
UC Davis
UC Davis Previously Published Works

Title
I Am a Scientist, Not a Philosopher!

Permalink
https://escholarship.org/uc/item/05t5x6mq

Journal
IEEE Security & Privacy, 5(4)

ISSN
1540-7993

Authors
Peisert, Sean
Bishop, Matt

Publication Date
2007-07-01

DOI
10.1109/MSP.2007.84

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/05t5x6mq
https://escholarship.org
http://www.cdlib.org/

Education
Editors: Matt Bishop, bishop@cs.ucdavis.edu
Deborah A. Frincke, deborah.frincke@pnl.gov

published in peer-reviewed journals
and conference proceedings. Com-
puter security is both an art and a sci-
ence,1 but researchers frequently fail
to follow the scientific method to
support the claims they make in sci-
entific, peer-reviewed papers.

Some computer security research
is highly mathematical and can be
proven formally without experi-
mentation. But formal proofs de-
pend on correct implementation of
theory and also assume that the
foundational work that they treat as
axiomatic has also been proven cor-
rect. This is often an unsafe assump-
tion. To ultimately demonstrate a
useful, scientific contribution, most
of the work being done today (in-
cluding much of the mathematical
and theoretical work) must therefore
prove to work in practice. To evalu-
ate anything we can’t prove by using
pure mathematics or logical syllo-
gism, we must test hypotheses by
performing controlled experiments
to generate measurable, empirical
data. But today’s computer security
researchers often claim “proof” with-
out following this approach.

Failure to follow the scientific
method rigorously can create
problems. It has become common
practice to make claims about a re-
searcher’s technique, develop soft-
ware, and sell products, so that the

lay public quickly buys into a solu-
tion that’s never been scientifically
justified. When a security breach
eventually occurs, it calls the entire
field of computer security into ques-
tion because the public can’t distin-
guish between valid methods and
those that have yet to be proven.

In previous work, we discussed a
process for applying the classical sci-
entific method to computer security
experiments.2 The key qualities we
discussed were the ability to falsify a
hypothesis (falsification), measure
and observe data (measurability), re-
peat controlled experiments, and re-
produce results (reproducibility). This
article presents a method for scien-
tific experimentation when others
aren’t appropriate or can’t be readily
applied. Our goal is to further moti-
vate researchers to apply science to
experiments and, in concert with
our earlier work, offer a new tech-
nique for doing so.

One reason
people don’t follow
the scientific method
One of the principal challenges in
security experiments is the limited
quality and availability of data sets
against which to test. New solutions
sometimes have access to well-
defined, highly regarded data sets

they can use to compare current and
previous results. More often,
though, researchers must not only
develop their own techniques but
also their own data, procedures to
follow, and metrics to measure.

One reason that existing data sets
are sometimes poorly designed is that
the conditions they test aren’t well
defined. Claims that arise from re-
sulting experiments are therefore im-
precise or overstated. For example, if
we run an experiment using a partic-
ular tool on a particular data set and
make a claim about the results and
the tool’s effectiveness or efficiency
in comparison to existing tools, sev-
eral questions arise: How well does
that particular data set reflect the sce-
narios the new tool will face when
deployed in practice? How general is
the data, and thus, how broad can our
claims be and still be considered valid
and appropriate? Even with a good
data set, the question is whether
claims are based on the results of all
experiments or on the results of fa-
vorably chosen examples that are ac-
tually a small, unrepresentative subset
of all results (sometimes known as the
Potemkin village model or, as we
prefer, the Rock Ridge model3).
Such situations frequently arise, sug-
gesting more ambiguous conclu-
sions. Indeed, a particular technique
might actually be better than others
under certain conditions, and that
knowledge could be scientifically
and practically useful. Choosing fa-
vorable experiments and data just
makes it harder to identify the condi-
tions in which the technique is truly
useful because the difficulty in repli-
cating the experiments inhibits other
researchers’ ability to extend and en-
hance the techniques.

SEAN PEISERT

University of
California,
San Diego

MATT BISHOP

University of
California,
Davis

W
e no longer live in the era of Aristotelian

philosophers or alchemists attempting to

turn lead into gold. Yet, you might be for-

given for thinking we were, after observing

many computer security researchers’ claims—even in papers

I Am a Scientist,
Not a Philosopher!

48 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/07/$25.00 © 2007 IEEE ■ IEEE SECURITY & PRIVACY

Education

Consider the problem of measur-
ing effectiveness in intrusion detec-
tion. A large number of papers have
been published—and continue to be
published—that use the controversial
Lincoln Labs network intrusion de-
tection data sets (www.ll.mit.edu/
IST/ideval/data/data_index.html)
in evaluating their own techniques,
despite the problems known in doing
so.4 (For more information on Lin-
coln Labs’ intrusion-detection data,
see Basic Training on p. 65.) Un-
fortunately, creating new data sets
is challenging, and getting them
widely adopted (to facilitate direct
comparisons among methods) is per-
haps even harder. Furthermore, even
researchers who create their own
data sets often run their experiments
under variable conditions, such that
even if they properly captured the
data set, no one could reproduce the
experiment to validate it.

