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Abstract—Recovering the masked speech frames is widely
applied in speech representation learning. However, most of these
models use random masking in the pre-training. In this work,
we proposed two kinds of masking approaches: (1) speech-level
masking, making the model to mask more speech segments than
silence segments, (2) phoneme-level masking, forcing the model
to mask the whole frames of the phoneme, instead of phoneme
pieces. We pre-trained the model via these two approaches,
and evaluated on two downstream tasks, phoneme classification
and speaker recognition. The experiments demonstrated that
the proposed masking approaches are beneficial to improve the
performance of speech representation.

Index Terms—speech representation learning, masking ap-
proach, phoneme classification, speaker recognition, TEAR

I. INTRODUCTION

Speech representation learning has proved to be an effective
method of extracting high-level speech information [[1]]. The
speech representation learning is usually based on pre-training
on a large scale unlabeled speech data. It is well known that
labeled speech data requires huge amounts of labour costs,
while the unlabeled corpus is relatively easy to obtain [2].
The extracted speech representation could be used to improve
the downstream speech and language processing (SLP) tasks.

Several Self-supervised learning (SSL) methods have been
proposed for speech representation learning [3[], [4]. Autore-
gressive predictive coding (APC) [5] is designed to learn
an auto-regressive model by predicting future speech frames.
Contrastive predictive coding (CPC) [[6] uses a contrastive
loss that maximizing the mutual information between present
representations and future signals. Wav2vec [7] also learns
a contrastive objective that distinguishs the true future audio
from negative samples. All of the above SSL models could
extract speech representation through pre-training on large
amounts of unlabeled data.

Masked language model (MLM) [8]] is another popular
SSL architecture of speech representation learning. The MLM
model often uses a Transformer-based network to reconstruct
the masked or altered speech frames. Masked predictive coding
(MPC) [9] used a Transformer encoder to predict the masked
filter bank (Fbank) features, and fine-tuned the Transformer
decoder for transcript prediction. Mockingjay [10] proposed
to use a BERT-style masking strategy with random selected
frames for pre-training. Transformer encoder representations
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from alteration (TERA) [11] extended the work of Mocking-
jay, introducing three auxiliary multi-task learning objectives
(temporal, channel, and magnitude) to the self-supervised
learning for speech. Wav2vec2.0 [12] masks the speech inputs
in the latent space, and pre-trains the model by a contrastive
loss of the quantized latent speech representation.

Despite the impressive performance of these MLM models,
some pre-training strategies still could be improved. One is
that most of the masking approaches is random masking
for these models. They do not consider any prior knowl-
edge in the speech. In natural language processing (NLP),
some previous works were proposed to use knowledge based
masking strategies, instead of random masking. Enhanced
Representation through kNowledge IntEgration (ERNIE) [[13]]
is designed to learn language representation by entity-level
masking and phrase-level masking. SpanBERT [14] proposed
to mask contiguous spans and designed a span boundary
objective loss relying on the relative position within the
masked span. Cui et al. [15] presented whole word masking
to BERT [[16f], providing a more challenging pre-training task
of predicting all the characters in a complete Chinese word.
RoBERTa [17] found that dynamic masking is beneficial to
pre-training on large datasets, which generates the masking
pattern dynamically when feeding it to the model.

For SLP tasks [[18], random masking approach is likely to
select the non-speech segments. Some speech data may contain
lots of silence like telephone conversational corpus. These less
informative segments make the pre-training task too easy to
recover these non-speech frames. Inspired by the above works
in NLP, we proposed two levels of masking approaches to
the speech representation learning: (1) speech-level masking,
(2) phoneme-level masking. The speech-level approach will
mask more speech segments than silence segments at the pre-
training stage. We think the speech frames may contain more
useful acoustic information than non-speech frames. The voice
activity detection (VAD) algorithm [19] is applied to split the
original speech into speech segments or not. Furthermore, the
phoneme-level approach will force the model to reconstruct
the whole frames of the masked phoneme. This is a more
challenging task than just reconstructing some pieces of the
phoneme. A pre-trained automatic speech recognition (ASR)
model [20] is used to force align each speech frame to a
corresponding phoneme. We also combined the speech-level
and phoneme-level masking together, to obtain better speech
representation in the pre-training and better performance in



downstream tasks.

