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I. INTRODUCTION

Many applications in digital signal processing, machine learning, and communications feature a linear

regression problem in which unknown data points, hidden variables or codewords are projected into a

lower dimensional space via

y = Φx+ n. (1)

In the signal processing context, we refer to x ∈ RN as the signal, y ∈ RM as measurements with

M < N , Φ ∈ RM×N as the measurement matrix, and n ∈ RM as the noise. The measurement matrix

Φ is a matrix with random entries in data streaming, an overcomplete dictionary of features in sparse

Bayesian learning, or a code matrix in communications [1–3].

Extracting x from y in (1) is ill-posed in general since M < N and the measurement matrix Φ

hence has a nontrivial null space; given any vector v in this null space, x + v defines a solution that

produces the same observations y. Additional information is therefore necessary to distinguish the true x

among the infinitely many possible solutions [1, 2, 4, 5]. It is now well-known that sparse representations

can provide crucial prior information in this dimensionality reduction; we therefore also refer to the

problem of determining x in this particular setting as the sparse signal recovery. A signal x has a sparse

representation x = Ψα in a basis Ψ ∈ RN×N when K � N coefficients of α can exactly represent

or well-approximate the signal x. Inspired by communications, coding and information theory problems,

we often refer to the application of Φ on x as encoding of x; the sparse signal recovery problem is

then concerned with the decoding of x from y in the presence of noise. In the sequel, we assume the

canonical sparsity basis, Ψ = I without loss of generality.

The sparse signal recovery problem has been the subject of extensive research over the last few

decades in several different research communities, including applied mathematics, statistics, and the-

oretical computer science [1–3, 6]. The goal of this research has been to obtain higher compression

rates; stable recovery schemes; low encoding, update and decoding times; analytical recovery bounds;

and resilience to noise. The momentum behind this research is well-justified: underdetermined linear

regression problems in tandem with sparse representations underlie the paradigm of signal compression



and denoising in signal processing, the tractability and generalization of learning algorithms in machine

learning, the stable embedding and decoding properties of codes in information theory, the effectiveness

of data streaming algorithms in theoretical computer science, and neuronal information processing and

interactions in computational neuroscience.

An application du jour of the sparse signal recovery problem is compressive sensing (CS), which

integrates the sparse representations with two other key aspects of the linear dimensionality reduction:

information preserving projections and tractable recovery algorithms [1, 2, 4–6]. In CS, sparse signals

are represented by a union of the
(
N
K

)
, K-dimensional subspaces, denoted as x ∈ ΣK . We call the

set of indices corresponding to the nonzero entries the support of x. While the matrix Φ is rank

deficient, it can be shown to preserve the information in sparse signals if it satisfies the so-called

restricted isometry property (RIP). Intriguingly, a large class of random matrices have the RIP with high

probability. Today’s state-of-the-art CS systems can robustly and provably recover K-sparse signals from

just M = O(K log(N/K)) noisy measurements using sparsity-seeking, polynomial-time optimization

solvers or greedy algorithms. When x is compressible, in that it can be closely approximated as K-

sparse, then from the measurements y, CS can recover a close approximation to x. In this manner we

can achieve sub-Nyquist signal acquisition, which requires uniform sampling rates at least two times

faster than the signal’s Fourier bandwidth to preserve information.

While such measurement rates based on sparsity are impressive and have the potential to impact a

broad set of streaming, coding, and learning problems, sparsity is merely a first-order description of signal

structure; in many applications we have considerably more a priori information that previous approaches

to CS fail to exploit. In particular, modern signal, image, and video coders directly exploit the fact

that even compressible signal coefficients often sport a strong additional structure in the support of the

significant coefficients. For instance, the image compression standard JPEG2000 does not only use the

fact that most of the wavelet coefficients of a natural image are small. Rather, it also exploits the fact

that the values and locations of the large coefficients have a particular structure that is characteristic of

natural images. Coding this structure using an appropriate model enables JPEG2000 and other similar

algorithms to compress images close to the maximum amount possible, and significantly better than a

naive coder that just assigns bits to each large coefficient independently [1].

