
1

Preserving Privacy Based on Semantic Policy
Tools

Lalana Kagal∗ and Joe Pato+

∗MIT Computer Science and Artificial Intelligence Lab
+HP Labs

Abstract—Private data of individuals is constantly being collected, analyzed, and stored by different kinds of organiza-
tions: shopping sites to provide better service and recommendations, hospitals for improved healthcare, and government
agencies to enable national defense and law enforcement. Sharing data between these organizations makes it possible
to discover important knowledge and draw useful conclusions but raises concerns about information privacy and trust.
Until recently the focus was on restricting access to data on a “need to know” basis, but since the 9/11 Commission there
has been a paradigm shift to “need to share”. Our work explores the use of semantic privacy policies, justifications for
data requests, and automated auditing to encourage sharing of sensitive data between organizations. We describe an
architecture based on our policy tools that evaluates incoming queries against semantic policies and domain knowledge
and provides a justification for each query - why they are permitted, denied, or inapplicable. Using a semantic policy
language gives policies explicit semantics that allows all participants to unambiguously understand their meaning. The
justifications generated by checking incoming requests against these policies help requesters formulate privacy-aware
queries. Lastly, reasoning over event logs and justifications allows data owners to verify that their privacy policies are
being correctly enforced.

Index Terms—Privacy policy, justifications, proofs, sharing, trust

F

1 INTRODUCTION

Efforts to address privacy have been dominated
by strict access restriction and privacy-preserving
algorithms such as anonymization, generalization,
and perturbation. These techniques assume that
most data consumers are malicious and focus on
helping data owners restrict access to data. How-
ever, these techniques also discourage honest con-
sumers from accessing data they require. With the
current push towards need-to-share, we suggest
that alternative approaches are required that help
honest consumers be honest as well as enforce
privacy policies of data owners.

Our group is exploring accountability mecha-
nisms as a means of protecting central information
policy values such as privacy and fair and reliable
use of information. We view accountability com-
bined with transparency and appropriate redress as
a complementary process to strict access control [1].
Fundamental to this approach is the use of for-
malisms that can express realistic data-use policies,
and automated reasoning engines that can interpret
those policies and automatically determine whether
particular uses of data are policy-compliant.

We are buildings systems that provide policy-
awareness enabling honest users to comply with
explicitly defined policies and data owners to
verify that their policies are being enforced cor-
rectly. Policy-awareness is a property of information
systems that provides participants with machine-
readable representations of policies and audit trails
in order to facilitate compliance with stated rules,
as well as understandable views of policy decisions
made.

Most access control mechanisms provide just a
yes/no or permit/deny kind of answer leaving
users unsure of what they are doing wrong and
suspicious of possible prejudices. Users wanting
to comply with security and privacy policies end
up either being afraid to make queries for fear of
doing something wrong or being angry that they
are never able to get a query past the security
mechanism to the data they require. Our objective is
to use policy-awareness to enable users to make the
right queries by giving them enough information to
do so. Consider a simple privacy policy “You may
not query for both zipcode and last name”. With
normal access control mechanisms, a requester who
is asking for several fields including zipcode and

0000–0000/00/$00.00 c© 2009 IEEE Published by the IEEE Computer Society

2

Privacy-Enabling Engine

Client

Policy Reasoner

DB

queries

(i) justification for non-
compliant queries
(ii) results+usage restrictions
for compliant queries

Event Log
Policies

+ DB
metadata

results

compliant
queries

Fig. 1. Architecture: Databases have a policy layer that allows them to identify and execute only compliant
queries and return justifications for non-compliant ones

last name from the database will be constantly re-
jected without knowing why. Similarly a requester
who initially asked for zipcodes and is now asking
for first and last names will be rejected. Our policy
tools will provide a reason for this rejection such
as “You’ve previously requested zipcode. Once one
of zipcode and last name has been requested, the
other cannot be retrieved”. This justification enables
the user to reformulate his query so that it does
respect the privacy policies. Further, policies de-
rived from regulatory controls governing informa-
tion sharing are often complicated and may need
to draw on contradictory sources from different
jurisdictions [2], [3]. Examination of explicit justi-
fications can expose these contradictions and lead
to redefinition of the appropriate policy.

