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Abstract—Federated learning (FL) is able to manage edge
devices to cooperatively train a model while maintaining the
training data local and private. One common assumption in FL
is that all edge devices share the same machine learning model
in training, for example, identical neural network architecture.
However, the computation and store capability of different
devices may not be the same. Moreover, reducing communication
overheads can improve the training efficiency though it is still
a challenging problem in FL. In this paper, we propose a novel
FL method, called FedHe, inspired by knowledge distillation,
which can train heterogeneous models and support asynchronous
training processes with significantly reduced communication
overheads. Our analysis and experimental results demonstrate
that the performance of our proposed method is better than the
state-of-the-art algorithms in terms of communication overheads
and model accuracy.

Index Terms—federated learning, communication efficiency,
heterogeneous models, knowledge distillation, asynchronous al-
gorithm

I. INTRODUCTION

Massive data is created with the proliferation of edge
devices. Handling large amount of data becomes a challenging
problem in this information era. Distributed machine learning
[1] is proposed to coordinate massive data management in the
data centers, which is turning into a crucial technique. How-
ever, accessing and processing data with distributed machine
learning algorithms at remote servers has raised data privacy
concerns from the users. Federated learning (FL) has been
proposed as a machine learning paradigm that aims to perform
machine learning on massive and distributed data without
invading data privacy. More concisely, FL coordinates clients
and servers to train a shared global model, while keeping the
data locally at the edge devices. The general FL architecture
was first proposed in [2], which is composed of servers and
clients. The work has attracted a lot of attention and led to
many follow-up studies [3] [4] [5] [6].

Although many researchers focus on FL and there are many
applications such as predicting human activities [7] and learn-
ing sentiment [8], it still has many practical challenges to be
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solved [9]. One of the most important challenges comes from
system heterogeneity, which causes many issues in FL. System
heterogeneity usually refers to various computation and band-
width resources among different participating devices. It would
lead to a common but undesirable situation that incompetent
devices drag the convergence speed of the server model.
These devices, called stragglers, are not able to complete their
training when the other efficient participants finish their model
training processes. However, many FL algorithms [2] [10] [11]
are not designed to handle this practical problem.

Some studies focus on how to design an asynchronous
training scheme [12] [13] [14] to alleviate this problem. This
is a straightforward way to deal with the problem caused by
stragglers. Different from the above works, we take a new
approach to handle system heterogeneity and provide a more
general and practical solution by supporting heterogeneous
model architectures for devices with different capabilities. For
example, the model architectures of neural networks could
be chosen individually, depending on the computation power
and bandwidth resources of the participating devices. When
the devices have chosen suitable model structures, they are
able to complete the training process faster and potentially
simultaneously.

In traditional FL [2], model weights or gradients are aggre-
gated in the server and shared with the local devices. Although
local data are kept private, exchanging model parameters
between the clients and the serve occupies a lot of bandwidth.
Moreover, the model architectures of the clients and the
server have to be identical in order to aggregate the model in
common FL methods. A few research studies have attempted
to support heterogeneous models in FL [15] [16]. However,
their approaches require a public dataset in the server, which
is comprised of a portion of each private dataset or an existing
dataset. Obtaining part of the local private dataset from clients
may violate user privacy. It is also difficult to have an existing
dataset which is similar to the private datasets. Therefore, how
to transfer knowledge between devices with heterogeneous
model architectures still remains to be a research challenge.

To solve the above problem, we propose a novel method
called Heterogeneous models and Efficient Federated learning
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(FedHe), inspired by knowledge distillation (KD) [17]. FedHe
takes an asynchronous FL approach and supports training of
heterogeneous models with small communication overheads.
Knowledge distillation is a model compression method, which
a heavy teacher model distills knowledge and transmits it to
a light student model. In our method, we conduct a training
process using this knowledge, generated by the clients and
processed in the server, to replace the exchanges and updates
of weights in the original FL methods. In our approach,
participants can share knowledge with each other successfully
without deploying a public dataset. Our method can run in
an asynchronous mode, which is easier to deploy in real
FL environment and preserve user privacy. Our experimental
results show that our algorithm converges in an asynchronous
setting with satisfactory model accuracy and significantly
reduced communication overheads.

