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Abstract—This paper presents applications of entropic spanning graphs
to imaging and feature clustering applications. Entropic spanning graphs
span a set of feature vectors in such a way that the normalized spanning
length of the graph converges to the entropy of the feature distribution as
the number of random feature vectors increases. This property makes these
graphs naturally suited to applications where entropy and information di-
vergence are used as discriminants including: texture classification; feature
clustering; image indexing; and image registration. Among other areas,
these problems arise in geographical information systems, digital libraries,
medical information processing, video indexing, multi-sensor fusion, and
content-based retrieval.

I. INTRODUCTION

Let X be an image and let independent identically dis-
tributed (i.i.d.) d-dimensional feature vectorsZ1; : : : ; Zn

be extracted from this image. Examples of such a feature
vector are: the position and orientation of a randomly cho-
sen edge; a vector of samples in a textured region; or the
output vector of a spatial prediction filter. Such features
can be used for registering two images to each other, texure
classification and segmentation, or content-based image
retrieval. The basic objective of these applications can be
reduced to assessing characteristics of the distribution of
the feature vectors. For example, the mutual information
method of image registration [1] searches through a num-
ber of coordinate transformations to find the one that min-
imizes the entropy of the joint feature distribution of the
two images. Similarly, many image retrieval algorithms
search through a database of images to find the homolo-
gous image whose feature distribution is closest to that of
the query image where closeness is measured in terms of
minimum information divergence [2], [3], [4]. This paper
discusses minimal graph methods for estimating entropy
and divergence measures associated with a set of feature
vectors. Specifically, we focus on a class of graphs which
span the set of feature vectors and as a byproduct produces
a consistent estimator of feature entropy and divergence.
We call such graphsentropic spanning graphs.
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Here the relevant notion of entropy is the�-entropy of
the feature probability densityf , also known as R´enyi en-
tropy, which for probability densities is defined as [5]

H�(f) =
1

1� �
ln

Z
Z
f�(z)dz; (1)

for � 2 (0; 1). The�-entropy converges to the Shannon
entropy� R

f(z) ln f(z)dz as� ! 1. A related quantity
is the�-divergence between two feature densitiesf1 and
f0 of order� 2 (0; 1) [5], [6], [7]

D�(f1kf0) =
1

�� 1
ln

Z
f�1 (z)f

1��
0 (z)dz: (2)

D�(f1kf0) is a measure of similarity or closeness off1
andf0 in the sense thatD�(f1kf0) � 0 with equality iff
f1 = f0 almost everywhere (a.e.). When� ! 1 the�-
divergence converges to the Kullback-Leibler divergence
KL(f1kf0) =

R
Z f0(z) ln

f0(z)
f1(z)

dz. On the other hand,
D 1

2

(f1kf0) is the Hellinger affinity betweenf1 andf0 [8].
The Hellinger affinity is related to the Hellinger distance
which is commonly used to measure differences between
two probability densities [9], [10].

Non-parametric estimation of Shannon entropy has been
of interest to many in non-parametric statistics, pattern
recognition, model identification, image registration and
other areas [11], [12], [13], [14], [15], [1], [16]. Esti-
mation of�-entropy arises as a step towards Shannon en-
tropy estimation, e.g., Mokkadem [17] constructed a non-
parametric estimate of the Shannon entropy from a conver-
gent sequence of�-entropy estimates. However, as we will
see, estimation of the�-entropy is of interest in its own
right. The problem arises in vector quantization where
Rényi entropy is related to asymptotic quantizer distortion
via the Panter-Dite factor and Bennett’s integral [18], [19].
The �-entropy parametrizes the Chernoff exponent gov-
erning the minimum probability of error in binary detec-
tion problems [20], [21]. It also has been used for image



registration from multiple modalities via the�-Jensen dif-
ference [22], [23], [24]. The most natural entropy estima-
tion method is to substitute a non-parametric density esti-
mator f̂ into the expression for entropy. This method has
been widely applied to estimation of the Shannon entropy
and is called “plug-in” estimation in [15]. Other methods
of Shannon entropy estimation discussed in [15] include
sample spacing estimators, restricted tod = 1, and es-
timates based on nearest neighbor distances. This paper
discusses an alternative method for entropy and divergence
estimation based on using entropic spanning graphs. This
method will be illustrated for imaging, clustering and fea-
ture classification applications.

