rate (η). All of
the experiments are done on a server with Intel(R) Core(TM)
i7-9700F CPU @ 3.00GHz, 4 NVIDIA GeForce RTX 2060
GPUs with 16 GB RAM each, and Windows 10 (64-bit) OS,
with Python 3.8.8 and PyTorch 1.5.1.
B. Deployment and Evaluation of DPFL Model:
To simulate the DPFL environment, we follow some notable
prior works [2], [11], [18] and select the value of some major
parameters according to the Table II. Moreover, for simplic-
ity, we conduct the experiments with a neural network of
three layers. For classification problem (i.e., MNIST), the
Log Softmax activation function has been used on top of the
ReLU function whereas in regression problems, only ReLU

TABLE II: Parameters for FL simulation

Parameters/
Dataset K k bik B ε i η

MNIST 100 30 32 0.001 0.1-20 10 0.01
Consumption 100 30 7 0.001 0.1-20 10 0.1

function has been used. To add DP-generated noise into the
model weights, we modify the FederatedAveraging
[1] procedure according to the Algorithm 1. For each exper-
iments, when the privacy budget (B) exceeds, the learning
stops and the server finalizes the global model.

For MNIST, the training (Tr) and validation (Val) loss
of three random clients (C1, C2, and C3) in an arbitrary
communication round has been depicted in Fig. 2(a). It can
be inferred that, in each incremental epoch, the training
and validation loss is decreasing. Also, from Fig. 2(b), we
can see that the DPFL algorithm converges after a few
communication rounds. The final accuracy value after round
30 is around 0.95. Another important thing to notice is that
the privacy budget (B) is spent very quickly if the ε is small
and the model can not converge properly. Therefore, it is
significantly important to select the privacy loss and budget
level (i.e., ε and B) intelligently and in an optimal way so
that the model possesses the desired level of privacy and
utility. Likewise, for Power consumption dataset, we verify
the DPFL approach and find similar results. The cost of
applying DP (i.e., the ‘privacy cost‘) over the global model
loss varies with ε. Thus, more privacy leads to more loss for
both the classification and regression problems.

C. Implementation and Evaluation of DeSMP Model:

To demonstrate the proposed DeSMP attack, we replace the
benign noise addition mechanism (N ) of DP-technique with
the adversarial noise addition scheme (Na). More specifi-
cally, to simulate the behavior of the actual adversary, instead
of drawing noise from the benign Gaussian distribution (f0),
now we draw noise from attack distribution (f∗a ). We can see
the impact of such model poisoning action through the DP-
FDI curves of Fig. 2(b). Due to the addition of malicious
noise, the overall accuracy has been decreased. However, the
degree of model accuracy largely depends on the attacker’s
tolerance level (γ). If the attacker chooses to perform more
devastating attacks without paying much attention towards

Fig. 2: Evaluation of DeSMP attack model on MNIST dataset [29]: (a) training vs validation loss for three random clients
(b) test accuracy for non-DP, DP, and FDI-DP data with varying privacy loss (ε) and attacker’s tolerance (γ) (c) DPFL
model prediction (d) generating incorrect prediction due to DeSMP attack
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achieving the stealthiness, he would select a large γ (i.e.,
γ = 0.10) and in the process, be able to reduce the accuracy
largely. In opposite, selecting a small γ (i.e., γ = 0.01)
would give him less payoff in terms of attack impact (µa).

In Fig. 2(c) and (d), We can further observe the impact
of our proposed approach. Fig. 2(c) reflects the outcome
of the proposed DPFL model on some randomly selected
MNIST image samples whereas 2(d) depicts the adversarial
outcomes through our proposed (DeSMP) model for the same
samples. Due to the stealthy adversarial noise with γ = 0.10,
only the image of digit ‘4’ has been predicted wrongly as
digit ‘7’ while the other digits are predicted correctly. Since
we are considering the untargeted model poisoning attack,
the adversarial action through the proposed DeSMP model
may alter the image label differently each time. However, as
the overall accuracy does not degrade too much with a low
γ, the malicious action becomes stealthy and goes unnoticed
by the anomaly detectors.

