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Abstract—This paper presents applications of entropic spanning graphs ~ Here the relevant notion of entropy is theentropy of
to imaging and feature clustering applications. Entropic spapning graphs the feature probability densitf/, also known as Etﬁyi en-
span a set of feature vectors in such a way that the normalized spanning X . . . .
length of the graph converges to the entropy of the feature distribution as  tropy, which for pl’ObabI“W densities is defined as [5]
the number of random feature vectors increases. This property makes these
graphs naturally suited to applications where entropy and information di- 1
vergence are used as discriminants including: texture classification; feature H, (f) = In / fa (z)dz,
clustering; image indexing; and image registration. Among other areas, 1—« z
these problems arise in geographical information systems, digital libraries,

medical information processing, video indexing, multi-sensor fusion, and for a € (0 1) The a-entropy converges to the Shannon

content-based retrieval. e .
entropy— [ f(z)In f(z)dz asa — 1. A related quantity
is the a-divergence between two feature densitfgsand

(1)

I. INTRODUCTION fo of ordera € (0,1) [5], [6], [7]
Let X be an image and let independent identically dis- _ 1 ln/ () 0N\ ds (2
tributed (i.i.d.) d-dimensional feature vectots,, ..., Z, alf1llo) a—1 i) () @)

be extracted from this image. Examples of such a featlJZBea(lefo) is a measure of similarity or closeness ff

vector are: the position and orientation of a randomly Chohd fo in the sense thaby, (f1]|fo) > 0 with equality iff

sen edge; a vector of samples in a textured region; orjwe: f, almost everywhere (a.e.). When— 1 the a-

output vector of a spatial prediction filter. Such featur vergence converges to the Kullback-Leibler divergence
can be used for registering two images to each other, tex
gistenng g RE(/1llfo) = [2 folz)n % dz. On the other hand,

classification and segmentation, or content-based ima ) : fi(z)”

retrieval. The basic objective of these applications can b, (f1llfo) is the Hellinger affinity betweerf and fo [8].
reduced to assessing characteristics of the distribution léte Hellinger affinity is related to the Hellinger distance
the feature vectors. For example, the mutual informatig¥ich is commonly used to measure differences between
method of image registration [1] searches through a nuf#0 probability densities [9], [10].

ber of coordinate transformations to find the one that min- Non-parametric estimation of Shannon entropy has been
imizes the entropy of the joint feature distribution of thgs interest to many in non-parametric statistics, pattern
two images. Similarly, many image retrieval algorithmg,cognition, model identification, image registration and
search through a database of images to find the homglgser areas [11], [12], [13], [14], [15], [1], [16]. Esti-
gous image whose feature distribution is closest to thatgkion ofa-entropy arises as a step towards Shannon en-
the query image where closeness is measured in term@r%y estimation, e.g., Mokkadem [17] constructed a non-
minimum information divergence [2], [3], [4]. This papemarametric estimate of the Shannon entropy from a conver-
discusses minimal graph methods for estimating entroagm sequence of-entropy estimates. However, as we will
and divergence measures associated with a set of feaggg, estimation of the-entropy is of interest in its own
vectors. Specifically, we focus on a class of graphs whiggni - The problem arises in vector quantization where
span the set of feature vectors and as a byproduct produggfyi entropy is related to asymptotic quantizer distortion
a consistent estimator of_ feature _entropy and divergengg, ihe Panter-Dite factor and Bennett's integral [18], [19].
We call such graphentropic spanning graphs The a-entropy parametrizes the Chernoff exponent gov-
IThis work was supported in part by a NATO Collaborative Linkage Grareming the minimum probability of error in binary detec-
and AFOSR MURI Grant F49620-97-0028. tion problems [20], [21]. It also has been used for image




registration from multiple modalities via the Jensen dif-
ference [22], [23], [24]. The most natural entropy estima-
tion method is to substitute a non-parametric density esti-
mator f into the expression for entropy. This method has
been widely applied to estimation of the Shannon entropy
and is called “plug-in” estimation in [15]. Other methods
of Shannon entropy estimation discussed in [15] include
sample spacing estimators, restricteddte= 1, and es-

2. Image registration [1], [26], [27], [28]: the database

consists ofK copies ofZ, which are rotated, trans-
lated and possibly locally deformed. The indexing
finds the pose/orientation in the database closest to
that of the query. An invariant feature set is not desir-
able in this application. When the feature vectyr

is defined as the set of pixel pair gray levels associ-
ated with each pair of images;, X, and the mutual

timates based on nearest neighbor distances. This paper information criterion is applied to the pixel pair his-
discusses an alternative method for entropy and divergence togram one obtains an analog to the method of Viola
estimation based on using entropic spanning graphs. This and Wells [1]. The mutual information (MI) criterion
method will be illustrated for imaging, clustering and fea-  is equivalent to the KL divergence between the joint
ture classification applications. distribution of the pixel-pair gray levels and the prod-
uct of the marginal feature distributions.