Of course, conducting falsifiable,
controlled, and reproducible experi-
ments by applying the classical scien-
tific method to computer security
isn’t always possible. We now discuss
a new approach for experiments.

Our idea for
designing experiments
In our own work with computer
forensics, we’ve discovered that there
isn’t even a forensic equivalent to the
Lincoln Labs data sets to compare
our techniques against. Of course,
even if there were, who would want
to use it? In forensics—which at-
tempts to answer such questions as
how an intrusion occurred and what
happened during it—a measure of
effectiveness would probably be
based largely on experiments with
humans, and, as far as we’re aware,
no such previous, standardized ex-
periments against which to compare
have been published.

In some cases, there simply isn’t a
good way to use syllogism, or compar-
isons with existing data sets, and there’s
no practical way to conduct exhaustive
experiments using human subjects.
An alternative method is needed.

We’ve previously used a meth-
od5,6 in which we chose a set of ex-
periments because they covered all
classes of two flaw domains, as enu-
merated in the seminal Research
into Secure Operating Systems
(RISOS) and Protection Analysis
(PA) reports,7,8 which are generally
accepted as complete. (Note: when
referring to the classes enumerated
in the PA report, we use the revised
hierarchy described by Peter Neu-
mann.9) In forensics, a large enough
collection of examples with overlap-
ping coverage of the flaw domains
might be sufficient to let investiga-
tors analyze any attack in the same
flaw domains as the specified attacks.
We suspect that this technique will
be generalizable to fields in com-
puter security other than forensics.
Therefore, experiments based on
well-accepted flaw classifications,
used to evaluate model implementa-
tions, should be effective for most of
the situations these flaw domains
cover. Of course, our own assertion
must be validated! To test this
method, we must observe how it
works in reality.

Consider the following list of
RISOS flaw domains:

1. Incomplete parameter validation
2. Inconsistent parameter validation
3. Implicit sharing of privileged or

confidential data
4. Asynchronous validation or in-

adequate serialization
5. Inadequate identification, au-

thorization, or authentication

6. Violable prohibition/limit
7. Exploitable logic error

Now, consider the following list of

PA flaw domains:

1a. Improper choice of initial
protection domain

1b. Improper isolation of im-
plementation detail (ex-
posed representations)

1c. Improper change (data con-
sistency over time)

1d. Improper naming
1e. Improper deallocation or

deletion (residuals)
2. Improper validation (of

operands and queue-
management dependencies)

3a/b. Improper synchronization
(indivisibility and sequencing)

4. Improper choice of operand
or operation (critical opera-
tion selection errors)

Now consider the 1988 Internet
worm, which exploited a buffer-
overflow vulnerability in fingerd
and several problems with other
Unix programs, including send-
mail, to break into systems. The at-
tack didn’t damage the software on
the systems, nor did the worm at-
tempt to gain root access, but it did
cause denial-of-service attacks by at-
tempting to propagate to as many
machines as possible from those it
had infected. The worm’s ultimate
goal was to spread.10

Because it involved several dis-
tinct attacks, the worm also crossed
multiple flaw classifications:

• cracking encrypted passwords
from /etc/passwd by running

significantly enhanced version of
crypt (violates RISOS 3, RISOS
7, PA 1a, and PA 1b);

• bug allowing a buffer overflow of

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 49

In some cases, there simply isn’t a good way to

use syllogism, or comparisons with existing

data sets, and no practical way to conduct

exhaustive experiments using human subjects.

Education

the fingerd daemon (RISOS 1,
RISOS 6, and PA 2);

• bug involving improper checking
of arguments in sendmail

(RISOS 2 and PA 4); and
• vulnerability improper trust of

hosts rsh and accounts rexec
(RISOS 5, PA 1a, and PA 2).

Furthermore, the worm used several
techniques, such as renaming itself
and removing its command-line
arguments after execution, which
were defenses for itself rather than
explicit attacks. We can categorize
these actions under RISOS 7 (ex-
ploitable logic error), PA 1c (im-
proper change), PA 1d (improper
naming), and PA 1e (improper deal-
location or deletion).

After this analysis and categoriza-
tion, we can compare the results
against another attack that exploits
the same flaw class. In our forensic
analysis work, we discovered this to
be a highly useful technique. Table 1
lists the set of exploits we used to test
our techniques6 along with the flaw
domains that each covers.