The rest paper is organized as follows. The related work
about federated learning is presented in Section 2. The prob-
lem formulation is described in Section 3. The details of our
proposed method in FedHe is presented in Section 4. Section
5 shows the experimental results and compares FedHe with
the existing work. We conclude this paper in Section 6.

II. RELATED WORK

A. Federated learning

Federated learning (FL), was first proposed by Google
[2] in 2017. It provides a novel method to organize com-
puting among edge devices. It is a synchronous algorithm
that can compute model weights from randomly selected
clients iteratively. FedProx [11] manages the training process
synchronously under non-i.i.d. data setting. However, many
of the FL schemes are synchronous algorithms. FedAsyn [12]
makes an asynchronous training scheme with coordinators and
schedulers, and uses a weighted average to update the global
model. Although our work does not focus on asynchronous FL,
our proposed method, FedHe, can work in an asynchronous
fashion, which makes it more practical and easier to be
deployed in the real world.

B. Knowledge distillation

Hinton et al. proposed knowledge distillation for neural
networks in [17]. The initial goal of this method is to compress
heavy neural networks. A heavy teacher model transmits its
knowledge, called logits, to a light student model, while the
student model performs training based on the same dataset
and logits. Federated Distillation [18] discussed how to use
logits in the homogeneous models FL. Kim et al. [19] used a
paraphraser as a teacher network and a translator as a student
model to communicate the latent knowledge, called “factors”,
with each other. SemCKD [20] applied attention allocation
to match intermediate knowledge from teacher layers to the
appropriate student layers, which is a cross-layer distillation
method. In this work, we proposes FedHe, inspired by the ba-
sic method in knowledge distillation [17], to enable knowledge
sharing among various clients in FL efficiently.

C. Heterogeneous models

Supporting heterogeneous models in FL environment is a
big challenge. FedMD [15] introduced logits from a large
public dataset. The clients can learn the data features from
the logits and their private datasets. FedML [21] applied latent
information from homogeneous models to train heterogeneous
models. FedH2L [16] adopted logits from a public dataset
consisted of private data instances from different clients. It
keeps the optimized directions from the public and private
datasets the same. In contrast, we do not need a public dataset
in our method. The logits, capturing knowledge from private
datasets, are collected from the training processes of clients,
but they do not invade user privacy. Our experiments show that
FedHe can support FL with homogeneous and heterogeneous
models, since the exchange of logits depends only on the
number of output classes and is generic to different model
architectures.

III. PROBLEM FORMULATION

In this section, we show the general form of the FL problem
and introduce the heterogeneous FL problem. For clarity, we
list symbols frequently used in this paper in Table I.

A. General federated learning

We consider K devices (clients) in the FL framework. Each
device k has a private local dataset Dk, where k ∈ {1, ...,K}.
We denote the parameters of a training model by w. We
formulate the minimization objective function for each device
as follow,

min Lk(w) =
1

|Dk|

|Dk|∑
i=1

l(f(xi;w), yi), (1)

where |Dk| is the number of instances in Dk, (xi, yi) ∈ Dk,
and l is a loss function for computing the loss of the predicted
output f(xi;w) on instance (xi, yi) with model parameters w.
Let N =

∑K
i=1 |Dk|, we have a global convex optimization

problem,

min
w

L(w) =

K∑
k=1

|Dk|
N

Lk(w). (2)

When we aggregate the loss from different devices, we mul-
tiply Lk(w) by |Dk| to consider the influence from the size
of data in k. If a client has a large dataset, it is deserved
to pay more attention to its loss. The most common solution
is to compute the optimal parameters w by gradient descent
methods synchronously with a neural network model, such as
in FedAvg [2].

B. Heterogeneous federated learning

Due to system heterogeneity, some clients in FL may have
less memory and computation capability. It may be difficult
to apply the same machine learning model architecture to all
the clients. Our idea is to support FL with heterogeneous
models in the clients, so that the clients can learn models
with appropriate size and computation complexity while still
can share their knowledge.



