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Abstract—The multi-vehicle pursuit (MVP), as a problem
abstracted from various real-world scenarios, is becoming a hot
research topic in Intelligent Transportation System (ITS). The
combination of Artificial Intelligence (AI) and connected vehicles
has greatly promoted the research development of MVP. However,
existing works on MVP pay little attention to the importance
of information exchange and cooperation among pursuing vehi-
cles under the complex urban traffic environment. This paper
proposed a graded-Q reinforcement learning with information-
enhanced state encoder (GQRL-IESE) framework to address
this hierarchical collaborative multi-vehicle pursuit (HCMVP)
problem. In the GQRL-IESE, a cooperative graded Q scheme is
proposed to facilitate the decision-making of pursuing vehicles to
improve pursuing efficiency. Each pursuing vehicle further uses
a deep Q network (DQN) to make decisions based on its encoded
state. A coordinated Q optimizing network adjusts the individual
decisions based on the current environment traffic information to
obtain the global optimal action set. In addition, an information-
enhanced state encoder is designed to extract critical information
from multiple perspectives, and uses the attention mechanism to
assist each pursuing vehicle in effectively determining the target.
Extensive experimental results based on SUMO indicate that the
total timestep of the proposed GQRL-IESE is less than other
methods on average by 47.64%, which demonstrates the excellent
pursuing efficiency of the GQRL-IESE. Codes are outsourced in
https://github.com/ANT-ITS/GQRL-IESE.

Index Terms—cooperative multi-agent reinforcement learning,
hierarchical collaborative multi-vehicle pursuit, GQRL-IESE

I. INTRODUCTION

The Intelligent Transportation System (ITS), as an essential
part of the smart city, is greatly facilitated by the development
of emerging technologies. The Internet of Vehicles (IoVs)
enables ITS to realize dynamic and intelligent management
of traffic [1] [2]. Pursuit-evasion game (PEG), as a realistic
problem for studying the self-learning and autonomous control
of multiple agents, has been extensively studied in many fields,
such as spacecraft control [3] and robot control [4]. Multi-
vehicle pursuit (MVP), as an embodiment of PEG in ITS, has
more conditional constraints, such as complex road structures,
additional traffic participants, and traffic rules constraints. A
patrol guide released by the New York City Police Department,
representatively describes an MVP game, where multiple pol-
icy vehicles cooperate to capture single or multiple suspected
vehicles [5].

This work was supported by the National Natural Science Foundation of
China (Grant No. 62071179) and project A02B01C01-201916D2

Regarding MVP, there have been some works on game
theory-based methods. [6] focused on the multi-player pursuit
game with malicious pursuers and constructed a nonzero-sum
game framework to learn pursuers with different emotional in-
tentions to complete the task. [7] developed a model predictive
control method to address the problem of limited information
on the pursuers, in which each pursuer only focused on
its opponents’ information. [8] adopted the graph-theoretic
method to learn the interaction between the perception-limited
agents and set the Minmax strategy to maintain the safe
operation when the system failed to reach the Nash equilib-
rium. However, it is difficult for these methods to construct
a suitable objective function, and these methods pay little
attention to the cooperation among pursuers in the dynamic
traffic environment, which directly affects the effectiveness of
the pursuit.

