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published in peer-reviewed journals
and conference proceedings. Com-
puter security is both an art and a sci-
ence,1 but researchers frequently fail
to follow the scientific method to
support the claims they make in sci-
entific, peer-reviewed papers.

Some computer security research
is highly mathematical and can be
proven formally without experi-
mentation. But formal proofs de-
pend on correct implementation of
theory and also assume that the
foundational work that they treat as
axiomatic has also been proven cor-
rect. This is often an unsafe assump-
tion. To ultimately demonstrate a
useful, scientific contribution, most
of the work being done today (in-
cluding much of the mathematical
and theoretical work) must therefore
prove to work in practice. To evalu-
ate anything we can’t prove by using
pure mathematics or logical syllo-
gism, we must test hypotheses by
performing controlled experiments
to generate measurable, empirical
data. But today’s computer security
researchers often claim “proof” with-
out following this approach.

Failure to follow the scientific
method rigorously can create
problems. It has become common
practice to make claims about a re-
searcher’s technique, develop soft-
ware, and sell products, so that the

lay public quickly buys into a solu-
tion that’s never been scientifically
justified. When a security breach
eventually occurs, it calls the entire
field of computer security into ques-
tion because the public can’t distin-
guish between valid methods and
those that have yet to be proven.

In previous work, we discussed a
process for applying the classical sci-
entific method to computer security
experiments.2 The key qualities we
discussed were the ability to falsify a
hypothesis ( falsification), measure
and observe data (measurability), re-
peat controlled experiments, and re-
produce results (reproducibility). This
article presents a method for scien-
tific experimentation when others
aren’t appropriate or can’t be readily
applied. Our goal is to further moti-
vate researchers to apply science to
experiments and, in concert with
our earlier work, offer a new tech-
nique for doing so.

One reason
people don’t follow
the scientific method
One of the principal challenges in
security experiments is the limited
quality and availability of data sets
against which to test. New solutions
sometimes have access to well-
defined, highly regarded data sets

they can use to compare current and
previous results. More often,
though, researchers must not only
develop their own techniques but
also their own data, procedures to
follow, and metrics to measure.

One reason that existing data sets
are sometimes poorly designed is that
the conditions they test aren’t well
defined. Claims that arise from re-
sulting experiments are therefore im-
precise or overstated. For example, if
we run an experiment using a partic-
ular tool on a particular data set and
make a claim about the results and
the tool’s effectiveness or efficiency
in comparison to existing tools, sev-
eral questions arise: How well does
that particular data set reflect the sce-
narios the new tool will face when
deployed in practice? How general is
the data, and thus, how broad can our
claims be and still be considered valid
and appropriate? Even with a good
data set, the question is whether
claims are based on the results of all
experiments or on the results of fa-
vorably chosen examples that are ac-
tually a small, unrepresentative subset
of all results (sometimes known as the
Potemkin village model or, as we
prefer, the Rock Ridge model3).
Such situations frequently arise, sug-
gesting more ambiguous conclu-
sions. Indeed, a particular technique
might actually be better than others
under certain conditions, and that
knowledge could be scientifically
and practically useful. Choosing fa-
vorable experiments and data just
makes it harder to identify the condi-
tions in which the technique is truly
useful because the difficulty in repli-
cating the experiments inhibits other
researchers’ ability to extend and en-
hance the techniques.
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Consider the problem of measur-
ing effectiveness in intrusion detec-
tion. A large number of papers have
been published—and continue to be
published—that use the controversial
Lincoln Labs network intrusion de-
tection data sets (www.ll.mit.edu/
IST/ideval/data/data_index.html)
in evaluating their own techniques,
despite the problems known in doing
so.4 (For more information on Lin-
coln Labs’ intrusion-detection data,
see Basic Training on p. 65.) Un-
fortunately, creating new data sets
is challenging, and getting them
widely adopted (to facilitate direct
comparisons among methods) is per-
haps even harder. Furthermore, even
researchers who create their own
data sets often run their experiments
under variable conditions, such that
even if they properly captured the
data set, no one could reproduce the
experiment to validate it.

Of course, conducting falsifiable,
controlled, and reproducible experi-
ments by applying the classical scien-
tific method to computer security
isn’t always possible. We now discuss
a new approach for experiments.

Our idea for
designing experiments
In our own work with computer
forensics, we’ve discovered that there
isn’t even a forensic equivalent to the
Lincoln Labs data sets to compare
our techniques against. Of course,
even if there were, who would want
to use it? In forensics—which at-
tempts to answer such questions as
how an intrusion occurred and what
happened during it—a measure of
effectiveness would probably be
based largely on experiments with
humans, and, as far as we’re aware,
no such previous, standardized ex-
periments against which to compare
have been published.

In some cases, there simply isn’t a
good way to use syllogism, or compar-
isons with existing data sets, and there’s
no practical way to conduct exhaustive
experiments using human subjects.
An alternative method is needed.