Symbol Description
Dk A dataset on client k
|Dk| The size of Dk

N The size of datasets from all clients
K The size of clients
w The weights of global model
wk The weights of a model from the client k
Lk The objective function of the client k
L The global objective function
pi The logit for the instance (xi, yi)
f(x;w) The neural network model with weights w and inputs x
Vyi The number of logits belong to yi
softmax(x) The softmax layer with inputs x
OneHot(x) The One Hot function with inputs x

TABLE I: List of symbols

We formulate the heterogeneous FL problem as follows. The
model parameters of client k is denoted by wk. The objective
function for client k is similar to that in Eq. (1). The model
parameters in Eq. (1), w, are substituted by wk. The global
objective function becomes

min
w1,w2,...,wK

K∑
k=1

|Dk|
N

Lk(wk). (3)

The clients can have different model architectures, so the
function of the server in this problem is not to aggregate the
parameters like in Eq. (2). Instead, its objective is to train
heterogeneous models for different clients. We present our
method and explain how to optimize this objective function
in the next section.

IV. OUR PROPOSED METHOD

To solve the heterogeneous FL problem, we propose a novel
method called FedHe, enlightened by KD. We apply logits,
considered as knowledge from a teacher model in KD, to train
heterogeneous models in different clients. FedHe can train
clients with heterogeneous models asynchronously with small
communication overheads in the network. Fig. 2 shows the
system architecture of FedHe. We describe our method in three
parts, including training on private data, collection of logits,
and training on logits in the following.

A. Training on private data

In this section, we describe how clients update their local
models using their own private datasets. This process is a
conventional supervised learning scheme, i.e., the client k
trains its local model wk based on its randomly selected
private dataset (xi, yi) ∈ D̃k. The objective function of this
optimization process is shown as,

min
wk

Lprivate =
1

|D̃k|

|D̃k|∑
i=1

lprivate(ỹi, yi), (4)

where lprivate is a cross-entropy function for input sample xi
with label yi and predicted label ỹi from the neural network.
In this training process, the client randomly selects a batch of
instances from its private dataset to train the model in each
round.

B. Collection of logits

In our method, logits are defined as inputs of the softmax
layer in the neural network, denoted by pi, for instance
(xi, yi). The relationship between logit pi and ỹi is described
as,

pi = f(xi;wk)[−2], (5)

ỹi = OneHot(softmax(pi))

= OneHot(f(xi;wk)[−1]),
(6)

where f(xi;wk)[−2] is an output of the second last layer of
the model wk; and f(xi;wk)[−1] is the output of the last layer,
which is the same as the output of the softmax layer in the
neural network. Fig. 1 illustrates a relationship between logit
pi and the predicted label ỹi.

Logits Predictions Predicted
Labels 

Softmax OneHot

Fig. 1: The relation between pi and ỹi.

1) The process in clients: We describe how to manage
logits in clients based on their private dataset here. When client
k is training its model, it randomly selects a batch of data
from its private dataset, i.e. (xj , yj) ∈ D̃k, where D̃k ⊂ DK .
In local private data optimization, client k collects logits for
the class label yi from D̃K , i.e. ∀(xj , yj) ∈ D̃k, yj = yi as
follows,

pj = f(xj ;wk)[−2],

pk,yi
=

∑
∀(xj ,yj)∈ ˜Dk,yi

pj ,

Vk,yi = Vk,yi + | ˜Dk,yi |,

(7)

where pk,yi
is the sum of logits which belong to class yi in

client k, ˜Dk,yi contains all instances with label yi in D̃k, and
| ˜Dk,yi

| is the number of instances with class label yi in D̃k.
Vk,yi

counts the number of logits in class yi from a randomly
selected dataset D̃k. When client k finishes its training, the
logit is updated as follows,

pk,yi =
pk,yi

Vk,yi
+ 1

, (8)

where pk,yi is an average logits for class yi. Note that we
add one in the denominator to avoid an extreme situation with
Vk,yi

= 0. Eq. (7) and (8) explain how to handle logits in the
client. After computing pk,yi

for all the class labels, client k
transmits the aggregated logits in the format of (pk,yi

, yi) to
the server.