The outline of the paper is as follows. In Section II
we discuss the role of entropy and divergence in imaging.
In Section III we introduce the class of entropic spanning
graphs in the context of robust entropy and divergence es-
timation. This is followed in Section IV by illustrative ex-
amples for two applications.

II. D IVERGENCE, ENTROPY, AND INDEXING

LetX0 be a reference image, called the query, and con-
sider a databaseXi, i = 1; : : : ;K of images to be indexed
relative to the query. LetZin = fZi1; : : : ; Zing ben fea-
ture vectors of dimensiond extracted fromXi. We as-
sume that imageXi’s feature vectors are i.i.d. withZi1

following probability densityfi(z). Throughout we will
also assume that densities are supported on the unit cube
[0; 1]d in d-dimensions. Under this statistical framework
the similarity between imagesX0;Xi is reduced to simi-
larity between feature densitiesf0(z); fi(z).

A. Divergence Index

The ordered sequence of increasing�-divergence mea-
suresD�(fi1kf0) � : : : � D�(fiKkf0); induces an in-
dexing, which we call the “true divergence-indexing,” of
the images

Xi � Xj , D�(fikf0) < D�(fjkf0)

Special cases of the indexing problem are

1. Content-based retrieval [25], [3], [4]: the query is an
image and the database consists of images which may
“contain” the object in the sense that the object may
only be found as a scaled, rotated or ortho-projected
version of the query in the database. An invariant fea-
ture set is very important for this application.

2. Image registration [1], [26], [27], [28]: the database
consists ofK copies ofZ0 which are rotated, trans-
lated and possibly locally deformed. The indexing
finds the pose/orientation in the database closest to
that of the query. An invariant feature set is not desir-
able in this application. When the feature vectorZi

is defined as the set of pixel pair gray levels associ-
ated with each pair of imagesXi;X0 and the mutual
information criterion is applied to the pixel pair his-
togram one obtains an analog to the method of Viola
and Wells [1]. The mutual information (MI) criterion
is equivalent to the KL divergence between the joint
distribution of the pixel-pair gray levels and the prod-
uct of the marginal feature distributions.

3. Target detection [29], [30], [31]: the query is the dis-
tribution of the observations and the database is parti-
tioned into of a family of densitiesfi = f(Zj�i) part
of which corresponds to the “target-absent” hypothe-
sis and the rest to “target-present.” Target detection is
declared if the closest density in the database is in the
latter set.

As an illustrative example consider the case wheref0
and fi are multivariate Gaussian densities. The KL di-
vergence for such a Gaussian feature model was adopted
in [32], [3]. Let f0(x) = f(x;�0;�0) and f1(x) =
f(x;�1;�1) be d-dimensional Gaussian densities with
mean vectors�0; �1 and non-singular covariance matrices
�0;�1. For this model the un-normalized�-divergence
Du

�(f1kf0) = (1 � �)D�(f1kf0) of order� is given by
[33]

Du
�(f1kf0) = � 1

2
ln

j�0j�j�1j1��
j��0 + (1� �)�1j| {z }

Term A

(3)

+
�(1 � �)

2
��T (��0 + (1� �)�1)

�1��| {z }
Term B

where�� = �1 � �0 andjAj denotes the determinant of
square matrixA. The divergence consists of two termsA
andB. A is equal to zero when�0 = �1 andB is equal
to zero when�0 = �1. TermA is the log of the ratio of
the determinants of the geometric mean and the arithmetic
means of�1 and�0 with mean weights� and1��. Term
B is the quadratic difference of mean vectors normalized
by the arithmetic mean of�1 and�0 with mean weights�
and1� �.



B. Choice of�-parameter

The�-divergence is directly related to the exponential
rate of decay of the Bayes-optimal binary hypothesis test
between two densitiesf0 andf1 [33]. Specifically, given
an i.i.d. sampleZn = fZ1; : : : ; Zng, the Chernoff bound
asserts that the probability of errorPe(n) of the optimal
Bayes test ofH0: Zi has densityf0(z) vs. H1: Zi has
densityf1(z), then

lim inf
n!1

1

n
lnPe(n) = � sup

�2[0;1]
(1� �)D�(f1kf0): (4)

The quantity on the right in (4) is called theChernoff expo-
nentwhich is the asymptotically optimal rate of exponen-
tial decay of the error probability for testingH0 vsH1. For
indexing applications this relation suggests that the maxi-
mizing� in (4) is an optimal value, and using it makes the
�-divergence indexing measure the most relevant to fea-
ture classification. It can be shown that the maximizing
value approaches� = 1=2 whenf1 is close tof0 [33].