Tg_e outllr:re] of Ithe fpapter 'S asdleilows. n ‘_Se.ctlon. X 3. Target detection [29], [30], [31]: the query is the dis-
we discuss the role of entropy and divergence In IMaging. 4, 110 of the observations and the database is parti-

In Sch_on [l we introduce the class of entroplc spanning .o 4 into of a family of densitieg; — f(Z|6;) part

graphs in the context of robust entropy and divergence es- . . »

. o . . . X of which corresponds to the “target-absent” hypothe-

timation. This is followed in Section IV by illustrative ex- . . i o
sis and the rest to “target-present.” Target detection is

amples for two applications. declared if the closest density in the database is in the
latter set.
II. DIVERGENCE, ENTROPY, AND INDEXING

_ As an illustrative example consider the case whgye
_Let X, be a reference image, called the query, and COfiq £, are multivariate Gaussian densities. The KL di-
sider a databas¥;, i = 1,..., K ofimages to be indexed ergence for such a Gaussian feature model was adopted
relative to the qu_ery. Legm ={Zy,...,Zin} benfea- i, [32], [3]. Let folzx) = f(x;pu0,Ao) and fi(z) =
ture vectors of dimensior extracted fromX;. We as- ¢(,.. ., A|) be d-dimensional Gaussian densities with
sume that imageX;’s feature vectors are i.i.d. Withii mean vectors, 1, and non-singular covariance matrices
following probability densityf;(z). Throughout we will Ao, A,. For this model the un-normalizeg-divergence

also assume that densities are supported on the unit c@g ¢ 1 1y = (1 — o) Da (f1]| o) of order« is given by
[0,1]¢ in d-dimensions. Under this statistical frameworlfgg]

the similarity between imageX, X; is reduced to simi-

larity between feature densitigg(z), fi(z). w |Ag|¥|Ap]t
Da(fillfo) = :%ln|aAo+(1—a)A1|J 3)
A. Divergence Index Term A
ol —a) 7 —1
The ordered sequence of increastmglivergence mea- + TAM (aho + (1 —a)A1) " Ap
suresDq(fi, [fo) < ... < Da(fiyllfo), induces an in- h o~ .

dexing, which we call the “true divergence-indexing,” of

the images whereAp = p1 — po and|A| denotes the determinant of
square matrixA. The divergence consists of two terms
andB. A is equal to zero wheAy = A, and B is equal

to zero wheruy = p1. Term A is the log of the ratio of
the determinants of the geometric mean and the arithmetic
means of\; andA( with mean weightgr and1 — «. Term

1. Content-based retrieval [25], [3], [4]: the query is af¥ is the quadratic difference of mean vectors normalized
image and the database consists of images which nithe arithmetic mean of; andA, with mean weights
“contain” the object in the sense that the object mé’}ﬁdl -
only be found as a scaled, rotated or ortho-projected
version of the query in the database. An invariant fea-
ture set is very important for this application.

Xi <= X; & Do(fillfo) < Dalfjllfo)

Special cases of the indexing problem are



B. Choice ofx-parameter For some indexing problems the marginal entropies
{H,(f:)}, over the database are all identical so that the
The a-divergence is directly related to the exponentighdexing function{ H, (8o + (1 — B) f;) } [ , is equivalent
rate of decay of the Bayes-optimal binary hypothesis tast{ AH, (3, fo, fi)} X ;.
between two densitie§, and f, [33]. Specifically, given

aniid. sampleZ, = {Z,..., Z,}, the Chernoff bound p, - comparisons  of a-Jensen Difference  anda-
asserts that the probability of errdt. (n) of the optimal

. Divergence
Bayes test offy: Z; has densityfy(z) vs. Hy: Z; has
density f1(z), then There are a number of interesting properties of
1 Do (f1llfo) and AH. (B, fo, f1) Which are discussed in
liminf —In P (n) = — sup (1 —a)Da(f1llfo). (4) [33]:

n—oo mn a€l0,1]

« For f; close to fy discrimination capability of the

The quantity on the right in (4) is called ti&hernoff expo- _ : )
a-divergenceD,, (f1||fo) is locally independent of

nentwhich is the asymptotically optimal rate of exponen- : X
tial decay of the error probability for testirfg, vs H;. For while that of thea-Jensen differences Ho (8, fo, f1)
indexing applications this relation suggests that the maxi- depends om. o

mizing « in (4) is an optimal value, and using it makes the * YWhen « approaches 0, tail differences between the

a-divergence indexing measure the most relevant to fea- WO densitiesfy and f, become most influential.
ture classification. It can be shown that the maximizing * WWhen o approaches 1, central differences between

value approaches = 1/2 whenf; is close tof, [33]. the two densities become. highly pronouncep_l in
AH (B, fo, f1). Therefore, if the feature densities

differ in regions where there is a lot of mass one
should choose close to 1 to ensure locally optimum
discrimination using\ H (8, fo, f1)-

« AH, (B, fo, f1) has maximal discriminative capabil-
ity when g = % i.e., when the two images yield the
same number of feature vectors.