II. METHODOLOGY
A. Model Architecture

This paper exploits the transformer-based masked language
model (MLM) as the overall model architecture. Our works
mainly focus on the masking approach in temporal chan-
nel at the pre-training stage. A masking approach alters
or masks a number of speech frames of the original in-
put X = (z1,x9,...,x7). The masking sequence is M =
(mq, ma,...,my), where T is the length of acoustic sequence.
We denote the masking process as conducting element-wise
product ® between X and M. Then, the MLM Py, predicts
an output X = (Z1,Z2,...,Zr) based on the masked input.

The objective of pre-training is to minimize the error
between the predicted output X and the original input X. As
in Mockingjay [10] and TERA [11]], we also used the £, loss
as follows: N

L1=1X - X| )

The most common masking approach in temporal channel is
random masking, which selects the masked frames randomly
in time domain. As in [I0], the approach masks successive C'
frames once they randomly pick a frame as the starting point.
This is to avoid the model utilizing local smoothness of the
acoustic frames.

B. Speech-Level Masking Approach

We firstly proposed a speech-level masking approach based
on the VAD algorithm [19]. The VAD algorithm is a binary
classification problem determining whether an input signal
contains speech or not. Certain features (e.g. energy, cepstral
coefficient, etc.) are extracted from a segment of the input
audio signals. Then, a threshold 6 is set to classify the segment
as the speech if the value of extracted features exceeds the
threshold 6.

We think masking more speech segments could help the
model to learn more useful acoustic information. A ratio
parameter p is set to control the proportion of masked speech
and non-speech segments. The reason why a small portion of
non-speech segments are still masked is that the silence may
sometimes contain high semantic knowledge. We firstly used
VAD algorithm to classify whether each frame is speech or
not. Then, the starting points of masking are selected from
speech list A or non-speech list B, according to the ratio p.
After that, C successive frames after each starting point are
also masked, to generate the speech-level masking sequence
Ms.

C. Phoneme-Level Masking Approach

In this section, we proposed a more challenging task by
masking the whole frames of phoneme. We firstly used a
pre-trained ASR model [20] Pssgr to predict the text Y of
acoustic features X. In real application, the P4gp is usually
trained by a small amount of labeled data. Then, we applied
force alignment to map each speech frame to one phoneme,
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Fig. 1. Visualization of Different Masking Approaches

generating the aligned phoneme sequence Y'. Force align-
ment [21] is a task of determining the time boundaries between
phonemes of acoustic features. After that, N phonemes are
selected randomly. All the frames between the begin index b;
and end index e; of each selected phoneme y;-’ are masked.
Especially, we masked the whole frames of each phoneme in
this approach, instead of C' successive frames.

D. Visualization

We illustrated the masking process of above three masking
approaches in Figure [I] The input signal is the speech frames
of a word speech (in light yellow boxes). The non-speech
frames are denoted as a symbol [—] (in light green boxes).
The masked frames after masking approach are denoted as a
red symbol [M].

For random masking approach (in Figure [I(a)), two starting
points s; and sp are randomly selected and C' successive
frames are masked. The random masking is likely to select the
silence segment (s; in Figure [I(a)). For speech-level masking
approach (in Figure [I(b)), speech and non-speech frames are
classified by VAD algorithm firstly. Then, most of the masked



TABLE I
Compared with Different Masking Approaches, Results on Librispeech, Accuracy(%)

. . train-clean-100 train-clean-360

Pre-training Masking Approach | phoneme-L. Phoneme-1H Speaker-F Speaker-U | Phoneme-L Phoneme-1H Speaker-F Speaker-U