C. Entropy Index

An alternative index function is based on the so-called
Jensen entropy difference. This index function was in-
dependently proposed by Ma [23] and Heet al [24] for
image registration problems. It was proposed earlier by
Michel et al in [34] for classifying time frequency dis-
tribution images. Letf0 and f1 be two densities and
� 2 [0; 1] be a mixture parameter. The�-Jensen differ-
ence is the difference between the�-entropies of the mix-
turef = �f0+(1��)f1 and the mixture of the�-entropies
of f0 andf1 [7]:

4H�(�; f0; f1) = H�(�f0 + (1� �)f1) (5)

� [�H�(f0) + (1� �)H�(f1)] ;

where � 2 (0; 1). As the �-entropy H�(f) is
strictly concave inf Jensen’s inequality asserts that
4H�(�; f0; f1) � 0 with equality iff f0 = f1 (a.e).

The�-Jensen difference can be motivated as an index
function as follows. Assume that two sets of labeled fea-
ture vectorsZ0 = fZ0igi=1;:::;n0 andZ1 = fZ1igi=1;:::;n1
are extracted from imagesX0 andX1, respectively, and
assume that each of these sets consists of independent
realizations from densitiesf0 and f1. Define the union
Z = Z0 [ Z1 containingn = n0 + n1 unlabeled feature
vectors. Any consistent entropy estimator constructed on
the unlabeledZi’s will converge toH�(�f0 + (1 � �)f1)
asn!1 where� = limn!1 n0=n.

For some indexing problems the marginal entropies
fH�(fi)gKi=1 over the database are all identical so that the
indexing functionfH�(�f0+(1��)fi)gKi=1 is equivalent
to f4H�(�; f0; fi)gKi=1.

D. Comparisons of �-Jensen Difference and�-
Divergence

There are a number of interesting properties of
D�(f1kf0) and4H�(�; f0; f1) which are discussed in
[33]:

� For f1 close tof0 discrimination capability of the
�-divergenceD�(f1kf0) is locally independent of�
while that of the�-Jensen difference4H�(�; f0; f1)
depends on�.

� When� approaches 0, tail differences between the
two densitiesf0 andf1 become most influential.

� When � approaches 1, central differences between
the two densities become highly pronounced in
4H�(�; f0; f1). Therefore, if the feature densities
differ in regions where there is a lot of mass one
should choose� close to 1 to ensure locally optimum
discrimination using4H�(�; f0; f1).

� 4H�(�; f0; f1) has maximal discriminative capabil-
ity when� = 1

2 , i.e., when the two images yield the
same number of feature vectors.

III. E NTROPIC SPANNING GRAPHS

The aforementioned ideal indexing scheme is of course
unimplementable since one never knows the underlying
feature densities exactly. Implementation thus requires es-
timation of the entropy or divergence. Most current non-
parametric entropy and divergence estimation techniques
are based on estimation of the density function followed
by substitution of these estimates into the entropy or di-
vergence functionals (1) and (2). The reader is referred
to [15] for a comprehensive overview of previous work in
non-parametric estimation of Shannon entropy. The main
difficulties of non-parametric plug-in methods are due to
the infinite dimension of the spaces in which the uncon-
strained densities lie. Specifically: density estimator per-
formance is poor without stringent smoothness conditions;
no unbiased density estimators generally exist; density es-
timators have high variance and are sensitive to outliers;
the high dimensional integration required to evaluate the
entropy might be difficult.

The problems with plug-in methods can be summarized
by the basic observation: on the one hand parameteriz-



ing the scalar entropy functional with an infinite dimen-
sional density function is a costly over-parameterization,
while on the other hand artificially enforcing lower di-
mensional density parametrizations can produce signifi-
cant bias in the estimates. This observation has motivated
us to develop direct methods which accurately estimate
the entropy without the need for performing artificial low
dimensional parameterizations or non-parametric density
estimation [35], [36], [37]. These methods are based on
constructing minimal graphs spanning the feature vectors
in the feature space. The overall length of these mini-
mal graphs can be used to construct a strongly consistent
estimator of entropy for densities without singular (dirac
delta) components. In particular, letZn = fZ1; : : : ; Zng
and define

L(Zn) = min
e2T

X
e

jej
 ; (6)

the overall length of a graph spanningn i.i.d. vectorsZi

in IRd each with densityf . Here the power weighting

 2 (0; d) is real,e are edges in a graph connecting pairs of
Zi’s, jej denotes Euclidean (l2) norm of the edge, and the
minimization is over some suitable subsetsT , e.g. span-
ning trees, of the

�n
2

�
edges of the complete graph. Exam-

ples include the minimal spanning tree (MST), Steiner tree
(ST), minimal matching bipartite graph, traveling sales-
man problem (TSP). The asymptotic behavior ofL(Zn)
over random pointsZn has been studied for over half a
decade [38], [39].