Likewise, the impacts of adversarial action exploiting
the DP noise for Power consumption dataset have been
illustrated in Fig. (3). It can be observed that the DeSMP
attack is also increasing the loss with respect to the increase
in ε and γ value. However, for the regression problem, if
the raw training data across all the clients are similar and
identically distributed, then the attack requires adding more
noise (i.e., small ε and large γ) in order to achieve the
desired level of attack impact. For instance, we can see from
Fig. 3(a) that even after adding the DP mechanism with
different ε, the model converges after a sufficient number of
communication rounds. It is also desirable since the privacy
preserves and the utility remains satisfactory. However, in
the presence of an adversary. the loss starts to increase. This
phenomena can be observed in Fig. 3(b)-(d). Moreover, as ε
starts to decrease (i.e., privacy increases) from 8.0 to 1.0, the
attacker obtains more attack opportunities. From Fig. 3(b),
it can be inferred that the shifting from (ε, γ) = (8, 0.01) to
(ε, γ) = (8, 0.10) is increasing the loss by 7 times (i.e., 0.01
to 0.07) whereas in Fig. 3(c), shifting from (ε, γ) = (4, 0.01)
to (ε, γ) = (4, 0.10) is increasing the loss by more than
20 times (i.e., increasing from 0.01 to more than 0.20).
Moreover, comparing the red FDI-DP curveS of Fig. 3(b)

and (c), it can be perceived that decreasing ε by half (from
8.0 to 4.0) is increasing the test loss by almost 3 times (0.07
to 0.20) when tolerance level is relatively high (γ = 0.10).

Therefore, the attack impact (µa) increases significantly
with the increment of the attacker’s tolerance level, γ,
and the model turns to a sub-optimal model. Eventually,
through the DeSMP attack, at a very low ε and high γ,
the DPFL model becomes unusable and initiates denial-
of-service. Nevertheless, the proposed DeSMP model can
also be tailored to conduct more devastating attacks while
maintaining stealthiness through hyper-parameter tuning and
selectively choosing the FL-parameters that are mentioned
in Table II.

D. Implementing RL-assisted Privacy Selection

Fig. 4 illustrates the accumulated reward of the defending
agent for learning rate (α = 0.1) and discount factor (χ = 1)
for two distinct datasets (MNIST and Power consumption).
The trend in the figure illustrates that the agent learns
optimal policy over episodes, and it converges after sufficient
episodes are executed. Since we define the reward function
such that it takes care of federated loss (fl), attacker loss
(ml), and privacy loss (ε), this convergence finds the optimal
trade-off policy for the privacy, security, and utility of the
system. Since the agent outputs an action (or ε) for each
state, we can calculate the standard value of federated loss
(fsl ) for that state. Therefore, if the practical or real-time
observed federated loss (fpl ) differs from the expected (or
standard) one, we can infer whether the attack is launched or
not. Specifically, if the fsl is less than fpl , we can infer that
the large scale (large γ) FDI attack is launched; otherwise,
the system is not compromised or the degree of FDI attack
scale (low γ) is very low.

VI. CONCLUSION AND FUTURE WORKS

Federated learning (FL) can be vulnerable to privacy-
violating and security-compromising attacks despite having
privacy-preserving tools like DP. Model update poisoning is
one of such attacks. However, stealthy and persistent model
poisoning attacks are difficult to achieve. Motivated by this,
in this paper, we analyze the adversarial learning process in
an FL setting and show that a stealthy and persistent model

Fig. 3: Evaluation of DeSMP attack model on Individual household electric power consumption dataset [34]: (a) test loss
converges even when DP is applied (b) test loss increases as the attacker’s tolerance (γ) increases. (c) more privacy (i.e.,
small ε) leads to more attack opportunity (d) high privacy and high attacker’s tolerance initiates denial-of-service.
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Fig. 4: No. of episodes vs. accumulated rewards for RL
assisted privacy selection agent

poisoning attack can be conducted exploiting the differential
noise. More specifically, we develop an unprecedented DP-
exploited stealthy model poisoning (DeSMP) attack for FL
models. Our empirical analysis on both the classification
and regression tasks using two popular datasets reflects the
effectiveness of the proposed DeSMP attack. Moreover, we
develop a reinforcement learning (RL)-based novel defense
strategy against such poisoning attacks which can intelli-
gently and dynamically select the privacy policy of the FL
models to minimize the DeSMP attack surface, optimize
privacy, security, and utility, and facilitate attack detection.

In the future, we will extend our defense model for a
collaborative multi-agent setting where the team of clients
can exploit the learned policy for collaboratively provision-
ing privacy during the training phase. Although we focus on
the untargeted model poisoning attacks in a DPFL system
in this paper, it would be also interesting to investigate the
adversarial impact in targeted model poisoning with our
proposed DeSMP attack model. We leave it for our future
works on adversarial federated learning.
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