Cooperative multi-agent reinforcement learning (CoMARL)
has been widely used in the coordinated control of multi-
agent systems (MASs), such as traffic light control [9], and
network resource allocation [10]. CoMARL aims to maximize
all agents’ expected long-term common accumulative reward
by learning a series of optimal policies or action sets [11].
There is a growing research interest in applying CoMARL to
MVP problem due to the powerful coordination mechanism
and real-time decision-making ability of CoMARL. [12] de-
veloped a probabilistic reward-based reinforcement learning
(RL) method based on multi-agent deep deterministic policy
gradient (MADDPG), where all pursuing agents are trained
by a critic network, to accomplish the pursuit. [13] designed a
target prediction network in the traditional general multi-agent
reinforcement learning framework to more usefully assist the
agents in decision-making. [14] introduced adversarial attack
ticks and adversarial learning based on MADDPG to help
agents learn more robust strategies. [15] added Transformer
based on QMIX and learned historical observations from time
and team, thereby promoting pursuers to learn cooperative
pursuing strategies. [16] developed a CoMARL framework
combining collaborative exploration and attention-QMIX to
coordinately complete tasks, and the collaborative effective-
ness of the CoMARL framework had been verified on a
predator-prey scenario. However, these CoMARL methods on
MVP are performed on the open or grid environment, and the
complex traffic environments and traffic rules constraints will
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Fig. 1. The architecture of GQRL-IESE. (a) Complex urban traffic scene for HCMVP. (b) Information-enhanced state encoder (IESE). (c) DQN-based pursuing
decision-making for multiple pursuing vehicles. (d) Coordinated Q optimizing network. (b) encodes the state observed in (a) and inputs the encoded state into
(c) for decision-making. The decisions of the pursuing vehicles generated by (c) are not directly executed, while fed into (d) for evaluation, considering the
current environment traffic information. The Q-matrix is optimized and adjusted according to the evaluation results of decision-making to obtain the current
optimal action set.

bring them new challenges.

In this paper, we propose a graded-Q reinforcement learning
with information-enhanced state encoder framework (GQRL-
IESE) for hierarchical collaborative multi-vehicle pursuit
(HCMVP) under the complex urban environment. The ar-
chitecture of the proposed GQRL-IESE is shown in Fig. 1.
Compared with traditional RL, the proposed Graded-Q RL
framework enhances the cooperative decision-making ability
of agents in MASs. In GQRL-IESE, an information-enhanced
state encoder (IESE) is designed and implemented to encode
complex states and extract effective information. Moreover,
equipped with a cooperative graded-Q scheme, the GQRL-
IESE coordinates the decisions of each pursuing vehicle to
enable them to complete tasks cooperatively and efficiently.
Furthermore, the main contributions of this paper are as
follows:

• This paper proposes a graded-Q reinforcement learning
with information-enhanced state encoder framework to
address the HCMVP problem under the complex urban
traffic environment.

• This paper designs an information-enhanced state encoder
to extract crucial information from multi-dimension states
of various pursuing participants, thus boosting the DQN-
based decision-making of pursuing vehicles.

• This paper proposes a cooperative graded-Q scheme to
facilitate cooperation among pursuing vehicles, which in-

troduces a coordinated Q optimizing network considering
the current environment traffic information to promote the
multi-agent pursuing policy.

The rest of this paper is organized as follows. Section II
presents an HCMVP problem and a detailed statement of the
proposed GQRL-IESE for HCMVP. Section III shows the
structure of information-enhanced state encoder. The details
of the proposed cooperative graded-Q scheme are given in
Section IV. Section V conducts experiments to verify the
performance of GQRL-IESE, and Section VI concludes this
paper.

II. AN INFORMATION-ENHANCED COOPERATIVE
REINFORCEMENT LEARNING FRAMEWORK FOR HCMVP

A. HCMVP Problem Statement Under Complex Urban Traffic
Environment

This paper focuses on the HCMVP problem under the
complex urban traffic environment. Different from the tradi-
tional MVP problem, where the pursuing vehicle only makes
pursuing decisions according to its own information, the
HCMVP problem focuses on the hierarchical optimization of
cooperation and decision-making among pursuing vehicles.
In the HCMVP problem, each pursuing vehicle can obtain
global position information of other pursuing vehicles and
evading vehicles through vehicle-to-vehicle (V2V) or vehicle-
to-infrastructure (V2I). The goal of the HCMVP problem



is to coordinately control the pursuing vehicles to capture
all evading vehicles with the minimum pursuing time. This
necessitates a feasible and effective hierarchical collaborative
scheme to address the HCMVP problem.

Fig. 2. Global position information mapping of vehicles for HCMVP problem.
(a) A complex urban traffic scene for HCMVP. (b) A process of dividing an
east-west channel into K cells. (c) A position matrix of all pursuing vehicles
in (a).