C. Entropy Index

An alternative index function is based on the so-called
Jensen entropy differenceThis index function was in-
dependently proposed by Ma [23] and ldeal [24] for
image registration problems. It was proposed earlier by
Michel et al in [34] for classifying time frequency dis-
tribution images. Letf, and f; be two densities and l1l. ENTROPIC SPANNING GRAPHS

B € [0,1] be a mixture parameter. TheJensen differ- _ _ _ _ ,
ence is the difference between theentropies of the mix- The aforementioned ideal indexing scheme is of course

ture f = Bfo-+(1—8) f1 and the mixture of the-entropies Unimplementable since one never knows the underlying

of fo andfy [7]: fgatu_re densities exactly. Implementation thus requires es-
timation of the entropy or divergence. Most current non-
AH (B, fo, f1) = Huo(Bfo+ (1 —B)f1) (5) parametric entropy and divergence estimation techniques

— [BHa(fo) + (1 — B)Ha(f1)], are based on estimation of the density function followed

by substitution of these estimates into the entropy or di-

where a € (0,1). As the a-entropy H,(f) is Vvergence functionals (1) and (2). The reader is referred
strictly concave inf Jensen’s inequality asserts thaio [15] for a comprehensive overview of previous work in

AHy (B, fo, f1) > 0 with equality iff fo = f1 (a.e). non-parametric estimation of Shannon entropy. The main

) _ _difficulties of non-parametric plug-in methods are due to
The a-Jensen difference can be motivated as an indgg infinite dimension of the spaces in which the uncon-

function as follows. Assume that two sets of labeled feggained densities lie. Specifically: density estimator per-
ture vectorsZy = {Zo; }i=1,..,no @NdZ1 = {Z1i}i=1,..n1 formance is poor without stringent smoothness conditions;
are extracted from images, and X;, respectively, and , nhiased density estimators generally exist; density es-
assume that each of these sets consists of independitiors have high variance and are sensitive to outliers;

realizations from densitieg, and fi. Define the union ¢ high dimensional integration required to evaluate the
Z = Zy U Z; containingn = ng + n; unlabeled feature entropy might be difficult.

vectors. Any consistent entropy estimator constructed on

the unlabeledz;’s will converge toH,(8fo + (1L — 8)f1)  The problems with plug-in methods can be summarized
asn — oo wheref = lim,,_, o, n9/n. by the basic observation: on the one hand parameteriz-



MST

ing the scalar entropy functional with an infinite dimen- 128 random samples 1

sional density function is a costly over-parameterization ot Weasy ot
while on the other hand artificially enforcing lower di- °%. el e B3 N o8
mensional density parametrizations can produce signifi ol ¢ « S, 06
cant bias in the estimates. This observation has motivate~" [ *.+" e e R -
us to develop direct methods which accurately estimat °‘} . et .~ OAt
the entropy without the need for performing artificial low oz} . °° -': % 02
dimensional parameterizations or non-parametric densit . et e . .
estimation [35], [36], [37]. These methods are based o1 © ©°2 ©¢ o6 08 A
constructing minimal graphs spanning the feature vectors 128 random samples st
in the feature space. The overall length of these mini - . . !
mal graphs can be used to construct a strongly consiste ,, ) '-. . os
estimator of entropy for densities without singular (dirac P '. ,. .
delta) components. In particular, 18, = {Z,...,Z,} 9 * %% r':' o e
and define Tl o .}-’5,':_- ‘l ey iy
e o °
L(Zn) = minz |e|7v (6) 02 R s 02
ecT . .
¢ 00 : 0.2 0.4 .0.6 : 0.8 1 0O 0.2 0.4 0.6 0.8 1
the overall length of a graph spanning.i.d. vectorsZ; “ a

in R? each with densityf. Here the power weighting Fig. 1. Top row: A random set ok = 100 uniformly distributed points in

. : . : [0,1]? and the MST spanning these points. Bottom row: A random set of
7€ (0’ d) IS real,e are _edges na graph connectlng pairs of n = 100 points with separable triangular density and the MST spanning
Z;'s, |e| denotes Euclideari) norm of the edge, and the  these points.

minimization is over some suitable subsgtse.g. span-

ning trees, of the(3)) edges of the complete graph. Examy, ¢ (0, 1) will be calledentropic spanning graphsn Fig-

ples include the minimal spanning tree (MST), Steiner gge 2 the upper and lower horizontal lines correspond to
(ST), minimal matching bipartite graph, traveling salesnown bounds [41] oty .