Random 69.6 78.8 68.4 96.1 67.5 78.2 86.9 97.3

o . Speech-Level 70.2 79.3 97.6 97.2 68.0 78.1 97.8 98.3

Mockingjay [10] Phoneme-Level 70.2 79.7 97.9 98.5 67.8 78.8 98.1 98.9

Speech&Phoneme-Level 70.3 79.9 98.2 98.2 68.5 78.9 97.2 98.3

Random 71.3 79.1 98.9 99.2 70.8 79.6 99.1 99.3

; Speech-Level 71.5 80.3 99.6 99.3 71.3 80.7 99.1 99.2

TERA 1] Phoneme-Level 71.4 79.5 99.7 99.7 71.7 80.4 99.3 99.5

Speech&Phoneme-Level 71.8 80.1 99.5 99.4 71.8 80.5 99.3 99.4

frames are selected as the informative speech frames (s; and
so in Figure [I(b)). The speech-level approach will also mask
C successive frames. For phoneme-level masking approach
(in Figure [I(c)), phoneme boundaries are detected by force
alignment algorithm. In which, b; and e; denote the begin
and end frame of phoneme p, and b, and e, cover the frames
of phoneme e. All frames of each phoneme are masked for a
more challenging model pre-training.

In addition, speech-level and phoneme-level masking ap-
proach could also be combined together. Firstly, we apply
the VAD algorithm to distinguish the speech and non-speech
frames. Secondly, all frames of a detected phoneme are
masked, when we choose a starting point in speech segment
with probability p. Otherwise, fixed C' frames from a start-
ing point in silence segment are masked. The experimental
results of this combined masking approach will be shown in
Section

III. EXPERIMENTS
A. Experimental Setup

We used two subsets of Librispeech [22] corpus for pre-
training: the train-clean-100 and the train-clean-360. To im-
prove the speech representation learning with well-designed
masking strategies. Therefore, the accuracy of downstream
tasks are compared using different masking approaches, with-
out changing the network architecture. Two MLM models
Pyrrar: Mockingjay [10] and TERA [11]], are used to extract
the speech representations from the last layer of the model
after pre-training.

For phoneme classification tasks, we utilized linear classifier
(denoted as Phoneme-L) and classifier with one single hid-
den layer (denoted as Phoneme-1H). For speaker recognition
tasks, we performed frame-wise (denoted as Speaker-F) and
utterance-wise (denoted as Speaker-U) classification to predict
the speaker identity.

The input acoustic features are 80-dimensional Fbank. We
set the time masking width C' to 7 frames for random
approach. Following the previous works in [10] and [[11]],
3-layers Transformer encoder network is used. The multi-
head self-attention layer can extract feature information from
multiple dimensions [23|]. Each layer produces an output of
the same dimension. The hidden size of intermediate feed-
forward layer is 3072 with dropout rate 0.1. In addition,

the VAD algorithm is implemented by Google WebRTC
framework [24]. The force-alignment results are obtained by
Kaldi recipes [25]. We conducted all the pre-training and
dowmstream experiments on S3PRL toolkit [26].

B. Results

As depicted in Table [l we illustrated the accuracy results
(20k pre-training steps, 20k downstream steps) of phoneme
classification and speaker recognition with different masking
approaches on Librispeech dataset. For Mockingjay model, the
proposed three masking approaches (Speech-Level, Phoneme-
Level, and Speech&Phoneme-Level) have higher accuracy than
random masking approach, in both two downstream tasks.
Especially in the phoneme classification task, the combined
masking approach achieves the highest accuracy on both
datasets. It achieves accuracy rates of 70.3% and 79.9%
respectively when using the frain-clean-100 dataset for the
Phoneme-L and Phoneme-1H, while its effect on the train-
clean-360 dataset is 68.5% and 78.9%, respectively. Compared
to random masking approach, our three masking approaches
have achieved very significant improvements in the accuracy of
the frame-wise speaker recognition task. In this task, our three
approaches achieved accuracies of 97.6%, 97.9% and 98.2%
respectively when using the train-clean-100 dataset, compared
to 68.4% for the random approach. Our approaches also
achieved 97.8%, 98.1% and 97.2% accuracies on the train-
clean-360 dataset, respectively, as compared to the random
approach accuracy of 86.9%. For TERA model, all of our
three masking approaches could outperform random mask-
ing approach in phoneme classification task. The proposed
approaches also have comparable performance with random
masking approach in speaker recognition tasks, despite the
results are very close with each other. The Speech& Phoneme-
Level approach performs best on the Phoneme-L, achieving
71.8% accuracy on both datasets. The Speech-Level approach
performed best on the Phoneme-1H, achieving 80.3% and
80.7% accuracy on the train-clean-100 and train-clean-360
datasets, respectively. The Phoneme-Level approach performs
best on speaker recognition tasks, where it achieves 99.7%
accuracy on both Speaker-F and Speaker-U when using
the train-clean-100 dataset. When using the train-clean-360
dataset, the Phoneme-Level approach also achieves 99.5%