Policy-awareness supports extensive and
machine-readable logs of events that have occurred
in the system including requests for data and the
results of those requests. We provide tools to
allow data owners to run audits over these logs
to check whether the enforcement mechanisms
are fulfilling the intent of the policy. In case of
non-conformance, the justifications associated
with the decision provide guidance on how the
policy should be adjusted to meet their intended
result. For example, if the log shows that Alex
accessed certain records the data owner or an
authorized user can ask why this was permitted.
Our tools provide a detailed justification saying
that Alex is from the FBI, and his purpose was
law enforcement, so it was permitted. If the data
owner realizes that he does want FBI agents to
access all data for law enforcement but only wants

them to retrieve data about a “person of interest”
he can add this rule to the policy and continue
monitoring the logs.

We have designed an architecture based on
policy-awareness and accountability that enables
privacy-preserving sharing of sensitive data. We
have implemented most of the key components
including the Semantic Web based policy language,
the reasoner that infers whether queries are com-
pliant, generates justifications and handles private
policies, the user interface that allows justifications
to be explored, and techniques for integrating the
architecture with different databases, as well as for
the handling of intention, usage and context. In this
article, we define our architecture, describe the indi-
vidual components, and illustrate the effectiveness
of our solution through several examples.

2 ARCHITECTURE

As illustrated in Figure 1, our architecture includes
inserting a privacy-enabling engine in front of the
database containing private data. This engine con-
sists of (i) policy reasoner, (ii) event log, (iii) set
of applicable policies, and (iv) meta-data about the
database. Queries to the database are input to the
policy reasoner. The policy reasoner reasons over
the policies, meta-data about the database such
as the fields in the database, possible values of
the fields, and the distribution of values in the
fields, and also takes into account past queries. The
reasoner then infers whether the current query is
compliant or not and provides an appropriate jus-
tification. If the query is compliant, it is forwarded

3

to the database for execution otherwise the policy
result and justification are returned to the requester.
In either case, the query and justification are logged
so they can be used for auditing purposes. For
compliant queries, all associated usage restrictions
are added to the results before being returned to the
requester. In an ideal situation, a similar architec-
ture could be present within the data consumer’s
context to verify that usage restrictions are being
complied with. Usage restrictions can be complied
with by up-front policy checking and violations
detected through after-the-fact auditing.

3 MOTIVATING EXAMPLE

Consider a database consisting of information
about US Persons. This data contains names, home
address, telephone numbers, work address, email,
fax number, marital status and other personal infor-
mation. In order to allow this data to be used while
maintaining privacy, our architecture is used to
enforce semantic policies and help consumers un-
derstand what kinds of queries are allowed under
them. Current access control policies for databases
mainly consist of permitting/preventing access to
rows, columns or views. However, our system is
able to handle higher level policies that are not
necessarily in terms of rows and columns of the
database. Some examples of semantic policies in-
clude “You may not filter based on ethnicity”, “You
may not retrieve contact information of foreign
nationals”, and “You may not retrieve both First-
name and age for residents of New England” where
the semantics of ethnicity, contact information, being
a foreign national and being a resident of New England
are defined using Semantic Web languages. Queries
of the form “SELECT age, firstname WHERE
birth-country=Nepal” and “SELECT * WHERE zip-
code=02139” are matched against the policies and
are identified as non-compliant whereas “SELECT
lastname WHERE city=Cambridge” is identified as
compliant.

4 SEMANTIC WEB-BASED POLICY LANGUAGE

Several policy languages in the literature could be
used for policies about data sharing within a single
security domain because a single domain typically
uses uniform domain-specific semantics, is uni-
formly managed, and is less open compared to
the cross-domain sharing scenarios. Though there
has been some research on the problem of multiple

security domains, it usually involves prior negoti-
ation between separate domains in advance of the
sharing that prevents dynamic sharing or sharing
of new unaccounted-for information. We propose
the use of Semantic Web technologies for policy
descriptions that span muliple domains as they pro-
vide common models of data and knowledge such
that entities (software and human) in the systems
can exchange information, queries and requests
with some assurance that they share a common
meaning. The Semantic Web consists of several lan-
guages such as Resource Description Framework
(RDF), RDF Schema (RDFS), and the Web Ontology
Language (OWL), which can be used to provide
a description of concepts, terms, and relationships
within the domain(s), as well as technologies for the
retrieval, use, and integration of these descriptions.
These languages and technologies enable data, in-
cluding policies and credentials, to be annotated
with machine-understandable meta-data, allowing
them to be automatically retrieved and used in
correct contexts. Our policy language, AIR [4] is
grounded in Semantic Web technologies [5], which
allows it be domain independent and especially
useful when policy is shared across domains that
must adhere to the policy even though they have
their own native schemas or data models. For
example, it is possible to define a policy in AIR
that describes the characteristics of users, the kinds
of data that can be exchanged, and the conditions
under which the exchange is possible between two
government agencies, even though the data be-
ing used, the role descriptions, the user attributes,
etc. used by each agency is different. The AIR
reasoner accepts AIR policies, queries defined in
the SPARQL Query Language for RDF [6], and
domain knowledge such as the semantics of New
England residents and ethnicity and infers whether
the queries are compliant with the policy.