man problem (TSP). The asymptotic behaviorigiz,,)
over random pointgn has been studied for over half @ MsTlength, uni. dist. (red), Triang. dist (blue) MST normalized compensated length

decade [38], [39]. }

In Figure 1 the MST is illustrated for two sets of ran: e
domly generated points in the plane, one uniformly di:fgi15 W
tributed (top row) and the other distributed with a morém °°
concentrated separable triangular density. The MST is ¢
fined as the minimum length graph spanning #hgoints. |
The MST lengthL, = L(Zy) is plotted as a function of L. — o 04— — _—
n in Figure 2 for the case of uniformly and non-uniformly N N

distributed points and fofy = 1. Itis intuitive that the ., | . funcrions., of MST (lefty and MST divided by (right) as
length of the MST spanning the more concentrated non-function ofn for the uniform and separable triangular distributed points in

uniform set of points increases at a slower rate than doeg 9ure 1.
the MST spanning the uniformly distributed points. This
fact motivated the application of the MST as a way to te
for randomness of a set of points [40]. What is mo
surprising is that normalizing by/n and taking the log-

arithm of these length functions produces sequences that , 1 o

converge (within a constant factor) to theentropies with Ha(Zn) 1 [In L(Zn) /0" = Br.,] 0

- —
a =1/2, asillustrated in the right panel of Figure 2. Furig 5, asymptotically unbiased and almost surely consistent
thermore, by changing the valuepfn (6) one can change

s estimator of thex-entropy of f wherea = (d — y)/d and
the convergent limit to the-entropy fora = (d — v)/d, AL is a constant bias correction depending on the graph

v € (0,4). Graph; fpr which the normalized IOg'Iengtn‘ninimization criterion, e.g. MST, ST or TSP, but inde-
converges (a.s.) within a constant toeentropy for some pendent off. The estimatorHa(Zn) is also consistent

We showed [36] that when a graph is “quasi-additive”
4{1] in d-dimensional feature spacaé> 2, the graph is an
ntropic spanning graph. Specifically:



when the power exponent functige]” in (6) is replaced X Original data exactinverse ransform

by a positive functiory(|e|) which locally behaves gs|” ca ot F ' \\\\\\\Wﬁ Wy
as|e| — 0 [39]. The fact that (7) holds for any quasi- "°|* . "...!.' s 08 \W /
additive graph construction opens many different possi os "c a-‘:,;-..-“ s i\\ \% /f ////%

bilities for consistent graph-based entropy estimation al~ .

° ° °
04] 8°%00 a0 Sougde N 0.
.
L]

f
=
. .o < NN
gorithms. However, among the currently known quasi- TR PO XY f?;//?m& N\
. . . . o %e o gzt o /%
additive algorithms the MST is the fastest (with polyno- oz " .eg: %« ° o 74 \
‘ b / N ~

IS

N}

mial run time) and as such we have adopted it for all of the . - ol =
entropy estimation applications discussed here. % oz o4 . 000t 0 -

As contrasted with density plug-in techniques, graph- | , vodda ) vantd data, 2D cdfestd
based entropy estimators enjoy the following properties 7, "¢ =, ot *, 0 , RRRRL
they can have faster asymptotic convergence rates, esf °* "'.i L ." _. 0-8_.°::; " 5. J,.
cially for non-smooth densities and for low dimensional | * "= ... =% 0_6.'. ’;‘-.;’. REFTIINS |
feature spaces; they completely bypass the complicatio -I‘--;';:--,' IRTAR W et b e '.°..°-.-'..; .
of choosing and fine tuning parameters such as histogra [+ -'.’:..;". .. R "'.’.-:’-’ ‘]
bin size, density kernel width, complexity, and adaptatior ,,| =« =, Se e ,.‘ ) ozl :--.-:.-,.-...,'.. B B
speed:; they parameter in the--entropy function is varied ORI AL A PRI R R
by varying the interpoint distance measure used to comr %" 02 o4 os o8 1 % oz os o8 o8 1

pute the weight of the minimal graph. On the other hand,
the need for combinatorial optimization is a bottleneck f@f9- 3: Topleft: asample from a separable triangular p.d.f. over the unit square.

. . Top right: a vector field indicating the action of the exact separable inverse
large numbers of feature samples. This has motivated th@ransformation of coordinates on each sample point in Top right. Bottom
development of greedy minimal graph approximations that left: same sample points as in Top left after applying transformation indi-

. . cated in Top right. Bottom right same as Bottom left except that estimated
preserve advantages such as robustness against outliers @gsformation of coordinates was implemented using k-nearest-neighbor

discussed below. density estimators for each of the marginals.