We’ve previously used a meth-
od5,6 in which we chose a set of ex-
periments because they covered all
classes of two flaw domains, as enu-
merated in the seminal Research
into Secure Operating Systems
(RISOS) and Protection Analysis
(PA) reports,7,8 which are generally
accepted as complete. (Note: when
referring to the classes enumerated
in the PA report, we use the revised
hierarchy described by Peter Neu-
mann.9) In forensics, a large enough
collection of examples with overlap-
ping coverage of the flaw domains
might be sufficient to let investiga-
tors analyze any attack in the same
flaw domains as the specified attacks.
We suspect that this technique will
be generalizable to fields in com-
puter security other than forensics.
Therefore, experiments based on
well-accepted flaw classifications,
used to evaluate model implementa-
tions, should be effective for most of
the situations these flaw domains
cover. Of course, our own assertion
must be validated! To test this
method, we must observe how it
works in reality.

Consider the following list of
RISOS flaw domains:

1. Incomplete parameter validation
2. Inconsistent parameter validation
3. Implicit sharing of privileged or

confidential data
4. Asynchronous validation or in-

adequate serialization
5. Inadequate identification, au-

thorization, or authentication

6. Violable prohibition/limit
7. Exploitable logic error

Now, consider the following list of

PA flaw domains:

1a. Improper choice of initial
protection domain

1b. Improper isolation of im-
plementation detail (ex-
posed representations)

1c. Improper change (data con-
sistency over time)

1d. Improper naming
1e. Improper deallocation or

deletion (residuals)
2. Improper validation (of

operands and queue-
management dependencies)

3a/b. Improper synchronization
(indivisibility and sequencing)

4. Improper choice of operand
or operation (critical opera-
tion selection errors)

Now consider the 1988 Internet
worm, which exploited a buffer-
overflow vulnerability in fingerd
and several problems with other
Unix programs, including send-
mail, to break into systems. The at-
tack didn’t damage the software on
the systems, nor did the worm at-
tempt to gain root access, but it did
cause denial-of-service attacks by at-
tempting to propagate to as many
machines as possible from those it
had infected. The worm’s ultimate
goal was to spread.10

Because it involved several dis-
tinct attacks, the worm also crossed
multiple flaw classifications:

• cracking encrypted passwords
from /etc/passwd by running

significantly enhanced version of
crypt (violates RISOS 3, RISOS
7, PA 1a, and PA 1b);

• bug allowing a buffer overflow of
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the fingerd daemon (RISOS 1,
RISOS 6, and PA 2);

• bug involving improper checking
of arguments in sendmail

(RISOS 2 and PA 4); and
• vulnerability improper trust of

hosts rsh and accounts rexec
(RISOS 5, PA 1a, and PA 2).

Furthermore, the worm used several
techniques, such as renaming itself
and removing its command-line
arguments after execution, which
were defenses for itself rather than
explicit attacks. We can categorize
these actions under RISOS 7 (ex-
ploitable logic error), PA 1c (im-
proper change), PA 1d (improper
naming), and PA 1e (improper deal-
location or deletion).

After this analysis and categoriza-
tion, we can compare the results
against another attack that exploits
the same flaw class. In our forensic
analysis work, we discovered this to
be a highly useful technique. Table 1
lists the set of exploits we used to test
our techniques6 along with the flaw
domains that each covers.

Using this grid and the experi-
mental results, we could forensically
observe and analyze attacks that ex-
ploited a subset of the flaws (for ex-
ample, the simple buffer overflow)
from another attack (for example,

the 1988 Internet worm). To do so,
we recorded the forensic informa-
tion demanded by the attack that ex-
ploits more flaws. Our experience
also extended to all other equivalent
flaws and subsets of other flaws in the
attack examples that we analyzed.

This method doesn’t obviate the
need to apply the scientific method,
nor does it allow researchers to by-
pass good scientific practice. Many
more tests are needed to verify this
method of scientific experimenta-
tion. Furthermore, the method’s
success might also vary highly with
the flaw classes’ quality, the number
of experiments performed, and the
flaw-class coverage achieved. In the
interim, this method appears valu-
able and deserves further experi-
mentation and analysis.

C omputer security experiments
must ultimately use the scienti-

fic method, including well-defined,
highly regarded data sets, to compare
new and existing results. But our ini-
tial results suggest that computer se-
curity experimentation based on
sufficient coverage of classes of flaw
classifications shows promise. Ulti-
mately, of course, our methods must
also prove to be effective using one
of the two classical methods—

experimental validation with well-
accepted data sets or formal proof—
and we intend to perform such
experiments in the future. The result
could help more computer security
researchers produce and present sci-
entifically valid data. It might even
help to bring computer security re-
search on par with animating the
dead, and thus satisfy the rantings of
a certain fictional scientist, who
protested: “I am a scientist, not a
philosopher!”11
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EXPLOIT PROTECTION ANALYSIS RESEARCH INTO SECURE OPERATING
(PA) FLAW DOMAINS SYSTEMS (RISOS) FLAW DOMAINS

1A 1B 1C 1D 1E 2 3A/B 4 1 2 3 4 5 6 7

Buffer overflow x x x x x x

Spyware x x

Ignoring permissions x x x x

Authentication x x x

Trojan horse x x

Bypassing interfaces x x x x

Parameter validation x x

Land attack x x x x

Shared memory injection x x x x x x

1988 Internet worm x x x x x x x x x x x x x

Christma exec worm x x x

Network file system (NFS) exploits x x x x x x x

Table 1. Exploits and corresponding flaw domains.
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