We use Semantic Web technologies not only to
model policies but also for our justifications and
logs. Having common semantics for this security
information enables our tools to be used in any sys-
tem that understands basic Semantic Web technolo-
gies and allows participants from different domains
to effectively use and reason over each other’s
policies, logs and justifications.

In recent years there have been several efforts to
develop expressive policy languages using Seman-
tic Web technologies for a variety of application
domains including network management, Web ser-
vices, and privacy. These include languages such

4

as KAoS [7] and Rei [8]. KAoS policies are OWL
descriptions of actions that are permitted (or not) or
obligated (or not). This limits the expressive power,
but allows the classification of policy statements,
enabling conflicts to be discovered from the rules
themselves. Another advantage that KAoS has is
that if policy descriptions stay within OWL-Lite or
OWL-DL, then the computation is decidable and
has well understood complexity results. On the
other hand, Rei and AIR are more expressive and
allow for rules to be defined over attributes of
classes in the domain including users, resources,
and the context, however, they lack well defined
semantics. Rei also includes tools for policy analysis
and speech acts for dynamic policy modification,
which both AIR and KAoS lack. AIR is focused on
generating explanations for policy decisions, which
neither KAoS nor Rei are capable of, and is also
able to handle noisy and inconsistent data from
multiple sources by allowing users and rules to
explicitly assert and manage provenance and other
contextual information.

5 INTEGRATION WITH DIFFERENT DATABASES

As the policy language itself is domain indepen-
dent, it works with any database that can provide
ontological meta-data. The meta-data of a database
usually includes a description of the fields in the
tables. For example, to model personal data you
might say that Person is a class and has name, so-
cial security number, email, address and telephone
number as properties. Further, address itself has
several properties including street, house number,
state, city, and zipcode. An important advantage of
separating the domain knowledge from the policy
language is the ability to define abstract concepts
specific to different databases over which policies
can be later defined. For example, for one database
Contact-Information is an abstract concept containing
email, address, telephone, fax, and office address of
Person. It can be modeled in several ways using Se-
mantic Web languages. One simple way is to make
email, address, telephone, fax and office address
sub-properties of Contact-Information. An example
of a policy using Contact-Information is “You may
not access Contact Information of minors” where
minors can be defined as the class of those individu-
als whose age is less than 18. The meta-data can also
include distribution of the values of a field such as
“70 percent of the field gender is male”. This means
policies such as “You may not retrieve more than

50 percent of the database” will find queries such
as “SELECT * WHERE gender=male” to be non-
compliant.

6 JUSTIFICATION - WHY AND HOW ?
Most reasoners are capable of generating proofs
for why they believe a certain conclusion to be
true, however, these proofs are in the form of proof
trees. These trees are difficult for end users to
understand and contain a lot of irrelevant informa-
tion. While reasoning over the policy and data, our
reasoner maintains the set of dependencies for each
statement in the knowledge base. It annotates all
invoked rules in the dependencies with their nat-
ural language descriptions generating a machine-
understandable justification embedded with En-
glish descriptions that a user can understand [4].
This information can be interactively explored with
another of our policy tools called Justification UI
(for more information, please see http://dig.csail.
mit.edu/TAMI/2008/JustificationUI/howto.html). Fig-
ure 2 shows an example of a justification generated
by the AIR reasoner. The policy states “You may
not query for New England residents” and the
query is “SELECT NAME, ID WHERE AGE>18
and CITY=BOSTON”. The reasoner finds this query
to be non-compliant and provides a justification for
it.