In Figure 1 the MST is illustrated for two sets of ran-
domly generated points in the plane, one uniformly dis-
tributed (top row) and the other distributed with a more
concentrated separable triangular density. The MST is de-
fined as the minimum length graph spanning then points.
The MST lengthLn = L(Zn) is plotted as a function of
n in Figure 2 for the case of uniformly and non-uniformly
distributed points and for
 = 1. It is intuitive that the
length of the MST spanning the more concentrated non-
uniform set of points increases at a slower rate than does
the MST spanning the uniformly distributed points. This
fact motivated the application of the MST as a way to test
for randomness of a set of points [40]. What is more
surprising is that normalizing by

p
n and taking the log-

arithm of these length functions produces sequences that
converge (within a constant factor) to the�-entropies with
� = 1=2, as illustrated in the right panel of Figure 2. Fur-
thermore, by changing the value of
 in (6) one can change
the convergent limit to the�-entropy for� = (d � 
)=d,

 2 (0; d). Graphs for which the normalized log-length
converges (a.s.) within a constant to an�-entropy for some
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Fig. 1. Top row: A random set ofn = 100 uniformly distributed points in
[0; 1]2 and the MST spanning these points. Bottom row: A random set of
n = 100 points with separable triangular density and the MST spanning
these points.

� 2 (0; 1) will be calledentropic spanning graphs. In Fig-
ure 2 the upper and lower horizontal lines correspond to
known bounds [41] on�L;
 .
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Fig. 2. Length functionsLn of MST (left) and MST divided by
p
n (right) as

function ofn for the uniform and separable triangular distributed points in
Figure 1.

We showed [36] that when a graph is “quasi-additive”
[41] in d-dimensional feature space,d � 2, the graph is an
entropic spanning graph. Specifically:

Ĥ�(Zn) =
1

1� �
[lnL(Zn)=n

� � ln�L;
 ] (7)

is an asymptotically unbiased and almost surely consistent
estimator of the�-entropy off where� = (d� 
)=d and
�L;
 is a constant bias correction depending on the graph
minimization criterion, e.g. MST, ST or TSP, but inde-
pendent off . The estimatorĤ�(Zn) is also consistent



when the power exponent functionjej
 in (6) is replaced
by a positive functiong(jej) which locally behaves asjej

as jej ! 0 [39]. The fact that (7) holds for any quasi-
additive graph construction opens many different possi-
bilities for consistent graph-based entropy estimation al-
gorithms. However, among the currently known quasi-
additive algorithms the MST is the fastest (with polyno-
mial run time) and as such we have adopted it for all of the
entropy estimation applications discussed here.

As contrasted with density plug-in techniques, graph-
based entropy estimators enjoy the following properties:
they can have faster asymptotic convergence rates, espe-
cially for non-smooth densities and for low dimensional
feature spaces; they completely bypass the complication
of choosing and fine tuning parameters such as histogram
bin size, density kernel width, complexity, and adaptation
speed; the� parameter in the�-entropy function is varied
by varying the interpoint distance measure used to com-
pute the weight of the minimal graph. On the other hand,
the need for combinatorial optimization is a bottleneck for
large numbers of feature samples. This has motivated the
development of greedy minimal graph approximations that
preserve advantages such as robustness against outliers as
discussed below.