We use Simulation of Urban Mobility [17] (SUMO) to
simulate the complex urban traffic scene for HCMVP, as
shown in Fig. 2(a), which takes into account the constraints of
urban traffic rules, additional traffic participants, and dynamic
traffic flow. In a closed traffic scene with W×W intersections,
there are M pursuing vehicles, N evading vehicles (M > N ),
B background vehicles, L roads and a cloud server. Each road
has bidirectional two lanes, and the traffic signal lights at each
intersection are set as a fixed phase. To simulate the complex
traffic situation and ensure collision-free driving, all vehicles
in the scene are required to follow the traffic rules. The initial
speed of the pursuing vehicles and evading vehicles are both
0, and the values of their acceleration and maximum speed are
fixed.

B. HCMVP Problem Modeling

In the HCMVP problem, the pursuing vehicles aim to
explore the optimal policy to maximize the accumulated
reward. The essence of such a pursuing decision-making is
well described by a markov decision process (MDP), defined
by a tuple {S,A, P,R, γ}. S and A are the finite set of the
environment states and available actions, respectively. R is
a reward function, P is the state transportation probability
function, and γ is a discount factor to calculate accumulated
rewards. At each time t, the agent observes its state st ∈ S,
and selects an action at ∈ A. And then the agent obtains its
next state st+1 ∼ P (at, st), and the reward rt ∼ R (at, st)
from the environment by executing the action at.

In the HCMVP problem, each pursuing vehicle strives to
obtain the optimal policy to capture the target as quickly
as possible. At each timestep, the pursuing vehicle needs
to decide its actions. Unlike general MDPs, the pursuing
vehicle in the HCMVP problem only executes the decisions
when it reaches the intersection, due to the constraints of the
traffic environment. When the Euclidean distance between
any pursuing vehicle and the evading vehicle is less than
the capture distance dcapture, the evading vehicle is captured,

and then it will disappear from the scene. When all evading
vehicles in the scene are captured, this pursuit is Done.

C. Information-Enhanced Cooperative Reinforcement Learn-
ing Framework

This paper proposes an information-enhanced cooperative
reinforcement learning framework to address the HCMVP
problem under the complex urban traffic environment. In
the framework, we propose an information-enhanced state
encoder (IESE), which extracts the critical information of
the environment state from three perspectives, ego pursuing
vehicle, other pursuing vehicles and the evading vehicles,
to obtain the encoded state information. Meanwhile, IESE
adopts an attention mechanism, which facilitates the pursuing
decision-making, and enables the pursuing vehicle to quickly
and accurately determine its pursuing target with the minimum
pursuing time, when it receives position information of multi-
ple evading vehicles, thus improving the pursuing efficiency.

In the HCMVP problem, We propose a cooperative graded-
Q scheme to promote cooperation among the pursuing vehi-
cles. In the scheme, each pursuing vehicle generates decisions
according to the received encoded state. The cloud server
can collect the global information of the scene, including
the positions of all pursuing and evading vehicles, and the
global background traffic flow information. Note that the
pursuing vehicles send the decisions to the cloud server for
optimization, instead of executing these decisions immediately.
We design a coordinated Q optimizing network deployed
on the cloud server. The coordinated Q optimizing network
adjusts the received pursuing decisions according to the cur-
rent environment traffic information, and generates the global
optimal action set. The actions in the global optimal action
set are separately distributed to each pursuing vehicle for
executing, thus ensuring the global optimal decision-making
of the pursuing vehicles.

This framework provides a feasible and effective solution
for HCMVP in complex scenes, and facilitates collaboration
among pursuing vehicles. In addition, the designed IESE helps
the pursuing vehicles to extract the vital feature information of
various pursuing participants, thereby improving the decision-
making efficiency.

III. INFORMATION-ENHANCED STATE ENCODER

This section proposes an information-enhanced state en-
coder to extract key features from various pursuing partici-
pants to facilitate pursuing decisions. Section III-A describes
the modeling process of the global multi-dimension position
information, and Section III-B presents the specific structure
of the proposed IESE.