Logits Predictions Predicted
Labels

Softmax OneHot

Logits Predictions Predicted
Labels

Logits Predictions Predicted
Labels

Client 1

Client 2

Client K

Softmax OneHot

OneHotSoftmax

Private Datasets Heterogeneous
Models

Fig. 2: The system architecture of FedHe. In our method, clients have different
private dataset and their models are heterogeneous. In the training process, clients
not only train on the private dataset, they also train on logits came from the server.
Clients collect the logits from private datasets and send them to the server. The
server processes these logits and transmits back to clients.

2) The process in the server: We explain how to process the
logits in the server here. Given that the server may receive the
logits from the clients at different time stamps, the collection
of logits is designed to be an asynchronous process. Thus, the
server has to maintain a storage for storing the logits and their
corresponding labels, i.e. (pk,yi

, yi), from the clients. Let Dl

be the logits received by the server from the clients. We define
Dl,yi

as the logits in Dl with label yi, i.e. Dl = Dl,y1
∪Dl,y2

∪
...∪Dl,yc , if there are c classes. When the server receives logits
from a client, Dl will be updated to include the newly received
logits as follows,

Dl,yi
← Dl,yi

∪ pk,yi
, (9)

where Dl,yi is the dataset storing logits in class yi from the
clients. Note that the server only stores the aggregated logits
according to their classes. When a client requests for logits to
train a model, the server will compute the averaged the logits
as follows,

ps,yi =
1

|Dl,yi
|

|Dl,yi
|∑

j=1

pk,yj
,∀pk,yj

∈ Dl,yi
, (10)

where |Dl,yi
| is the number of logits stored in Dl,yi

for class
yi. Eq. (10) is computed by averaging all the logits stored in
Dl,yi

for class yi. Using this method, the server can compute
the average logits for all the classes. The average logits of
all the classes, (ps,yi , yi),∀yi, will be transmitted from the

server to all the clients to enrich their knowledge in training.
The number of average logtis is the same as the number of
classes.

The averaging step mixes the logits from different clients,
but in fact it captures important features of the instances from
a certain class among the clients. The information captured by
the average logits can bring lots of additional knowledge to
the clients [17].

C. Training on logits

We have discussed how to collect logits in the clients and
how to process the logits in the server so far. In the following,
we will discuss how to utilize logits to update the models in
the clients.

We consider that each client k receives the average logits
from the server. For an instance (xi, yi) ∈ D̃k, client k
performs local model training on both its private data and
the average logits. At first, client k matches the average
logit for (xi, yi) according to its label yi, i.e., the training
instance becomes (xi, ps,yi , yi). The objective function for
logit optimization is

pi = f(xi;wk)[−2], (11)

min
wk

Llogit =
1

|D̃k|

|D̃k|∑
i=1

llogit(pi, ps,yi
), (12)



where pi is the logit of xi in model wk, and llogit computes
the loss between logit pi and the average logit of class yi from
the server ps,yi . The goal of this objective function is for the
client k to learn additional knowledge as side information from
the private data of other clients through the average logits.

The loss function of client k is composed of both private
data training and logit optimization as below.

min
wk

Lk =
1

|D̃k|

|D̃k|∑
i=1

(lprivate(ỹi, yi)

+αllogit(pi, ps,yi
)),

(13)

where α controls the trade-off between lprivate and llogit. This
parameter is set to one in our experiments. The loss function
Lk can be applied to solve the heterogeneous FL problem in
Eq. (3).

The whole process of our method is described in Algorithm
1. At the beginning of the training process, both the server and
the clients do not have any logits. In order to solve the cold-
start problem, the clients begin with local training first and
optimize their models using Eq. (4). The clients continue to
collect their logits and transmit these logits to the server. When
the server receives logits from the clients, the FedHe training
process will begin to incorporate average logits.

Algorithm 1: FedHe
Input: Private dataset Dk, k ∈ {1, ...,K}, K clients

and their weights w1, ..., wK .
Output: Optimal weights for all clients w1, ..., wK .

1 Server process:
2 for each round i = 1, 2, ... do do
3 Receive any logits from one client.
4 Gather logits in Dl as (9).
5 Compute the average logits ps,yi

by (10).
6 Transmit the average logits (ps,yi

, yi),∀yi to the
client requesting for updating.