A. Extension to Divergence Estimation An example of this procedure is shown in Figure 3 for
a 2D separable triangular reference dengityver [0, 1]2
We showed in [37] how an entropic spanning graph e&hich in this case equals the actual marginal densitgf
timation procedure can be extended to information divahe observed i.i.d. point€,. Thus for this example the
gence estimation by a method mieasure transformation true divergence is zero. By triangular density we mean:
Assume thatf, dominatesf; (a densityh dominates den- fy(z) = (2—4|z1 —1|)(2—4|z2—1|), z = (21, 22). Aran-
sity ¢ if wheneverh(z) = 0 theng(z) = 0) and rewrite dom sample of. = 100 points was generated frofa. The
the divergence in (2) a$ (f1(z)/fo(2))® fo(z)dz. The uniformizing transformation in this case is separable too,
basic idea is to apply a transformation of coordinates wath each component transformation equal to the marginal
the feature vectors which uniformizes the reference derumulative density functiod’(z) = [ (2—4|z — i|)dx of
sity fo. We illustrate the idea behind this technique fahe 1D triangular density. We investigated both exact uni-
scalarz. Assume thatZ, aren i.i.d. data points gener- formizing transformations and estimated transformations
ated from densityf; (z). Apply the coordinate transforma-using estimates of the one dimensional component den-
tion y = ¢(z) to each point inZ,, whereg is an invert- sity functions. The transformed sample is essentially uni-
ible function such thatly = fy(z)dz. This produces a form both for the exact and the estimated transformations.
new set of points), in the transformed coordinates. ByTherefore, ag: — oo it is expected thaf.(),,)/n* will
standard Jacobian formulas for change of variable of icenverge tg;, , and the estimated divergence (8) will con-
tegration, the divergence integral beconmje€:(y))® dy, verge to zero as desired.
whereh(y) = fi(z)/[dy/dz] is the induced density of
Yn. Thus the lengthl.(),) of the MST constructed ong - Ropustifying Entropic Spanning Graphs
the transformed random variablg’s can be used in place
of the lengthL(Z,,) in (7) to give a consistent estimate of |n many practical problems occasional spurrious feature
the divergence (2) of; relative to a known referenck:  vectors may appear due to noise, false alarms, or small
unimportant shifts and deformations during the image for-
InL(Yp)/n® —Infr ] . (8) mation process. In such situations we are interested in ro-

Dao(fillfo) =

ol



bust entropy or divergence estimators which are resistéaapoint MST (-MST) as our entropic spanning graph al-
to these spurrious outliers. This problem is related to rgerithm. In terms of estimating this entropy, the standard
bust clustering for which it is common to adopt a finitbIST (spanning all 100 points) is extremely sensitive to
mixture model to capture the incidence of points arisirthe 50 outliers which dominate the MST length function.
from different distributions [42]. For our case the apprddence thek-MST is implemented to isolate the points
priate mixture model is the so-called epsilon-contaminaté@m ¢ from the outliers. The four panels in Figure 4 il-
model [43]: lustrate thek-MST for several values of. It is evident
from the figure that as the number of points eliminated by
f(z) = (1 —€)g(2) + eh(z), (9)  thek-MST increases from to 2 to 38 the k-MST rejects
an increasing number of outliers from the contaminating
density. Indeed for the case &f = 62 (38 outliers re-
jected) thek-MST appears to have almost completely re-
covered the MST for the annular distributign However,
as the number of rejected points increases begartd 75
thek-MST begins eliminating points which come from the
desired annular distribution. The key to a practicaST
robustification algorithm will be accurate detection of the
correct number of points to reject.

wheree € [0, 1], h is an unwanted outlier density, apd
is the underlying density of interest. Whenpoints are
realized from the model (9) an averagekof= (1 — €)n of

these points follow the distribution while the remaining
n — k = en are outliers generated from Thereforee cor-

responds to the proportigm — k) /n of outliers one might
expect in a typical sample from densify It is assumed
thate is small but unknown. The target densitys also as-
sumed unknown while the outlier densttyis known and
has the same Suppoﬁﬁ‘, 1]2 as that ofy. K-MST (k=99): 1 outlier rejection (k=98): 2 outlier rejection

Under the model (9) an outlier resistant entropic spa
ning graph was proposed in [36] which identifies and elirr
inates the outlier points. First, using the measure trar°°

0.8 0.8

0.6

z2

formation method discussed in the previous section, v °* 04

transform the coordinates of the samglg such thath(z)  °2 02

is converted to a uniform distribution ovéw, 1]¢. This 0 0

transformed sample is denot@y and follows a standard 0 05 ! 0 05 !
mixture model (9) with uniform contaminating density k-MST (k62): 38 outlir rejection (c=25): 75 outler refection
Second, iterating ovet = n,n — 1,..., we constructen-  ,[ - . N ]
tropic spanning graphs over each of {f{¢ k-point subsets o, o " o F sl e d
Yn i of V.. For each valué, there will be a graph of min- ' o6l * ,-r;gc2
imum length among thes§') graphs. This minimal graph ¥ , N ? e A
spans a set of poinfg; , which are “maximally clustered” . 02| Ve s
among allk-point subsets. The — k points eliminated . ot TS

from the span of this minimal graph are thus identified ¢ s y - - = -
outliers. z 21