A. State Modeling

This paper defines a mapping matrix to effectively represent
the road topology and the global position information of the
vehicles. The roads in the constructed complex traffic scene
are divided into north-south roads and east-west roads. In a
scene with W ×W intersections, W − 1 roads in the same



direction that can be directly connected in space are defined as
a channel. In order to represent the global position information
of vehicles on the continuous roads, a channel is directly
divided into K cells, as shown in Fig. 2(b). Then a set of
north-south channels Csn = {vc1, vc2, . . . , vcW }, and a set of
east-west channels Cew = {hc1, hc2, . . . , hcW } are obtained,
where vci and hci represent a north-south channel and an east-
west channel with K cells, respectively. In order to effectively
represent the topology of the road network, the elements in the
two channels sets are cross-combined to obtain a 2W × K
mapping matrix MP = [hc1, vc1, hc2, vc2, . . . , hcW , vcW ]
of the road network. Fig. 2(c) shows a position matrix of
all pursuing vehicles in the complex urban traffic scene for
HCMVP, which takes the representation of MP .

In order to assist the pursuing vehicles in cooperatively
completing the pursuit task, the state of each pursuing vehicle
should involve the global position information of other pursu-
ing vehicles. At timestep t, the state of the pursuing vehicle m
is defined as smt =

{
SFm

t , SP
−m
t , SEm

t

}
, in which, SFm

t ,
SP−mt and SEm

t are the position matrix of the ego pursuing
vehicle m, other pursuing vehicles and the evading vehicles,
respectively. SFm

t , SP−mt and SEm
t take the representation

of the mapping matrix MP . fmt,i,j is the element of the ith row
and jth column of the matrix SFm

t , which indicates whether
the pursuing vehicle m is located in this cell. pmt,i,j and emt,i,j
are the elements of the ith row and jth column of the matrices
SP−mt and SEm

t , respectively, which represent the number
of other pursuing vehicles and evading vehicles in the current
cell.

B. Attention-Based State Encoder

In the HCMVP problem, the pursuing vehicle receives
information from the cloud server and other pursuing vehicles
in real time, which contains ineffective and interfering infor-
mation, thus causing a great negative impact on the decision-
making of the pursuing vehicle. In this paper, the information-
enhanced state encoder (IESE) adopts the attention mechanism
to facilitate the pursuing vehicle to determine its pursuing
target. And IESE is designed to extract the crucial information
of the state from three perspectives of ego pursuing vehicle,
other pursuing vehicles, and evading vehicles. The structure of
IESE is shown in Fig. 3. IESE provides more appropriate state
characteristic information for each pursuing vehicle, thereby
promoting pursuing efficiency and improving the system’s
stability.

The attention mechanism is used to help a pursuing vehicle
quickly and accurately determine its pursuing target. In the at-
tention mechanism, Source consists of a series of (Key, Value)
pairs. The purpose of the attention mechanism is to obtain the
weight coefficient of each Key corresponding to the Value,
by calculating the correlation between the Query of the given
target and each Key, and then weighting the Value to get the

Fig. 3. The structure of IESE. IESE, consisting of convolutional layers,
attention mechanism and fully connected layers, integrates the global position
information of ego pursuing vehicle, other pursuing vehicles and evading
vehicles.

final attention. The calculation formula is

Attention((Key, Value),Query) =
N∑
i=1

ai ∗ Valuei

=

N∑
i=1

exp (sim (Keyi,Query))∑
j exp

(
sim

(
Keyj ,Query

)) ∗ Valuei,

(1)

in which, N is the length of Source, ai is the attention weight,
and sim(·) is the similarity calculation mechanism.

Each pursuing vehicle has an IESE for state encoding. First,
the three position matrices in the state smt are convoluted to
extract crucial feature information from various perspectives,
respectively. Then, the convoluted position information of ego
pursuing vehicle and all evading vehicles are input into the
attention mechanism to boost the pursuing vehicle to concen-
trate on the information of its target evading vehicle, thus
acquiring the target preference information of ego pursuing
vehicle. Finally, the convoluted position information of ego
pursuing vehicle and other pursuing vehicles, and the target
preference information of ego pursuing vehicle are input into
the fully connected layers for feature integration to obtain the
encoded state information ŝmt . IESE adequately extracts the



vital state information from ego pursuing vehicle, other pur-
suing vehicles and the evading vehicles, helping the pursuing
vehicle to quickly determine the target vehicle. In addition,
the processing of other pursuing vehicles’ position information
effectively promotes cooperation among the pursuing vehicles.