By exploiting a priori information on coefficient structure in addition to signal sparsity, we can

make CS better, stronger, and faster. The particular approach we will focus in this tutorial is based

on graphical models (GM) [3, 7–10]. As we will discover, GMs are not only useful for representing the

prior information on x, but also lay the foundations for new kinds of measurement systems. GMs enable
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us to reduce, in some cases significantly, the number of measurements M required to stably recover a

signal by permitting only certain configurations of the large and zero/small coefficients via probabilistic

dependencies over graphs. During signal recovery, GMs therefore enable us to better differentiate true

signal information from recovery artifacts, which leads to a more robust recovery. Moreover, GMs provide

powerful tools for designing measurement matrices that result in highly efficient recovery algorithms,

with running times that are close to linear in the signal size. GMs achieve all of this in a Bayesian

formalism, drawing from a large set of associated tools and recovery algorithms.

We review in this tutorial a broad set of models, tools, and algorithms within the graphical model

formalism for sparse signal recovery. A background of graphical models and CS theory in Section II

outlines the foundational concepts that the later sections build upon. Section III then explains Bayesian

priors for signal sparsity and then extends this framework for concisely representing the dependencies

among the sparse coefficients on common GM structures with corresponding recovery algorithms. Section

IV indicates how to exploit GMs for designing sparse measurement systems that significantly reduce

computational requirements while still providing provable guarantees in sparse recovery. Section V

concludes with research challenges and open problems.

II. BACKGROUND

A. Graphical models

We take a probabilistic, Bayesian approach to sparse signal recovery with GMs. We assume that x is a

realization from a random process with a probability distribution function (pdf) f(x), which we call as the

prior. The information in x is then transferred to the measurements y through a conditional pdf f(y|x).

For instance, when the noise n is independent and identically distributed (iid) Gaussian with zero mean

and variance σ2, i.e., ni ∼ N (n; 0, σ2) for i = 1, . . . ,M , we find that the conditional pdf is yet another

Gaussian distribution, given by f(y|x) = N
(
y;Φx, σ2IM×M

)
, where IM×M is the M ×M identity

matrix. To determine x, we exploit Bayes’ rule to form the posterior pdf via f(x|y) = f(y|x)f(x)/f(y).

Then, we can compute various point estimates of x, denoted as x̂, such as the maximum a posteriori

(MAP) estimate x̂ = arg maxx′ f(x′|y), the mean estimate x̂ =
∫
X x′df(x′|y), etc.

1) Graphical representations of pdfs: Graphical models provide a convenient geometrical representation

for describing joint probability distributions of multiple variables [3, 7–11]. They have been applied

successfully in a wide variety of statistical problems, in fields as diverse as image processing, coding

theory, pattern recognition, and artificial intelligence.

Here, we define some notation for GMs. Let G = (V,E) be a directed/undirected graph formed by a

collection of vertices V and edges E. Each vertex v ∈ V represents a random variable zv (either discrete
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Figure 1: Example graphical models. (a) Quadtree model. (b) Ising model. (c) Ising model with CS
measurements.

3 Proposed Research: Theory and Methods for Model-based
Compressive Sensing

While CS has the potential to revolutionize data acquisition, encoding, and processing in a number
of applications, much work remains before it is ready for real-world deployment. In particular, for
CS to truly live up its name, it is crucial that the theory and practice leverage concepts from state-
of-the-art transform compression algorithms. In virtually all such algorithms, the key ingredient
is a signal model for not just the coefficient sparsity but also the coefficient structure. Via the
following four tasks, this project will lay the mathematical groundwork required for practical CS
in Navy-relevant applications and study the performance limits of this new family of techniques.

3.1 Task 1: Model-based CS recovery

3.1.1 Motivation

Our first departure from the standard CS approach is to adopt a more general, probabilistic
(Bayesian) viewpoint. A probabilistic sparsity model enforces sparsity or compressibility in each
coefficient by heavily weighting zero or small-magnitude values in the probability distribution,
while allowing a large range of values with low probabilities to obtain a small number of large
coefficients. As we saw in Section 2.2, probabilistic models can also be used to explain known
standard CS techniques such as Basis Pursuit Denoising.

The power of probabilistic models is that we can easily move beyond independent coefficient
models to generalize the concept of sparsity to structured sparsity. Such models are already em-
ployed in state-of-the-art transform coding and statistical signal processing algorithms based on
wavelets, where natural images induce wavelet coefficients that cluster along the branches of the
wavelet tree [10, 11, 33–35]. We will explore a range of statistical models that have proved indis-
pensable for modeling the coefficient and support structure of sparsifying transforms. Our focus
will be on the powerful class of graphical models [30, 31, 36–38] that provide geometrical repre-
sentations for probability distributions (recall Section 2.3).