Using this grid and the experi-
mental results, we could forensically
observe and analyze attacks that ex-
ploited a subset of the flaws (for ex-
ample, the simple buffer overflow)
from another attack (for example,

the 1988 Internet worm). To do so,
we recorded the forensic informa-
tion demanded by the attack that ex-
ploits more flaws. Our experience
also extended to all other equivalent
flaws and subsets of other flaws in the
attack examples that we analyzed.

This method doesn’t obviate the
need to apply the scientific method,
nor does it allow researchers to by-
pass good scientific practice. Many
more tests are needed to verify this
method of scientific experimenta-
tion. Furthermore, the method’s
success might also vary highly with
the flaw classes’ quality, the number
of experiments performed, and the
flaw-class coverage achieved. In the
interim, this method appears valu-
able and deserves further experi-
mentation and analysis.

C omputer security experiments
must ultimately use the scienti-

fic method, including well-defined,
highly regarded data sets, to compare
new and existing results. But our ini-
tial results suggest that computer se-
curity experimentation based on
sufficient coverage of classes of flaw
classifications shows promise. Ulti-
mately, of course, our methods must
also prove to be effective using one
of the two classical methods—

experimental validation with well-
accepted data sets or formal proof—
and we intend to perform such
experiments in the future. The result
could help more computer security
researchers produce and present sci-
entifically valid data. It might even
help to bring computer security re-
search on par with animating the
dead, and thus satisfy the rantings of
a certain fictional scientist, who
protested: “I am a scientist, not a
philosopher!”11

References
1. M. Bishop, Computer Security: Art

and Science, Addison-Wesley Pro-
fessional, 2002.

2. S. Peisert and M. Bishop, “How to
Design Computer Security Exper-
iments,” Proc. 5th World Conf. Infor-
mation Security Education (WISE),
Springer, 2007, pp. 141–148.

3. M. Brooks, Blazing Saddles, Warner
Brothers, 1974.

4. J. McHugh, “Testing Intrusion
Detection Systems: A Critique of
the 1998 and 1999 DARPA Intru-
sion Detection System Evaluations
as Performed by the Lincoln Lab-
oratory,” ACM Trans. Information
and System Security (TISSEC), vol.
3, no. 4, 2000, pp. 262–294.

5. S. Peisert et al., “Analysis of Com-
puter Intrusions Using Sequences

50 IEEE SECURITY & PRIVACY ■ JULY/AUGUST 2007

EXPLOIT PROTECTION ANALYSIS RESEARCH INTO SECURE OPERATING
(PA) FLAW DOMAINS SYSTEMS (RISOS) FLAW DOMAINS

1A 1B 1C 1D 1E 2 3A/B 4 1 2 3 4 5 6 7

Buffer overflow x x x x x x

Spyware x x

Ignoring permissions x x x x

Authentication x x x

Trojan horse x x

Bypassing interfaces x x x x

Parameter validation x x

Land attack x x x x

Shared memory injection x x x x x x

1988 Internet worm x x x x x x x x x x x x x

Christma exec worm x x x

Network file system (NFS) exploits x x x x x x x

Table 1. Exploits and corresponding flaw domains.

Education

of Function Calls,” IEEE Trans.
Dependable and Secure Computing
(TDSC), vol. 4, no. 2, 2007, pp.
137–150.

6. S.P. Peisert, A Model of Forensic
Analysis Using Goal-Oriented Log-
ging, PhD dissertation, Univ. of
California, San Diego, Dept. of
Computer Science and Eng., Mar.
2007.

7. R.P. Abbott et al., Security Analysis
and Enhancements of Computer Oper-
ating Systems (RISOS), tech. report,
Lawrence Livermore Laboratory,
Apr. 1976.

8. R. Bisbey and D. Hollingworth,
Protection Analysis: Final Report
(PA), tech. report, Information Sci-
ences Inst., May 1978.

9. P. Neumann, “Computer Security
Evaluation,” Proc. 1978 Nat’l Com-
puter Conf., Am. Federation of
Information Processing Societies,
vol. 47, 1978, pp. 1087–1095.

10. D. Seeley, “A Tour of the Worm,”
Proc. Winter 1989 Usenix Conf.,
Usenix Assoc., 1989, pp. 287–304.

11. M. Brooks, Young Frankenstein,
Crossbow Productions, 1974.

Sean Peisert is a postdoctoral scholar in
the Department of Computer Science and
Engineering at the University of Califor-
nia, San Diego (UCSD). His research inter-
ests include computer forensic analysis,
intrusion detection, vulnerabilities analy-
sis, security policy modeling, and elec-
tronic voting. Peisert has a PhD in
computer science from UCSD. He is a fel-
low of the San Diego Supercomputer Cen-
ter. Contact him at peisert@cs.ucsd.edu.