IV. COOPERATIVE GRADED-Q MULTI-AGENT
REINFORCEMENT LEARNING

This section proposes a cooperative graded-Q scheme to fa-
cilitate the cooperation among pursuing vehicles and boost the
pursuing vehicles to complete the pursuit with the minimum
pursuing time. Section IV-A introduces the deep Q network
deployed on the pursuing vehicle, which makes decisions
according to the information it receives. Section IV-B proposes
the coordinated Q optimizing network to collaboratively opti-
mize the Q list of each pursuing vehicle. Finally, the decision-
making and training process of the proposed GQRL-IESE is
detailed in Section IV-C.

A. DQN-Based Pursuing Decision-Making

Deep Q network (DQN), as a value-based reinforcement
learning method, has been widely used in discrete action
decision-making. In the cooperative graded-Q scheme, each
pursuing vehicle uses DQN to make decisions according to
the encoded state information it receives.

In order to improve the decision-making effectiveness of
the pursuing vehicle, the encoded state is input to the DQN.
DQN uses neural networks to fit the Q function, and outputs
the Q value for each action, containing turning left, turning
right and going straight at the next intersection. The Q list of
each pursuing vehicle is defined as QLm = (qleft , qrigh , qstra ),
in which, qleft, qrigh and qstra indicate the probability that the
pursuing vehicle m selects to turn left, turn right and go
straight, respectively.

Each pursuing vehicle receives an individual reward rmt at
each timestep to motivate the pursuing vehicles to complete
the pursuing task. The individual reward is mainly composed
of three parts. 1) Each pursuing vehicle receives a negative
reward of c1 at each timestep when it does not complete the
pursuit. 2) When there are g pursuing vehicles capturing the
same evading vehicle at the same time, each pursuing vehicle
gets a positive reward of c2

g . 3) To encourage pursuing vehicles
to aggressively capture evading vehicles, each pursuing vehicle
receives a reward rdis

m
t , which is designed by evaluating the

distance between the pursuing vehicle and the closest evading
vehicle to it. The calculation formula of the reward is

rdis
m
t = β ×min

{
dm,n
t+1 − d

m,n
t

}
,

m ∈ {1, 2, . . . ,M} and n ∈ {1, 2, . . . , N},
(2)

where β is the reward factor, and dm,n
t is the Euclidean

distance between the pursuing vehicle m and the evading
vehicle n at timestep t.

In order to accelerate the convergence of networks and
ensure smooth updating, the DQN of each pursuing vehicle
maintains two networks with exactly the same structure,
primary DQN Qm (θm) with the parameters θm and target

DQN Qm (θ′m) with the parameters θ′m. In DQN, the agent
uses an ε-greedy strategy to select random actions, where
the agent selects a random action with ε probability, and
selects an optimal action with 1 − ε probability based on
the estimated Q value. θm is iteratively updated in every
learning through stochastic gradient descent (SGD) using data
randomly sampled from the experience replay buffer Dm, and
θ′m is reset using θm for per fixed learning. Let an experience
sample emt in Dm is emt =

〈
ŝmt , a

m
t , r

m
t , ŝ

m
t+1

〉
, and the loss

function of DQN is

L (θm) = Eemt ∈Dm [(rmt + γmax
a

Qm

(
ŝmt+1, a; θ

′
m

)
−Qm (ŝmt , a

m
t ; θm))

2
]
,

(3)

in which, γ is the discounted factor.

B. Coordinated Q Optimizing Network
In the graded-Q scheme, it introduces a coordinated Q

optimizing network to evaluate and collaboratively optimize
the Q list output by each DQN, while considering the current
environment traffic information. The coordinated Q optimizing
network is updated using supervised learning, and the global
reward is set as the evaluation benchmark. The global reward
is the sum of the individual rewards of each agent.