We illustrate this procedure in Figure 4 for 100 realizaf—ig' 4. k-MST for 100 points realized from armmixture of 2D annulus density
and a uniform outlier densityt (¢ = 1/2). Points arising from the annulus

tions from a mixture density with an annular component density tend to cluster in a ring while uniform points are more widely dis-
g and a uniform componem Heree = 0.5 correspond- persed over the unit square. Initially, as the number of points included in the

. . ) o X k-MST graph decreases a greater and greater number of outlier points are
ing to 50 realizations from each of the distributions. The rejected. Whet = 62 (38 rejected points) th&-MST graph has sucess-

annular densit)g has the form fully clustered the annular points recovering the ring Gestalt.

1225(]|2—[0.4,0.4][|-0.25)? As the numberk of points retained increases, the se-
quence of MST length& (Y, ), L(V; o 1)s -+ L(Vys )

wherec is a normalizing constant arjgt||? = 2? + 22 is is monotone increasing and evolves a curve dveAs k

the magnitude squared of= (z1, 22). The constant con- approaches. the curve can be expected to increase more

tours of this density are circles for which the maximurmapidly as more of the isolated “outlier” points are succes-

contour is a circle of radiu8.25 and centef0.4,0.4] and sively included in the MST. As these points will tend to

the other contours specify an annulus. Our objective geme from the uniform distribution the average rate of in-

estimate thex-entropy of the annular density from the crease for largé is constant. We would like to selektin

100 realizations frony. For this purpose we adopted théhe £-MST so to eliminate as many of the uniform outlier

g(z) =ce”



points while eliminating as few of the other points fronalgorithms are greedy and sucessively add a single edge to
density g as possible. If the parameterwere known a the graph until all points are spanned without any cycles.
valuek =~ en could be chosem priori. Otherwise, & Using general-purpose versions of these MST algorithms
stopping rule can be implemented which is based on dmmputation time becomes prohibitive for more than a few
tecting the knee in the curvg(); ;). Figure 5 shows this thousand points. An accelerated kruskal-type of MST al-
curve for the example shown in Figure 4. The knee dgerithm, only applicable to Euclidean vertices, has been
tection algorithm is motivated as follows. Asdecreases developed by us [48] which can compute the MST for over
from n to 1 more and more points are pruned from tha hundred thousand points in a few seconds (C code run-
k-MST. When the number of points retained falls below@ing on a 900MHz PC under Linux).

critical threshold, points from the more concentrajetis-

oo . The k-MST discussed in Section 1lI-B arises in many
tribution start to be eliminated and the slope of the curve . T :
combinatorial optimization problems, see references in
abruptly decreases.

[36] for a partial list. Its computational complexity is ex-
g, MSTlengh asuncionof " selecion crerion ponential which necessitates implementation of approxi-
mate schemes [49], [50], [51]. The greedy approxima-
tion used in [36] involves the partitioning heuristic used
by [51]: dissect the support of the densjty assumed to
be [0, 1]¢, into a set ofm? cells of equal volumes /m?;
rank the cells in increasing order of numbers of points con-
) \ tained; starting with the highest ranked cell and continuing
m ow e W m oe e W w down the list compute the minimal spanning graphs in each

cell until at leastk points are covered. Stitching together
Fig. 5. Left: k-MST curve for 2D annulus density with addition of uniform

“outliers” has a knee in the vicinity ok = 68. This knee can be detectedthese small graphs gives a graph which is an approxima-
using residual analysis from a linear regression line fitted to the left-mogton to the k-minimal graph_ The computational advan-

part of the curve. Right: error residual of linear regression line. tage of the greedy algorithm comes from its divide-and-
conquer multi-resolution structure: it only requires solv-
ing the difficult non-linear minimal graph construction on
cells containing smaller numbers of points. Wheg= n

k-MST length
criterion(k)
=
o

Once the kneé has been identified the lengt{Y; ;. )
can be used for robust estimation of daentropy of order

«, where as usual = (d — y)/d € (0,1) is specified by "~ o L
the dimensionl > 2 and the weight exponent € (0, d). this greedy approximation reduces to a partitioning ap-

In [36] we established a.s. convergence of this estimzﬂ%oximation to the full minimal graph spanning all of the
when a greedy approximation epoint minimal entropic " points. By select_lng the “progresswe-rgsoluﬂon param-
graph is implemented. The Huber-Hampel influence fun%telr_ m asl a functlom(n) _Of " va;'\t/)g_'lf] an adaptive
tion of this robust procedure was also investigated in [Séfu ti-resolution approximation to t '