Researchers have suggested other approaches to
explanation generation such as the WhyNot [11]
and KNOW [12] systems. Both these systems fo-
cus explicitly on failed queries and try to suggest
changes to the input or knowledge base that would
cause the queries to succeed. WhyNot uses abduc-
tive reasoning to compute partial proofs for how to
satisfy the query. This implies requester has to sort
through potentially irrelevant information to find
the reason for failure. These proofs could also reveal
private data and rules. The KNOW system searches
all applicable policies using ordered binary decision
diagrams to suggest modifications to the input that
would cause the query to be satisfied. It also uses
meta-policies to maintain privacy requirements of
security policies. This privacy functionality is simi-
lar to what our approach provides. However, along
with being domain independent and applicable to
policies of all kinds, our approach also allows the
system to capture and provide justifications for
both successful and failed queries. Instead of using
meta-policies, AIR supports syntax and semantics
for adding natural-language descriptions to justifi-
cations and allows justifications to be declaratively

5

Fig. 2. Justification Example: Under a policy that states “You may not query for New England residents”,
the query “SELECT NAME, ID WHERE AGE>18 and CITY=BOSTON” is found to be non-compliant and
this justification is provided.

modified preventing private information from be-
ing inadvertently leaked.

7 PRIVATE POLICIES AND JUSTIFICATION

In most cases the default justification provided by
the AIR reasoner is acceptable. However, policy
administrators might want to modify these jus-
tifications if (i) parts of the policy or the data
are private, or (ii) if the justification contains too
much information. In these cases, some portions
of the justification need to be suppressed and
our policy language provides two mechanisms -
Hidden rules and Ellipsed rules. Hiding rules is a
mechanism for suppressing unimportant or private
information from explanations. Declaring a rule to
be hidden prevents all its deduction steps from
appearing in the explanation. Consider a rule that
says “Students have access to the database” and the
statements “GradStudent is a subclass of student”
and “PhDstudent is a subclass of GradStudent”
are believed to be true. Then while proving that
a PhD student has access to the data, there will
be a rule to deduce the sub-class relationships,
but it won’t be interesting for most end users. So
we can declare the subclass rule as a Hidden rule
to prevent this information from appearing in the
explanation. Another mechanism is Ellipsed rule
where we do not want to hide all steps following
the rule but only want the execution of a specific

rule to be suppressed. For example, if we have a
rule that states “Unless a check is over X dollars
it is not investigated for fraud” 1, it is not in the
best interests of the policy administrator to reveal
this “X”. In this case, he can declare the rule to
be an ellipsed rule. Another example is if the data
owner maintains a list of untrusted requesters or
wants to limit the number of requests any single
requester makes. Using Ellipsed rule will prevent
only the rule that checks the list or the rule that
checks the number of requests from appearing in
the overall justification.

Even when policies are public, justifications are
important because most policies especially those
that relate to data sharing and usage are complex.
A data consumer is not able to easily figure out
which policies are applicable to a particular query
and is not always capable of understanding these
policies.

8 INTENTION, USAGE, CONTEXT, AND MORE

Knowing the intention of the user or the proposed
use of the data being retrieved is usually extremely
important for privacy policies and is very difficult
for machines to ascertain. Many privacy policies
include usage restrictions such as “My health in-
formation may not be used to contact me regarding

1. Thanks to KK Waterman for this example

6

potential clinical trials” that are virtually impossi-
ble to enforce at time of access. Our approach is
to allow the user to state his or her purpose at
request time, log this signed statement, and use it
to make the policy decision. Later these logs can be
audited and in case of a violation, this statement
can be used to hold the requester accountable [1].
In order to be effective, however, appropriate reg-
ulation needs to be in place so action could be
taken against the requester. A similar mechanism
is used to model unexpected circumstances such as
an emergency situation. If a privacy policy states
“Only my primary healthcare provider may access
my records unless there is a health emergency”
then the system allows a requester who is not the
primary healthcare provider to access the records if
he or she can prove that there is an emergency or
is willing to provide a signed statement of the fact.
The system also annotates the query results with
usage restrictions in the spirit of making policies
explicit and understandable. The data consumer
can use our policy tools to ensure that they are
using data in compliance with their usage policies.