Rt =

M∑
m=1

rmt . (4)

The coordinated Q optimizing network aims to obtain the
global optimal action set for the pursuing vehicles to enhance
the cooperation among pursuing vehicles, thus improving the
pursuing efficiency.

The input of the coordinated Q optimizing network con-
tains the current environment traffic information xt and the
decision information generated by all agents currently QM t.
The current environment traffic information is defined as
xt = {SP t, SEt, BN t}, in which, SP t and SEt separately
represent the position information of all pursuing and evading
vehicles, which take the representation of MP , and BN t

represents the current number of background vehicles in each
lane. The Q-matrix QM t integrates the individual Q lists
generated by the DQNs, whose element in the mth row is
denoted as QMm

t , representing the individual Q list QLm of
the mth agent. The coordinated Q optimizing network outputs
the optimized decision information of all agents QMg

t . We
employ an exploration approach to find the optimal QMg

t

that maximizes the global Q-value estimated by the optimizing
network. Then we obtain the optimal action set Ag

t according
to QMg

t . And the obtained optimal action set is separately dis-
tributed to each pursuing vehicle to execute. The coordinated Q
optimizing network is iteratively updated through SGD using
experience randomly sampled from the experience memory
pool U . An experience in U is defined as 〈xt, QM t, Rt〉. The
optimizing network is committed to fitting the global reward,
and the loss function of the network is

L (θg) = E〈xt,QMt,Rt〉∈U

[
(Rt −Qtot (xt, QM t; θ

g))
2
]
,

(5)



in which, θg is the parameter of the coordinated Q optimizing
network.

C. Decision-Making and Training Process of GQRL-IESE

In GQRL-IESE, each pursuing vehicle uses a DQN to make
decisions based on its own encoded state. These decisions are
sent to the coordinated Q optimizing network to be optimized
and adjusted at the global level, instead of being directly
executed. Then these optimized actions are separately issued
to each pursuing vehicle for execution, thus enhancing the
cooperation among the pursuing vehicles and improving the
pursuing efficiency. The following describes the decision-
making and training process of GQRL-IESE, as shown in
Algorithm 1.

Algorithm 1: The decision-making and training pro-
cess of GQRL-IESE

1 Initialize the HCMVP environment;
2 Initialize the experience replay buffer set {Dm};
3 Initialize the experience memory pool U ;
4 Initialize the parameters of DQN {θm};
5 Initialize the agents’ state {sm1 } and x1;
6 for t = 1 : T do
7 for m = 1 :M do
8 Feed smt to IESE and obtain ŝmt ;
9 Get QLm through DQN according to ŝmt ;

10 end
11 Integrate {QLm} to get QM t;
12 Input xt and QM t to the coordinated Q optimizing

network and obtain Qtot;
13 for m = 1 :M do
14 Adjust QMm

t to get QM
′

t;
15 Recalculate Q

′

tot;
16 if Q

′

tot > Qtot then
17 Qg

tot = Q
′

tot ;
18 QMg

t = QM
′

t

19 end
20 end
21 Select Ag

t according to QMg
t ;

22 Execute Ag
t , and then obtain Rt, rt, st+1 and xt+1;

23 Store
〈
ŝmt , a

m
t , r

m
t , ŝ

m
t+1

〉
to Dm and

〈xt, QMt, Rt〉 in U ;
24 Randomly select samples from Dm and update θm

via (3);
25 Randomly select experience from U and update θg

via (5);
26 if Done then
27 Break;
28 end
29 end

At timestep t, the coordinated Q optimizing network ob-
serves the current environment traffic information xt, and the
agent m observes the state smt from the environment, which
is fed to IESE to get its encoded state ŝmt . Then the agent

adopts DQN to obtain the individual Q list QLm based on
ŝmt . After all agents obtain their individual Q lists, these
individual Q lists are integrated into the Q-matrix QM t. xt
and QM t are input to the coordinated Q optimizing network
to obtain the global Q value Qtot of the current individual
actions. In the coordinated Q optimizing network, we use
an exploration approach to find the optimal action set Ag

t .
Randomly adjust the action of an agent to obtain a new QM

′

t

and its corresponding Q
′

tot. We obtain the maximum Qg
tot and

its corresponding optimal Q-matrix QMg
t through traversing.