TABLE II
Quick Tests with Different Proportion Ratios p, Results on Librispeech,

Accuracy(%)
Speech-Level Speech&Phoneme-Level
P Phoneme-L.  Phoneme-1H | Phoneme-L.  Phoneme-1H
0.80 59.3 65.8 61.2 66.4
0.85 60.2 67.0 62.1 66.6
0.90 61.0 68.0 62.3 68.0
0.95 60.0 65.9 62.2 67.2
1.00 59.6 60.0 65.9 66.2

accuracy on the Speaker-U, slightly higher than other ap-
proaches, and 99.3% accuracy on the Speaker-F which is on
par with the Speech& Phoneme-Level approach.

We also explored different values of proportion ratio p. The
results of phoneme classification task are shown in Table [}
We made quick tests (20k pre-training steps, 5k downstream
steps) on train-clean-100 dataset. Two masking approaches
(Speech-Level and Speech&Phoneme-Level) were investigated.
The results indicated that p = 0.9 is the best choice. It
means 90% of the masked segments are speech, and 10%
are non-speech. When we set p to 0.9, both approaches
showed better results than when set to several other values,
in which the Speech-Level approach achieved the accuracy of
Phoneme-L and Phoneme-1H the highest, at 61.0% and 68.0%,
respectively. Similarly, when the parameter is set to 0.9, the
Speech-Level approach also shows the highest accuracy of
68.0% on the Phoneme-1H. It also proves that some silence
segments may contain high-level semantic knowledge, and
they should not be discarded at all in the pre-training.

C. Spectrogram Analysis

In this section, we plotted the masking parts of spectrogram,
and reconstructed spectrogram after pre-training by TERA
model. As depicted in Figure 2] we made a comparison be-
tween random and Speech&Phoneme-Level masking approach,
which are operated on one audio sample. The masking parts
are highlighted in yellow lines.

For random masking, a lot of silence frames are likely
masked. In addition, the masking areas have the same width
in temporal dimension because the random approach masks
fixed-length C' successive frames (in Figure 2(a)). While
for Speech&Phoneme-Level masking approach, the masking
widths are variable, which are determined by the time duration
of selected masking phonemes (in Figure 2(c)).

After pre-training, the spectrogram is predicted, and the
masking parts are supplemented. We found that the recon-
structed spectrogram is over smooth for random approach
(in Figure 2(b)). It might be attributed to the local smooth-
ness problem, which averages the surrounding signals when
reconstructing the masking frames. On the contrary, our
Speech& Phoneme-Level approach leads to a more sharp spec-
trogram in the masking areas (in Figure 2(d)). It proves that the
proposed methods could alleviate the over smoothness prob-
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Fig. 2. Spectrogram Comparison Between Random and Speech&Phoneme-
Level Masking Approach.

lem, and thus extract more meaningful speech representation
than random approach.

IV. CONCLUSIONS

Random masking is widely used in existing speech repre-
sentation learning models. However, previous random mask-
ing method masks non-speech segments from which useful
acoustic information is difficult to obtain. This work proposed
two well-designed strategies, speech-level and phoneme-level
masking approaches. The experiments show that the proposed
approaches have better results on downstream tasks, than
random masking. We also found that combining two masking
approaches could further improve the performance. In addi-
tion, some non-speech masked segments should be reserved to
provide high-level information. We could set different ratios
to control the proportion of silence and speech segments.
Spectrogram analysis indicated that the proposed methods
could alleviate the over smoothness problem, resulting in
a more sharp reconstructed spectrogram. In future works,
we will investigate unsupervised method of obtaining the
phoneme boundaries, instead of force-alignment, such as gate
activation signal method or phoneme clustering algorithm.
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