A. Extension to Divergence Estimation

We showed in [37] how an entropic spanning graph es-
timation procedure can be extended to information diver-
gence estimation by a method ofmeasure transformation.
Assume thatf0 dominatesf1 (a densityh dominates den-
sity g if wheneverh(z) = 0 theng(z) = 0) and rewrite
the divergence in (2) as

R
(f1(z)=f0(z))

� f0(z)dz. The
basic idea is to apply a transformation of coordinates to
the feature vectors which uniformizes the reference den-
sity f0. We illustrate the idea behind this technique for
scalarz. Assume thatZn aren i.i.d. data points gener-
ated from densityf1(z). Apply the coordinate transforma-
tion y = g(z) to each point inZn whereg is an invert-
ible function such thatdy = f0(z)dz. This produces a
new set of pointsYn in the transformed coordinates. By
standard Jacobian formulas for change of variable of in-
tegration, the divergence integral becomes

R
(h(y))� dy,

whereh(y) = f1(z)=[dy=dz] is the induced density of
Yn. Thus the lengthL(Yn) of the MST constructed on
the transformed random variablesYn can be used in place
of the lengthL(Zn) in (7) to give a consistent estimate of
the divergence (2) off1 relative to a known referencef0:

D̂�(f1kf0) = 1

1� �
[lnL(Yn)=n� � ln�L;
 ] : (8)
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Fig. 3. Top left: a sample from a separable triangular p.d.f. over the unit square.
Top right: a vector field indicating the action of the exact separable inverse
transformation of coordinates on each sample point in Top right. Bottom
left: same sample points as in Top left after applying transformation indi-
cated in Top right. Bottom right same as Bottom left except that estimated
transformation of coordinates was implemented using k-nearest-neighbor
density estimators for each of the marginals.

An example of this procedure is shown in Figure 3 for
a 2D separable triangular reference densityf0 over [0; 1]2

which in this case equals the actual marginal densityf1 of
the observed i.i.d. pointsZn. Thus for this example the
true divergence is zero. By triangular density we mean:
f0(z) = (2�4jz1� 1

2
j)(2�4jz2� 1

2
j), z = (z1; z2). A ran-

dom sample ofn = 100 points was generated fromf1. The
uniformizing transformation in this case is separable too,
with each component transformation equal to the marginal
cumulative density functionF (z) =

R z
0 (2�4jx� 1

2
j)dx of

the 1D triangular density. We investigated both exact uni-
formizing transformations and estimated transformations
using estimates of the one dimensional component den-
sity functions. The transformed sample is essentially uni-
form both for the exact and the estimated transformations.
Therefore, asn ! 1 it is expected thatL(Yn)=n� will
converge to�L;
 and the estimated divergence (8) will con-
verge to zero as desired.

B. Robustifying Entropic Spanning Graphs

In many practical problems occasional spurrious feature
vectors may appear due to noise, false alarms, or small
unimportant shifts and deformations during the image for-
mation process. In such situations we are interested in ro-



bust entropy or divergence estimators which are resistant
to these spurrious outliers. This problem is related to ro-
bust clustering for which it is common to adopt a finite
mixture model to capture the incidence of points arising
from different distributions [42]. For our case the appro-
priate mixture model is the so-called epsilon-contaminated
model [43]:

f(z) = (1� �)g(z) + �h(z); (9)

where� 2 [0; 1], h is an unwanted outlier density, andg
is the underlying density of interest. Whenn points are
realized from the model (9) an average ofk = (1� �)n of
these points follow the distributiong while the remaining
n�k = �n are outliers generated fromh. Therefore� cor-
responds to the proportion(n�k)=n of outliers one might
expect in a typical sample from densityf . It is assumed
that� is small but unknown. The target densityg is also as-
sumed unknown while the outlier densityh is known and
has the same support[0; 1]2 as that ofg.

Under the model (9) an outlier resistant entropic span-
ning graph was proposed in [36] which identifies and elim-
inates the outlier points. First, using the measure trans-
formation method discussed in the previous section, we
transform the coordinates of the sampleZn such thath(z)
is converted to a uniform distribution over[0; 1]d. This
transformed sample is denotedYn and follows a standard
mixture model (9) with uniform contaminating densityh.
Second, iterating overk = n; n� 1; : : :, we construct en-
tropic spanning graphs over each of the

�n
k

�
k-point subsets

Yn;k of Yn. For each valuek, there will be a graph of min-
imum length among these

�n
k

�
graphs. This minimal graph

spans a set of pointsY�n;k which are “maximally clustered”
among allk-point subsets. Then � k points eliminated
from the span of this minimal graph are thus identified as
outliers.