Matt Bishop is a professor in the Depart-
ment of Computer Science at the Univer-
sity of California, Davis, and a codirector
of the Computer Security Laboratory
there. His research interests include vul-
nerabilities analysis, the design of secure
systems and software, network security,
formal models of access control, and
intrusion detection. He is the author of
Computer Security: Art and Science
(Addison-Wesley, 2002). Contact him at
bishop@cs.ucdavis.edu.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 51

EXECUTIVE COMMITTEE

President: Michael R. Williams*
President-Elect: Rangachar Kasturi;* Past

President: Deborah M. Cooper;* VP,
Conferences and Tutorials: Susan K.
(Kathy) Land (1ST VP);* VP, Electronic
Products and Services: Sorel Reisman
(2ND VP);* VP, Chapters Activities:
Antonio Doria;* VP, Educational Activi-
ties: Stephen B. Seidman;† VP, Publica-
tions: Jon G. Rokne;† VP, Standards
Activities: John Walz;† VP, Technical
Activities: Stephanie M. White;* Secre-
tary: Christina M. Schober;* Treasurer:
Michel Israel;† 2006–2007 IEEE Division V
Director: Oscar N. Garcia;† 2007–2008
IEEE Division VIII Director: Thomas W.
Williams;† 2007 IEEE Division V Director-
Elect: Deborah M. Cooper;* Computer
Editor in Chief: Carl K. Chang;† Execu-
tive Director: Angela R. Burgess†

* voting member of the Board of Governors
† nonvoting member of the Board of Governors

BOARD OF GOVERNORS

Term Expiring 2007: Jean M. Bacon,
George V. Cybenko, Antonio Doria,
Richard A. Kemmerer, Itaru Mimura, Brian
M. O’Connell, Christina M. Schober

Term Expiring 2008: Richard H. Eckhouse,
James D. Isaak, James W. Moore, Gary
McGraw, Robert H. Sloan, Makoto Takiza-
wa, Stephanie M. White

Term Expiring 2009: Van L. Eden, Robert
Dupuis, Frank E. Ferrante, Roger U. Fujii,
Ann Q. Gates, Juan E. Gilbert, Don F.
Shafer

Next Board Meeting:
9 Nov. 2007, Cancún, Mexico

EXECUTIVE STAFF

Executive Director: Angela R. Burgess;
Associate Executive Director: Anne Marie
Kelly; Associate Publisher: Dick Price;
Director, Administration: Violet S. Doan;
Director, Finance and Accounting:
John Miller

COMPUTER SOCIETY OFFICES
Washington Office. 1730 Massachusetts Ave.

NW, Washington, DC 20036-1992
Phone: +1 202 371 0101
Fax: +1 202 728 9614
Email: hq.ofc@computer.org

Los Alamitos Office. 10662 Los Vaqueros
Circle, Los Alamitos, CA 90720-1314
Phone: +1 714 821 8380
Email: help@computer.org
Membership and Publication Orders:
Phone: +1 800 272 6657
Fax: +1 714 821 4641
Email: help@computer.org

Asia/Pacific Office. Watanabe Building, 1-4-2
Minami-Aoyama, Minato-ku,
Tokyo 107-0062, Japan
Phone: +81 3 3408 3118
Fax: +81 3 3408 3553
Email: tokyo.ofc@computer.org

IEEE OFFICERS

President: Leah H. Jamieson; President-
Elect: Lewis Terman; Past President:
Michael R. Lightner; Executive Director
& COO: Jeffry W. Raynes; Secretary: Celia
Desmond; Treasurer: David Green; VP,
Educational Activities: Moshe Kam; VP,
Publication Services and Products: John
Baillieul; VP, Regional Activities: Pedro
Ray; President, Standards Association:
George W. Arnold; VP, Technical
Activities: Peter Staecker; IEEE Division V
Director: Oscar N. Garcia; IEEE Division
VIII Director: Thomas W. Williams;
President, IEEE-USA: John W. Meredith,
P.E.

PURPOSE: The IEEE Computer Society is the world’s largest association of computing
professionals and is the leading provider of technical information in the field.

MEMBERSHIP: Members receive the monthly magazine Computer, discounts, and
opportunities to serve (all activities are led by volunteer members). Membership is
open to all IEEE members, affiliate society members, and others interested in the
computer field.

COMPUTER SOCIETY WEB SITE: www.computer.org
OMBUDSMAN: Call the IEEE Member Services toll-free number, +1 800 678 4333 (US) or

+1 732 981 0060 (international), or email help@computer.org.

revised 25 June 2007

Interested in writing for this

department? Please contact editors

Matt Bishop (bishop@cs.ucdavis.

edu) and Deborah A. Frincke

(deborah.frincke@pnl.gov).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