Another aspect of policies is context. By context
we mean attributes of the requester, environmental
variables, and attributes of the data itself. We can
obtain certain contextual information using tech-
niques such as FOAF+SSL [13], where users log in
with a Uniform Resource Identifier (URI) that con-
tains relevant information about them, rules about
where to obtain some information will be present in
the meta-data of the database but for other kinds of
context we need to rely on input from the requester.
Consider the following policy “You may only access
this database if you’ve recently obtained XYZ cer-
tification”. In order to know whether the requester
has XYZ certification the reasoner will look in the
meta-data for rules about which online resources
can be trusted to vouch for certified users or will
expect a signed statement from the requester. In
order to handle these cases, we suggest that regular
audits be run over the log so statements made by
users can be verified and that violations of the
policy can be identified.

9 SUMMARY

Unlike most privacy approaches, we focus on help-
ing both data consumers as well as data owners to
share sensitive data according to privacy policies.
We provide consumers with sufficient information
to make correct queries enabling them to comply

with complicated policies associated with accessing
and using sensitive data. Along with this, by main-
taining machine-processable logs the system is able
to detect inappropriate information use through
after-the-fact auditing.

Possible future work includes rewriting incoming
queries so that they are compliant with the privacy
policies and integration with the Privacy Integrated
Queries (PINQ) toolkit [14] to allow the addition
of a customizable amount of noise to the result of
aggregate queries in order to prevent the leakage
of sensitive information.

ACKNOWLEDGMENTS

The authors wish to thank their colleagues for
their contributions to this project. This work was
supported in part by AFOSR YIP award FA9550-
09-1-0152 and IARPA award number FA8750-07-2-
0031.

REFERENCES

[1] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum,
J. Hendler, and G. J. Sussman, “Information accountabil-
ity,” Communications of the ACM, June 2008.

[2] K. Krasnow Waterman, “Pre-processing legal text: Policy
parsing and isomorphic intermediate representation,” in
Intelligent Information Privacy Management Symposium at the
AAAI Spring Symposium, 2010.

[3] T. Breaux and A. Anton, “Analyzing regulatory rules for
privacy and security requirements,” IEEE Transactions on
Software Engineering, vol. 34, pp. 5–20, 2007.

[4] L. Kagal, C. Hanson, and D. Weitzner, “Using dependency
tracking to provide explanations for policy management,”
in IEEE Policy 2008, 2008.

[5] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic
web: Scientific american,” Scientific American, May 2001.
[Online]. Available: http://www.sciam.com/article.cfm?
articleID=00048144-10D2-1C70-84A9809EC588EF21&
pageNumber=1&catID=2

[6] W3C, “Sparql rdf query language (sparql),” http://www.
w3.org/TR/rdf-sparql-query/, 2008.

[7] J. Bradshaw, A.Uszok, R. Jeffers, N. Suri, P. Hayes,
M. Burstein, A. Acquisti, B. Benyo, M. Breedy, M. Car-
valho, D. Diller, M. Johnson, S. Kulkarni, J. Lott, M. Sier-
huis, and R. V. Hoof, “Representation and reasoning about
DAML-based policy and domain services in KAoS,” in
2nd International Joint Conference on Autonomous Agents and
Multi Agent Systems (AAMAS2003), 2003.

[8] Lalana Kagal and Tim Finin and Anupam Joshi, “A
Policy Based Approach to Security for the Semantic Web,”
in 2nd International Semantic Web Conference (ISWC2003),
September 2003.

[9] P. A. Bonatti, D. Olmedilla, and J. Peer, “Advanced Pol-
icy Explanations on the Web,” in European Conference on
Artificial Intelligence (ECAI), 2006.

[10] F. H.R., “Abductive reasoning as a way of worldmaking,”
Foundations of Science, vol. 6, pp. 361–383(23), 2001.

7

[11] H. Chalupsky and T. Russ, “Whynot: Debugging failed
queries in large knowledge bases,” in Fourteenth Innovative
Applications of Artificial Intelligence Conference (IAAI-02),
2002, pp. 870–877.

[12] A. Kapadia and G. Sampemane and R. H. Campbell,
“Know why your access was denied: regulating feedback
for usable security,” in 11th ACM conference on Computer
and Communications Security, 2004, pp. 52–61.

[13] H. Story, B. Harbulot, I. Jacobi, and M. Jones, “FOAF+SSL:
RESTful Authentication for the Social Web,” in European
Semantic Web Conference, Workshop: SPOT2009. Heraklion,
Greece, 2009.

[14] F. McSherry, “Privacy Integrated Queries,” in ACM SIG-
MOD International Conference on Management of Data (SIG-
MOD), June 2009.