We illustrate this procedure in Figure 4 for 100 realiza-
tions from a mixture density with an annular component
g and a uniform componenth. Here� = 0:5 correspond-
ing to 50 realizations from each of the distributions. The
annular densityg has the form

g(z) = ce�
1

2
225(kz�[0:4;0:4]k�0:25)2

wherec is a normalizing constant andkzk2 = z21 + z22 is
the magnitude squared ofz = (z1; z2). The constant con-
tours of this density are circles for which the maximum
contour is a circle of radius0:25 and center[0:4; 0:4] and
the other contours specify an annulus. Our objective is
estimate the�-entropy of the annular densityg from the
100 realizations fromf . For this purpose we adopted the

k-point MST (k-MST) as our entropic spanning graph al-
gorithm. In terms of estimating this entropy, the standard
MST (spanning all 100 points) is extremely sensitive to
the 50 outliers which dominate the MST length function.
Hence thek-MST is implemented to isolate the points
from g from the outliers. The four panels in Figure 4 il-
lustrate thek-MST for several values ofk. It is evident
from the figure that as the number of points eliminated by
thek-MST increases from1 to 2 to 38 thek-MST rejects
an increasing number of outliers from the contaminating
density. Indeed for the case ofk = 62 (38 outliers re-
jected) thek-MST appears to have almost completely re-
covered the MST for the annular distributionf1. However,
as the number of rejected points increases beyond38 to 75
thek-MST begins eliminating points which come from the
desired annular distribution. The key to a practicalk-MST
robustification algorithm will be accurate detection of the
correct number of points to reject.
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Fig. 4. k-MST for 100 points realized from an�-mixture of 2D annulus densityg
and a uniform outlier densityh (� = 1=2). Points arising from the annulus
density tend to cluster in a ring while uniform points are more widely dis-
persed over the unit square. Initially, as the number of points included in the
k-MST graph decreases a greater and greater number of outlier points are
rejected. Whenk = 62 (38 rejected points) thek-MST graph has sucess-
fully clustered the annular points recovering the ring Gestalt.

As the numberk of points retained increases, the se-
quence of MST lengthsL(Y�n;n); L(Y�n;n�1); : : : ; L(Y�n;k)
is monotone increasing and evolves a curve overk. As k
approachesn the curve can be expected to increase more
rapidly as more of the isolated “outlier” points are succes-
sively included in the MST. As these points will tend to
come from the uniform distribution the average rate of in-
crease for largek is constant. We would like to selectk in
thek-MST so to eliminate as many of the uniform outlier



points while eliminating as few of the other points from
densityg as possible. If the parameter� were known a
valuek � �n could be chosena priori. Otherwise, ak
stopping rule can be implemented which is based on de-
tecting the knee in the curveL(Y�n;k). Figure 5 shows this
curve for the example shown in Figure 4. The knee de-
tection algorithm is motivated as follows. Ask decreases
from n to 1 more and more points are pruned from the
k-MST. When the number of points retained falls below a
critical threshold, points from the more concentratedg dis-
tribution start to be eliminated and the slope of the curve
abruptly decreases.
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Fig. 5. Left: k-MST curve for 2D annulus density with addition of uniform
“outliers” has a knee in the vicinity ofk = 68. This knee can be detected
using residual analysis from a linear regression line fitted to the left-most
part of the curve. Right: error residual of linear regression line.

Once the kneek has been identified the lengthL(Y�n;k0)
can be used for robust estimation of the�-entropy of order
�, where as usual� = (d � 
)=d 2 (0; 1) is specified by
the dimensiond � 2 and the weight exponent
 2 (0; d).
In [36] we established a.s. convergence of this estimate
when a greedy approximation tok-point minimal entropic
graph is implemented. The Huber-Hampel influence func-
tion of this robust procedure was also investigated in [36].

C. Computational Issues

The computational complexity of minimal graph algo-
rithms depends on the implementation but is generally su-
perlinear in the numbern of vertices [44]. Minimal span-
ning trees and k-means algorithms are of lowest complex-
itity (complexityO(n2 logn) or less) among the many en-
tropic spanning graph algorithms one might consider. We
have implemented both sequential single-processor MST’s
and parallel multi-processor MST’s. While our experi-
ence has been limited to parallelization over (TCP/IP) net-
worked workstations, we have found that parallel MST im-
plementations, such as that proposed in [45], are stymied
by high interprocessor communications overhead. There
are principally two sequential implementations of the
MST: Kruskal’s “growing a forest of trees” algorithm [46]
and Prim’s “growing a single tree” algorithm [47]. Both

algorithms are greedy and sucessively add a single edge to
the graph until all points are spanned without any cycles.
Using general-purpose versions of these MST algorithms
computation time becomes prohibitive for more than a few
thousand points. An accelerated kruskal-type of MST al-
gorithm, only applicable to Euclidean vertices, has been
developed by us [48] which can compute the MST for over
a hundred thousand points in a few seconds (C code run-
ning on a 900MHz PC under Linux).