7 Client processes:
8 while random clients k, k ∈ 1, ...,K do
9 Receive average logits (ps,yi

, yi),∀yi from a server.
10 for each batch D̃k ∈ Dk do
11 for each instances (xi, yi) ∈ D̃k do
12 Match an average logits with the same

label (ps,yi , yi) to the instance (xi, yi).
13 Update wk by 13.

14 Collect logits pk,yi
,∀yi by 7.

15 Update the logits pk,yi
,∀yi by 8.

16 Transmit updated logits pk,yi
,∀yi to the server.

V. EXPERIMENTS

To illustrate the performance of FedHe, we conduct experi-
ments and analyse their result in this section. Our experiments
compare the model accuracy of FedHe with the state-of-the-art

methods to demonstrate the power of FedHe in training het-
erogeneous models. Moreover, we analyse the communication
overheads of FedHe to show its efficiency compared with the
state-of-the-art methods.

A. Experiment setting

We conduct the experiments on the MNIST and CIFAR-
10 datasets. The MNIST dataset includes 60000 28× 28
handwriting images from one to ten, while the CIFAR-10 [22]
contains 60000 32× 32 images in ten different classes. FedHe
can support both homogeneous FL and heterogeneous FL.
We conduct the experiments in both settings. The first setting
requires all the clients to keep a homogeneous model. The
second setting allows all the clients to have different model
architectures. The model architectures in heterogeneous FL is
shown in Table II, in which the last layer is the dense layer. We
select model 9 in Table II to be the model in homogeneous FL.
These model architectures are the same as [15]. We have ten
clients in the experiments. The learning rate is 0.001 and the
trade-off parameter α is set to 1. The inner training epoch in
clients is 3, i.e., a client randomly selects 3 batches of dataset
to train its model, which is appropriate to balance between
the model accuracy and the limitation of resources in the edge
devices. The images are subtracted by the mean of the whole
training dataset. Other than that, the data are not preprocessed
before training.

We compare FedHe with three baselines. Different baselines
are utilized in different experiment settings.
• FedAvg [2]: A basic model in FL, which aggregates

model weights in the server. It can support only ho-
mogeneous model training, so it is used only in the
homogeneous FL experiments.

• FedMD [15]: This model applies logits from a large
public dataset for knowledge distillation. This model sets
10% of the training dataset to be the public dataset.
This baseline is deployed in both homogeneous FL and
heterogeneous FL experiments.

• Private: All clients train individual models only with
own private dataset and do not communicate. We use
this baseline to studys the learning efficiency of FedHe.
This baseline is deployed in both homogeneous and
heterogeneous FL experiments.

In the following, we will first analyze the communicate
efficiency of FedHe compared with the baseline methods in
our experiment settings. Then, we will conduct homogeneous
and heterogeneous FL experiments on MNIST and CIFAR-10
to show the overall model accuracy. We will further evaluate
the model accuracy of each client in heterogeneous FL to show
how FedHe improves the capabilities of the clients.

B. Analysis on communication overheads

We compare the communication overheads of FedHe with
FedAvg and FedMD. Table III and Table IV show the details
of communication overheads in our experiments. The model
weights come from the neural networks trained in the clients.
The logits are inputs of the softmax layer, which are deployed



Model 1st-CNN filters 2nd-CNN filters 3rd-CNN filters dropout rate
0 128 256 / 0.2
1 128 384 / 0.2
2 128 512 / 0.2
3 256 256 / 0.3
4 256 512 / 0.4
5 64 128 256 0.2
6 64 128 192 0.2
7 128 192 256 0.2
8 128 128 128 0.3
9 128 128 198 0.3

TABLE II: Heterogeneous Model Architectures

Model Communication Overheads in each rounds for one client
Logits Model weights Transmitting samples Total Reduced rate (n=10)

FedAvg N/A 324,672 N/A 324,672 0
FedHe 10× 11 N/A N/A 110 > 99.9%
FedMD n× 10 N/A n× 784 n× 794 97.6%