C. Computational Issues IV. APPLICATIONS

The computational complexity of minimal graph algo- W? have implem_ent_ed entropi_c Spaf,‘”‘”g graph es'tima-
rithms depends on the implementation but is generally gﬁ_rs in several application areas mclgdmg: 'mage registra-
perlinear in the number of vertices [44]. Minimal span- tion of ultrasound scans [28], extraction of time-frequency
ning trees and k-means algorithms are of lowest compl _gletons from the tlme-_f requency plane [52], rob_ust cl_us-
itity (complexity O(n? log n) or less) among the many en.tering [35], pattern classification [37], and geo-registration

tropic spanning graph algorithms one might consider, V[,%Z]. Due to space limitations we only discuss two of these

have implemented both sequential single-processor MS?%pI'Cat'Ons here.

and parallel multi-processor MST's. While our experi-

ence has been limited to parallelization over (TCP/IP) nét- Robust Clustering and Classification

worked workstations, we have found that parallel MST im-

plementations, such as that proposed in [45], are stymiedi€re we apply thé-MST to robustly cluster and clas-
by high interprocessor communications overhead. Thé&#y @ triangular vs. uniform density. 256 samples were
are principally two sequential implementations of th@imulated from a uniform-triangular mixture densjfy—=
MST: Kruskal’s “growing a forest of trees” algorithm [46](1 —€)g+€h whereg = 1 is a uniform density andl is the

and Prim’s “growing a single tree” algorithm [47]. Bothseparable triangular shaped product density, introduced in



Section |||_A, both Supported on the Unit Square. Note thi N=256, £ =0.9, h=(green,unif), g=(red,triang) N=256, £ =0.9, h=(green,unif), g=(red,triang)

. . . . Lo s e P 1= A, .
unlike the previous annular-uniform mixture example, tF |4 < Gy \,——'_‘,‘(" ‘\\7‘\ 7™M f Wi
. . . . \ S \'g - -
“outlier” distribution » has lower entropy than the targecs. 3 A AN oo Iy A S
. . . Koo N ( \ 0 A A N
distribution g which makes the problem of clustering the || . - TN N S
realizations fromy more challenging. v . J L7 -
The a-divergenceD, (f, h) was estimated by, (V,) | L <= UNL =
) . o2t~ T 1 PR 02b M ) Ve
for« = 1 (y = 1) using the MST estimator)),, was ° -, W LG ‘ / \,LL] LAY
. . . - . - r : 4 N\ ! )
obtained by applying the “uniformizing” coordinate trans o= /3L i/ a8 o ¥
fOFmatlon tOZn used |n SeCt|On I”'A In a flrSt SequenCE OCIustg;'izng in g;nsforn?:d data?;;isomain1 ° Clu%tzering %iriginzg.gatadgf\ain '

of experiments the estimaté,()),) was thresholded to
Fig. 7. Left: the scatterplot of Figure 6 after applying the uniformizing coordi-

decide between the hypothedd#§ : e = 0 vs. H; : € # 0. nate transformation. Labels o’ and ** mark the transformed realizations
Simulations were performed to generate the receiver oper-rom the uniform and triangular densities, respectively. Superimposed is

. o PT : : the k-MST implemented on the transformed scatterplptwith £ = 230.
atm_g characteristic (ROC) curves mdlcateq In Flgure 6 for Right: same as at left except displayed in the original data domain.
various values of. Note that, as expected, in each case the

detection performance improves as the difference, indexed . ]
by e, between the assuméeil, and H, densities increases jections of a common 3D object. The challenges presented
in multisensor image registration are severalfold. Dif-

In a second sequence of experiments we selected §&fences between sensor viewpoints and imaging modal-
realizations of the triangular-uniform mixture model folty can cause unknown relative geometric distortions and
the valuee = 0.1. The k-MST procedure £ = 90) missing pixels between image pairs. Differences in illu-
was implemented o, as a robust algorithm to clus-mination and environmental conditions introduce further
ter data points from the uniform density. The cluster @omplications. Existence of such differences between im-
points are defined as those points connected byktheages to be registered requires that the registration algo-

MST graph. The:-MST length can thus be used as a raithms be robust to noise and other small pertubations in
bust estimate{,, (Y, ) of the uncontaminated divergencentensity values.