Then the optimal action set Ag
t is obtained according to

QMg
t . The coordinated Q optimizing network distributes the

actions in Ag
t to each agent to execute. After executing Ag

t ,
the agents receive individual reward rt and the next timestep
state st+1 from the environment, and the coordinated Q
optimizing network receives the global reward Rt and the
next timestep environment traffic information xt+1 from the
environment. Afterward

〈
ŝmt , a

m
t , r

m
t , ŝ

m
t+1

〉
is stored in Dm

and 〈xt, QMt, Rt〉 is stored in U . Then samples are selected
from Dm to update θm according to (3), and experience
is selected from U to update the coordinated Q optimizing
network according to (5). Repeat the above learning process
until the pursuit is Done.

The proposed GQRL-IESE motivates the pursuing vehicle
to execute the policy that maximizes the global reward, and
facilitates collaborative decision-making among pursuing vehi-
cles, thereby improving the global cooperation of the pursuing
vehicles. Particularly, the IESE urges the pursuing vehicles
to effectively extract key information from different pursuing
participants, and boosts the pursuing vehicle to determine its
pursuing target more quickly, thus improving the pursuing
efficiency.

V. COMPARISON AND ANALYSIS OF PERFORMANCE

A. Simulation Settings

This paper simulates a complex urban traffic scene for
HCMVP based on SUMO. We construct a 3km× 3km space
with 4 × 4 intersections. In the scene, each evading vehicle
randomly selects one of the preset routes as its own path, and
all background vehicles randomly determine routes. Of course,
all vehicles in the scene are required to obey traffic rules. The
parameter settings are presented in Table I.

TABLE I
PARAMETER SETTINGS

Parameters Value Parameters Value
Number of pursuing vehicles M 4 Number of evading vehicles N 2

Number of background vehicles B 50 Maximum speed 20 m/s
Maximum acceleration 0.8 m/s2 Maximum deceleration 4.5 m/s2

Number of rods L 24 Number of cells K 10
Learning rate 0.001 γ 0.95

ε 0.01 β 2
c1 -0.01 c2 10

B. Performance Comparison with Other Methods

In this section, we compare the convergence and pursuing
efficiency of the proposed GQRL-IESE with other methods,



TABLE II
SIMULATION RESULTS

GQRL-IESE QMIX DDPG MADDPG DQN IESE+DQN GQRL
Total Timestep 175.00 455.00 264.00 216.00 402.00 477.00 294.00
Total Reward 407.79 -496.87 144.58 363.42 -638.30 -625.28 313.79

Improvement with GQRL-IESE - 221.85% 64.54% 10.88% 256.53% 253.34% 23.05%
Average Reward 2.33 -1.09 0.55 1.68 -1.59 -1.31 1.07

Improvement with GQRL-IESE - 146.86% 76.50% 27.80% 168.14% 156.26% 54.20%

including QMIX, deep deterministic policy gradient (DDPG),
MADDPG and DQN.

Fig. 4 depicts the loss curves of different methods to
compare their convergence. In Fig. 4, the loss of GQRL-IESE
uses the loss of the pursuing vehicles’ decision network DQNs,
and MADDPG uses the loss of Actor network. It is evident
that the proposed GQRL-IESE has the best convergence rate
with the lowest loss value. MADDPG shows the second-
best convergence rate and QMIX has the worst convergence
performance. The best convergence performance of GQRL-
IESE shows that it has a stronger ability to handle complex
scenes and has excellent stability.