TABLE III: The details of communication overheads for MNIST

Model Communication Overheads in each rounds for one client
Logits Model weights Transmitting samples Total Reduced rate (n=10)

FedAvg N/A 326,976 N/A 326,976 0
FedHe 10× 11 N/A N/A 110 > 99.9%
FedMD n× 10 N/A n× 3072 n× 3082 90.6%

TABLE IV: The details of communication overheads for CIFAR-10
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Fig. 4: Accuracy of CIFAR10 in
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Fig. 6: Accuracy of CIFAR10 in
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in FedHe and FedMD. Transmitting samples are the images
used from the public dataset in FedMD. The clients are
required to obtain those data samples from the public dataset.
Since the dimensions of images are different between MNIST
and CIFAR-10, we use two tables to show their results.

From Table III, the number of weights in model 9 is
324,672, so the communication cost for FedAvg is 324,672.
A logit is represented by (pi, yi). The dimension of pi is
10, given 10 classes in MNIST and the dimension of yi is
1. Therefore, the dimension of one logit is 11. Each client
transmits its logit information (pk,yi , yi) of all the ten classes
to the server, so the total communication overheads are 11×10
in FedHe. For FedMD, each client transmits both the logits and
images from the public dataset. The dimension of an image in
MNIST is 28× 28 = 784. Therefore, the cost for transmitting
samples in FedMD is n × 794, where n is the number of
images. Similarly, we show the communication overheads for
CIFAR-10 in Table IV. We also compute the reduced rates
on communication overheads taking FedAvg as a baseline in
Table III and Table IV.

From the results, we see that FedHe can reduce commu-
nication overheads significantly by exchanging only logits,
instead of model parameters. Even if we set a small n=10
for FedMD in our experiments, FedHe still reduced more
communication overheads as it does not need to exchange
images as in FedMD. FedHe also does not require a common
public dataset and better preserve data privacy. Note that
the communication overheads are not the same for different
datasets in FedMD as it depends on the size of the images.
In addition, the communication overheads remain the same in
both homogeneous FL and heterogeneous FL for FedHe and
FedMD as they are calculated for each client per round.

C. Analysis of homogeneous FL

We conduct two experiments in homogeneous FL on
MNIST and CIFAR-10, respectively. We present their results
in Fig. 3 and Fig. 4. The highest model accuracy is achieved
by FedAvg, which reaches 99% in MNIST and almost 69%
in CIFAR-10. We also observe that FedAvg converges faster
than the other methods. This observation is reasonable because
FedAvg transmits model weights in model updates. However,
when we consider the communication cost, we can see that
FedHe is much more efficient as shown in Table III and
Table IV.

Since the clients transmit only logit information to the server
in FedHe, its communication overheads are less than 0.1% of
that in FedAvg. Although its communication overheads are so
small, FedHe still obtains very high accuracy compared with
FedAvg. FedHe achieves model accuracy of 98.9% in MNIST
and 66% in CIFAR-10. The baseline Private method reaches
98.4% in MNIST and 62.5% in CIFAR-10, which is higher
than another baseline FedMD that obtained 97.9% in MNIST
and 60.9% in CIFAR-10. We do not show the pretraining
process of FedMD in Fig. 3 and Fig. 4, which is for training
on their public datasets until convergence. Due to pretraining,

the results of FedMD is higher than all the other methods at
the beginning of the training.

We observe that the results of FedHe are better than FedMD,
since the logits in FedHe are aggregated and shared with
the clients by the server, i.e., the knowledge from different
clients are collected and exchanged through the server. For
FedMD, its logits are built locally based on a subset of the
public dataset. If this subset of public dataset does not have
sufficient knowledge, the clients may find it difficult to learn
more information than their own private datasets.