The k-MST discussed in Section III-B arises in many
combinatorial optimization problems, see references in
[36] for a partial list. Its computational complexity is ex-
ponential which necessitates implementation of approxi-
mate schemes [49], [50], [51]. The greedy approxima-
tion used in [36] involves the partitioning heuristic used
by [51]: dissect the support of the densityf , assumed to
be [0; 1]d, into a set ofmd cells of equal volumes1=md;
rank the cells in increasing order of numbers of points con-
tained; starting with the highest ranked cell and continuing
down the list compute the minimal spanning graphs in each
cell until at leastk points are covered. Stitching together
these small graphs gives a graph which is an approxima-
tion to thek-minimal graph. The computational advan-
tage of the greedy algorithm comes from its divide-and-
conquer multi-resolution structure: it only requires solv-
ing the difficult non-linear minimal graph construction on
cells containing smaller numbers of points. Whenk = n
this greedy approximation reduces to a partitioning ap-
proximation to the full minimal graph spanning all of the
n points. By selecting the “progressive-resolution param-
eter” m as a functionm(n) of n we obtain an adaptive
multi-resolution approximation to thek-MST.

IV. A PPLICATIONS

We have implemented entropic spanning graph estima-
tors in several application areas including: image registra-
tion of ultrasound scans [28], extraction of time-frequency
skeletons from the time-frequency plane [52], robust clus-
tering [35], pattern classification [37], and geo-registration
[22]. Due to space limitations we only discuss two of these
applications here.

A. Robust Clustering and Classification

Here we apply thek-MST to robustly cluster and clas-
sify a triangular vs. uniform density. 256 samples were
simulated from a uniform-triangular mixture densityf =
(1��)g+�h whereg = 1 is a uniform density andh is the
separable triangular shaped product density, introduced in



Section III-A, both supported on the unit square. Note that,
unlike the previous annular-uniform mixture example, the
“outlier” distribution h has lower entropy than the target
distribution g which makes the problem of clustering the
realizations fromg more challenging.

The�-divergenceD�(f; h) was estimated bŷH�(Yn)
for � = 1

2
(
 = 1) using the MST estimator.Yn was

obtained by applying the “uniformizing” coordinate trans-
formation toZn used in Section III-A. In a first sequence
of experiments the estimatêH�(Yn) was thresholded to
decide between the hypothesesH0 : � = 0 vs.H1 : � 6= 0.
Simulations were performed to generate the receiver oper-
ating characteristic (ROC) curves indicated in Figure 6 for
various values of�. Note that, as expected, in each case the
detection performance improves as the difference, indexed
by �, between the assumedH0 andH1 densities increases.

In a second sequence of experiments we selected two
realizations of the triangular-uniform mixture model for
the value� = 0:1. The k-MST procedure (k = 90)
was implemented onYn as a robust algorithm to clus-
ter data points from the uniform density. The cluster of
points are defined as those points connected by thek-
MST graph. Thek-MST length can thus be used as a ro-
bust estimatêH�(Yn;k) of the uncontaminated divergence
D�(g; h). Figure 7 illustrates the effectiveness of this clus-
tering method: within the cluster defined by the vertices of
thek-MST the proportion of contaminating points fromh
has dropped from the original 10% to less than 4%.
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Fig. 6. Left: a scatterplot of a 256 point sample from the uniform-triangular
mixture density with� = 0:1. Labels ’o’ and ’*’ mark those realizations
from the uniform and triangular densities, respectively. Right: ROC curves
for the�-divergence test for detecting the uniform-triangular mixture den-
sityf = (1��)g+�h (H1) against the triangular hypothesisf = h (H0).
Curves are increasing in� over the range� 2 f0:1; 0:3; 0:5; 0:7; 0:9g.