Fig. 4. The loss curves of GQRL-IESE, QMIX, MADDPG and DQN

As shown in Fig. 5, it is intuitive that the GQRL-IESE
shows apparent superiority over other methods. In particu-
lar, the proposed GQRL-IESE obtains the positive rewards,
while the average rewards obtained by QMIX and DQN
at each timestep are below 0. This indicates that GQRL-
IESE facilitates the pursuing vehicles to approach the evad-
ing vehicles more quickly, thereby improving the pursuing
efficiency. Although MADDPG performs better than GQRL-
IESE initially, as the number of training timesteps increases,
MADDPG becomes more volatile and the average reward at
each timestep obtained gradually decreases, finally achieving
second-best performance. This illustrates that the proposed
GQRL-IESE achieve a more stable pursuing performance and
superior pursuing efficiency.

Moreover, in order to more convincingly prove the superior-
ity of the proposed GQRL-IESE scheme, we show the detailed
data of three aspects of the total timesteps, the average reward

Fig. 5. The test reward of GQRL-IESE, QMIX, DDPG, MADDPG and DQN

at each timestep, and the total reward, which is shown in Table
II. The “Improvement with GQRL-IESE” in the fourth and
sixth lines in Table II refer to the improvement of GQRL-
IESE and other methods in total reward and average reward,
respectively. The total timestep of GQRL-IESE is 47.64%
less than other methods on average, specifically, 61.54%,
33.71%, 18.98% and 56.47% less than that of QMIX, DDPG,
MADDPG and DQN, respectively. The total reward of GQRL-
IESE is increased by 10.88% compared to MADDPG which
has the second-best performance. And the average reward of
GQRL-IESE at each timestep is 104.83% higher than all other
methods on average.

Fig. 6. The test reward of GQRL-IESE, IESE+DQN and GQRL



C. Ablation Experiments

Ablation experiments are performed to investigate the con-
tributions of the IESE and cooperative graded-Q scheme in
the proposed GQRL-IESE, respectively. GQRL represents the
method that does not use IESE to process the state of the
agents. IESE+DQN represents the method that does not use
the coordinated Q optimizing network, which means that
each agent only uses DQN to make decisions and execute
directly. As shown in Table II, the total timestep and total
reward of GQRL are increased by 68.00% and decreased
by 54.20%, respectively, compared to GQRL-IESE. This il-
lustrates that IESE expedites the process of each pursuing
vehicle to determine its own pursuing target, and helps the
agent obtain richer input information, thereby improving the
pursuing efficiency. Compared with GQRL-IESE, the total
reward and average reward of IESE+DQN are reduced by
253.34% and 156.26%, respectively, and the total timestep is
increased by 172.57%. This demonstrates that the proposed
cooperative graded-Q model effectively enables the pursuing
vehicles to learn cooperative strategies from the global level,
and improves the cooperation among the pursuing vehicles.

More intuitively, Fig. 6 depicts the performance of GQRL,
IESE+DQN and GQRL-IESE. It is clear that GQRL-IESE
achieves the best performance. Although IESE+DQN and
GQRL have faster convergence rates, GQRL-IESE achieves
more stable and effective pursuing performance. The ablation
experiments demonstrate that the proposed GQRL-IESE effec-
tively improves the pursuing performance.

VI. CONCLUSION AND FUTURE WORKS

This paper proposes a GQRL-IESE framework to solve the
HCMVP problem under the complex urban traffic environ-
ment. The IESE is proposed to encode the pursuing vehi-
cles’ state, which effectively removes redundant information
received by the pursuing vehicles, and assists the pursuing
vehicle in quickly determining its current pursuing target,
thus promoting the DQN-based pursuing decision-making.
Moreover, a cooperative graded-Q scheme is proposed in
GQRL-IESE to facilitate cooperation among the pursuing
vehicles. The coordinated Q optimizing network introduced
into the cooperative graded-Q scheme, greatly facilitates the
collaboration among pursuing vehicles and the collaborative
optimization of decision-making. Extensive experimental re-
sults based on SUMO show that the proposed method is more
competitive than existing methods. The total timestep of the
proposed GQRL-IESE is less than other methods on average
by 47.64%. The future work will focus on obtaining more
intelligent evading vehicles to inversely facilitate cooperation
among pursuing vehicles, and achieving more competitive
performance in real-world traffic environments.
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