D. Analysis of heterogeneous FL

We conduct the experiments for heterogeneous FL on
MNIST and CIFAR-10 in Fig. 5 and Fig. 6. In heterogeneous
FL, all the clients may keep different architectures of their neu-
ral networks. Since FedAvg does not support heterogeneous
models, it can not be used as a baseline in heterogeneous
FL. From the experiment results, FedHe achieves the highest
model accuracy, 98.5% in MNIST and 62% in CIFAR-10.
Private obtains lower accuracy than FedHe, which indicates
that exchange of logits in FedHe is valuable. We also discover
that FedMD performs better than Private in these experiments.
Private attains 98% in MNIST and 57% in CIFAR-10, while
FedMD achieves 98% in MNIST and 57.5% in CIFAR-10.
These results indicate that FedMD can support heterogeneous
models, though it still has a large performance gap with
FedHe. The clients transmit only small amount of information
for knowledge exchange in FedHe, but it achieves superior
performance. Compared with FedMD, FedHe also consumes
less bandwidth according to Table III and Table IV.

In these experiments, we find that the convergence speed
of FedHe is a little bit slower than Private in Fig. 6. It may
be due to knowledge communication in the training process.
The clients have to learn from both their private dataset and
the average logits from the server. The two components may
lead to different optimized directions in the training process.
Nevertheless, the knowledge from the average logits will
still improve the model accuracy eventually. Although the
convergence speed of FedHe is slower than Private, its model
accuracy is much higher than Private.

We do not compare the convergence speed between FedMD
and FedHe, since FedMD has a pretraining scheme. It is
unfair to compare two methods, one with pretraining and one
without. In contrast, we can compare the convergence speed
between FedHe and FedAvg because they have similar training
processes. In both methods, the clients train their models
first, then transmit their knowledge to the server. The server
aggregates the knowledge and sends back to the clients.

E. Performance of individual clients in FedHe

To illustrate the efficiency of FedHe and show how logits
improve the capabilities of clients, we show the model accu-
racy of different clients in Fig. 7 and Fig. 8.

Fig. 7 shows the model accuracy of individual clients from
FedHe on CIFAR-10 with the same setup as in Fig. 6. We
discover that clients 0 to 4 obtain lower model accuracy than



clients 5 to 9, which is an interesting result. Clients 0 to 4
achieve 57-59% in model accuracy, while clients 5 to 9 obtain
near 62-66%. The client models are shown in Table II, from
which we know that the first five models are 2-CNNs and the
last five models are 3-CNNs. Our results show that heavier
models achieve higher model accuracy, which is common in
machine learning. Our experiment demonstrates that FedHe
can support training of heterogeneous models in the clients
efficiently. It is possible for a client to choose an affordable
model architecture that fits its needs, while still benefits from
knowledge exchange with the server and other clients.

Therefore, if clients keep heavier models in these exper-
iments, the accuracy will be better than the results shown
in the paper. Moreover, this analysis also proves that the
dissatisfactory accuracy comes from the model architectures,
not because of FedHe.

In Fig. 8, we divides ten clients into two groups. The first
group called client group 0, is comprised of client 0 to client
4, which are 2-CNNs models. The second group called client
group 1, is consisted of client 5 to 9, i.e., 3-CNNs models. The
average model accuracy of the two client groups for FedHe
and Private are shown in Fig. 8. It shares the same experiment
setup as in Fig. 6.

We find that the model accuracy of both groups in FedHe
are better than in Private. Client group 0 from FedHe reaches
58%, while the group 0 from Private only achieves 52-53%.
Client group 1 in FedHe achieves 65%, while client group 1 in
Private obtains 61%. Based on these results, we find that logits
not only improve the performance of lighter clients. In fact,
the clients with heavier models also gain a lot of knowledge
from the logits. Our FedHe method successfully boosts the
performance of clients by exchanging logits between the server
and the clients with only small communication overheads.

VI. CONCLUSIONS

In this paper, we proposed a novel FL scheme, called FedHe,
which supports training of heterogeneous models in clients
by exchanging logits. Logits capture important features of
instances in individual classes. The logits are aggregated at
the server and shared with the clients as side information
to enhance model training. Our solution supports heteroge-
neous models and asynchronous communications. The clients
transmit logit information, instead of model parameters, for
knowledge exchange. The communication overhead of FedHe
is less than one percent of traditional FedAvg. In addition,
FedHe does not require any public dataset for pretraining,
so it can preserve data privacy. Our experimental results
demonstrated that FedHe can train heterogeneous models
with satisfactory model accuracy and significantly reduced
communication overheads.
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