B. Geo-Registration Application

Multisensor image registration problems can be cast as
specific cases of a more general sensor registration prob-
lem in which the imaging sensors jointly observe 2D pro-
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Fig. 7. Left: the scatterplot of Figure 6 after applying the uniformizing coordi-
nate transformation. Labels ’o’ and ’*’ mark the transformed realizations
from the uniform and triangular densities, respectively. Superimposed is
thek-MST implemented on the transformed scatterplotYn with k = 230.
Right: same as at left except displayed in the original data domain.

jections of a common 3D object. The challenges presented
in multisensor image registration are severalfold. Dif-
ferences between sensor viewpoints and imaging modal-
ity can cause unknown relative geometric distortions and
missing pixels between image pairs. Differences in illu-
mination and environmental conditions introduce further
complications. Existence of such differences between im-
ages to be registered requires that the registration algo-
rithms be robust to noise and other small pertubations in
intensity values.

One approach to solving the multisensor image reg-
istration problem is to first geo-register the images to a
common terrain model and then to refine the registration
by working with the geo-registered images. In this geo-
registration application, a digital elevation model (DEM)
of a terrain patch (terrain height map) plays the role of the
image database and the image indexing problem is that of
selecting the sensor and environmental parameters (point-
ing angle, latitude and longitude, sun-angle, etc.) that yield
the best match between the reference sensor image and a
modeled or rendered version of the DEM2. Database im-
ages are generated from the DEM by rendering a sensor’s
view of the model at a variety of look angles and possibly
under different illumination conditions.

Figure 8 shows an edge map extracted from a optical
view of a terrain map (DEM) at viewing angle (290, -20,
130) as well as the edge map extracted from a reference
EO image that is to be geo-registered. Clearly, they are
misaligned.

For matching criterion we implemented the�-Jensen
difference applied to grey level features extracted from
2DEM stores the terrain height information in a three dimensional array where

each element of the array consists of the locations (x and y coordinates) and the
height of the terrain at that location.
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Fig. 8. Misaligned EO and reference images

the reference images and candidate EO images derived
from the DEM database. The parameter� was chosen
arbitrarily as0:5, corresponding to a MST construction
minimizing the Euclidean norm in (6) without any power
weighting (
 = 1). For illustration purposes we selected
a very simple set of features via stratified sampling of
the grey levels with centroid refinements. This sampling
method produces a set ofn three dimensional feature vec-
tors Zi = (xi; yi; F (xi; yi)) whereF (x; y) is a sample
of the grey level at planar positionx; y and wheren is
fixed in advance. The pointsf(xi; yi)gni=1 approximate
the centroids of Voronoi cells andfF (xi; yi)gni=1 corre-
spond to the set ofn samples of the image from which we
could reconstruct the original image with minimum mean
square error. For more details see [23]. When the union
of features from reference and target images are rendered
as points in three dimensions we obtain a point cloud of
features over which the MST can be constructed and the
Jensen difference estimated. Sincen1 = n0 = n we have
used� = 1=2 in the Jensen difference (5). One issue that
we have not addressed here is the validity of the i.i.d. as-
sumption on the feature vector setZn acquired for this ex-
ample. We believe that this is a good approximation for
our choice of spatially distinct features but this question
deserves further investigation.

Figure 9 illustrates the MST-based registration proce-
dure over the union of the reference and candidate image
features for misaligned images, while Figure 10 shows the
same for aligned images. From Figures 9(a) and 10(a) we
see that for misaligned images, the representation points
“x” and “o” are at larger distances, giving corresponding
larger MST weight, than those for aligned images.

We repeat this MST construction process over the union
of reference features and features derived from each of the
images in the DEM database. The MST length can then be
plotted as a scatterplot as in Figure 11. The minimum MST
length indicates the best matching of the EO image and the

reference image, which corresponds to the registered pair.
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Fig. 9. MST demonstration for misaligned images
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Fig. 10. MST demonstration for aligned images. “x” denotes reference while
“o” denotes a candidate image in the DEM database.

V. CONCLUSION

In this paper we have discussed theory and application
of entropic spanning graphs for clustering, imaging, and
entropy estimation problems. There are many open prob-
lems in this area that must be addressed. The entropic
spanning graph is not a consistent estimator of entropy
when the underlying density has discrete components, i.e.
f contains dirac delta functions. While bounds on con-
vergence rates of these estimators are available a complete
comparison of plug-in versus entropic spanning graph es-
timators of entropy has yet to be performed. Despite the
many open problems, entropic spanning graph methods are
very promising due to their simplicity relative to other non-
parametric parametric techniques for clustering and fea-
ture classification.
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