D (g, h). Figure 7 illustrates the effectiveness of this clus- ) ] ]
tering method: within the cluster defined by the vertices of ON€ approach to solving the multisensor image reg-
the k-MST the proportion of contaminating points frafn istration problgm is to first geo-reglste_r the images tq a
has dropped from the original 10% to less than 4%. common terrain model and then to refine the registration
by working with the geo-registered images. In this geo-
N=256, £20.9, h=(green.uni), g=(red triang) ROC, a div.test, N=256,6=1.3,5.7.9 t=h(t)  Fegistration application, a digital elevation model (DEM)
of a terrain patch (terrain height map) plays the role of the
image database and the image indexing problem is that of
selecting the sensor and environmental parameters (point-
ing angle, latitude and longitude, sun-angle, etc.) that yield
the best match between the reference sensor image and a
modeled or rendered version of the DENMDatabase im-
ages are generated from the DEM by rendering a sensor’s
view of the model at a variety of look angles and possibly
under different illumination conditions.
"% miure densty witt — 0.1. Labels ‘o and * mark hose reaizations "i0Ure 8 shows an edge map extracted from a optical
from the uniform and triangular densities, respectively. Right: ROC curvdd€w of a terrain map (DEM) at viewing angle (290, -20,

for the a-divergence test for detecting the uniform-triangular mixture dernq well h m Xir from a referen
sity f = (1—¢€)g +e¢h (H1) against the triangular hypothesijg = h (Hp). 30) as well as the edge ap € tracted from a reference

1

0.8 .

0.6

0.4 o

0.2 °

Curves are increasing ia over the range € {0.1,0.3,0.5,0.7,0.9}. EO image that is to be geo-registered. Clearly, they are
misaligned.
B. Geo-Registration Application For matching criterion we implemented tlheJensen

difference applied to grey level features extracted from

Multisensor image registration problems can be cast asgwm stores the terrain height information in a three dimensional array where

specific cases of a more general sensor registration prg@h element of the array consists of the locations (x and y coordinates) and the
. . . . .. height of the terrain at that location.
lem in which the imaging sensors jointly observe 2D pro-



reference image, which corresponds to the registered pair.

Image at 290,-20,130 rotation Reference image

misaligned points MST demonstration

50 100 150 200 250 300 50 100 150 200 250 300

(@) (b)

Fig. 8. Misaligned EO and reference images (@) (b)
the reference images and candidate EO images derived Fig. 9. MST demonstration for misaligned images
from the DEM database. The parametemwas chosen
arbitrarily as0.5, corresponding to a MST construction
minimizing the Euclidean norm in (6) without any power
weighting ¢¢ = 1). For illustration purposes we selected
a very simple set of features via stratified sampling of
the grey levels with centroid refinements. This sampling
method produces a set ofthree dimensional feature vec-
tors Z; = (x;,vi, F(xi,v;)) where F(z,y) is a sample
of the grey level at planar position, y and wheren is
fixed in advance. The point§(z;,y;)}! , approximate
the centroids of Voronoi cells anflF'(x;, y;)};, corre-
spond to the set of samples of the image from which we (@) (b)
could reconstruct the original image with minimum mean _ _ _ » _
square error. For more details see [23]. When the unibf . jnores 2 condatoimage b the Den satabase s e
of features from reference and target images are rendered
as points in three dimensions we obtain a point cloud of
features over which the MST can be constructed and the V. CONCLUSION

Jensen difference estimated. Simge= ny = n we have _ _ o
used = 1/2 in the Jensen difference (5). One issue that In this paper we have discussed theory and application

we have not addressed here is the validity of the i.i.d. &-€ntropic spanning graphs for clustering, imaging, and
sumption on the feature vector s& acquired for this ex- ENLropy estimation problems. There are many open prob-
ample. We believe that this is a good approximation fgms in this area that must be addressed. The entropic

our choice of spatially distinct features but this questictP@ning graph is not a consistent estimator of entropy
deserves further investigation. when the underlying density has discrete components, i.e.

f contains dirac delta functions. While bounds on con-
Figure 9 illustrates the MST-based registration proc@ergence rates of these estimators are available a complete
dure over the union of the reference and candidate im&gﬁnparison of plug-in versus entropic spanning graph es-
features for misaligned images, while Figure 10 shows thgators of entropy has yet to be performed. Despite the
same for aligned images. From Figures 9(a) and 10(a) w@ny open problems, entropic spanning graph methods are
see that for misaligned images, the representation poiaésy promising due to their simplicity relative to other non-

“x” and “0” are at larger distances, giving correspondingarametric parametric techniques for clustering and fea-
larger MST weight, than those for aligned images. ture classification.

Aligned points MST demonstration
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We repeat this MST construction process over the union
of reference features and features derived from each of the REFERENCES
images in the DEM database. The MST length can thene p. viola and W. Wells, “Alignment by maximization of mutual informa-
plotted as ascatterplot asin Figure 11. The minimum MST tion,” in Proc. of 5th Int. Conf. on Computer Vision, MIVolume 1, pp.

e : _ 16-23, 1995.
length indicates the best matching of the EO image and the



MST Length versus Registration Angle
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Fig. 11. Scatter plot of MST length for a selection of relative rotation angles
between reference DEM image and target radar image. The MST Iengglg]
surface exhibits a sharp minimum at the correct registration angle.
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