3.1.2 Relevant graphical models

In preliminary work, we have identified a range of both directed and undirected graphical models
that are promising for new CS recovery and inference techniques.
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Figure 1: The sparse coefficients of the piecewise-smooth signal (top-left) form a connected tree on the wavelet
basis, whereas the sparse coefficients of the background subtracted image from a surveillance camera (bottom-left)
cluster spatially on a Markov random field. The graphical model-based CS theory I am developing exploits the prior
knowledge on the structure of sparse signal coefficients to improve the performance of the state-of-the-art CS recovery
for the same number of compressive measurements.

I am working with a range of graphical models, including Markov random fields and hidden Markov trees,

which have broad applications in many diverse disciplines, such as computer vision, sensor networks, and

communication systems. In collaboration with Richard G. Baraniuk, I have introduced preliminary theory

and recovery algorithms with provable guarantees to incorporate structural prior information on sparse signal

coefficients in CS recovery. Structural priors reduce the degrees of freedom of a sparse signal by permitting

only certain deterministic configurations of its sparse coefficients. My preliminary work creates a template

for recovery algorithms and tools for theoretical progress to integrate graphical models with CS (see Fig. 1);

hence, it is an important step towards realizing my vision.

I am also developing a multimodal CS signal acquisition framework to leverage the common graphical

model structure in multimodal data for effective information extraction. The intrinsic information in many

problems cannot be captured with a single modality alone. This observation is a highlight of my work with

James H. McClellan and Rama Chellappa where I used particle filters and variational analysis—tractable

approximations of high cost computations via calculus of variations—to fuse acoustic and video observations

(see Fig. 2). My multimodal framework is relevant in a broad set of applications. For instance, to capture

brain activity, neuroimaging correlates the high temporal resolution of EEG and the high spatial resolution

of fMRI modalities. In such applications, new non-traditional signal processing techniques beyond simple

correlations are needed to efficiently acquire signals and to understand their origin.

To support my multimodal acquisition framework, I am investigating inference methods that work di-

rectly on the compressive samples without explicit signal reconstruction, such as graphical model selection,

parameter estimation, and anomaly detection. Multimodal signals typically have different information rates:

while a single snapshot captured by a camera is meaningful in spatial context, acoustic data must be aggre-

gated to understand the temporally spread out information. Multimodal data fusion then requires managing

large-scale spatio-temporal data volumes, whose dimensionality can be reduced via CS. In turn, direct pro-

cessing with the compressive samples improves the efficiency of information extraction. My approach has its

roots in iterative approximation algorithms where small-scale optimization problems are solved in cascade

until the desired performance is obtained. I will also exploit ideas from and contribute solutions to streaming

algorithms that work on random measurements.
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is a signal model for not just the coefficient sparsity but also the coefficient structure. Via the
following four tasks, this project will lay the mathematical groundwork required for practical CS
in Navy-relevant applications and study the performance limits of this new family of techniques.
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Our first departure from the standard CS approach is to adopt a more general, probabilistic
(Bayesian) viewpoint. A probabilistic sparsity model enforces sparsity or compressibility in each
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coefficients. As we saw in Section 2.2, probabilistic models can also be used to explain known
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The power of probabilistic models is that we can easily move beyond independent coefficient
models to generalize the concept of sparsity to structured sparsity. Such models are already em-
ployed in state-of-the-art transform coding and statistical signal processing algorithms based on
wavelets, where natural images induce wavelet coefficients that cluster along the branches of the
wavelet tree [10, 11, 33–35]. We will explore a range of statistical models that have proved indis-
pensable for modeling the coefficient and support structure of sparsifying transforms. Our focus
will be on the powerful class of graphical models [30, 31, 36–38] that provide geometrical repre-
sentations for probability distributions (recall Section 2.3).

3.1.2 Relevant graphical models

In preliminary work, we have identified a range of both directed and undirected graphical models
that are promising for new CS recovery and inference techniques.
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Fig. 1. Example graphical models. (a) Quadtree model. (b) Ising model. (c) Ising model with CS measurements.

or continuous valued). An undirected edge e ∈ E indicates dependence between the corresponding pair of

random variables; that is, the conditional density of zv given z1, . . . , zv−1, zv+1, . . . is a function of only

the neighbors connected to v. A directed edge indicates that the conditional density of zv is a function

of only those variables with edges directed towards v. Denote the random variables for any subset S of

the vertices V as zS , {zv|v ∈ S}. A clique C is a fully connected subset of vertices, where there exists

an edge e ∈ C connecting every pair of vertices in the subgraph.

A directed acyclic graph (DAG) is a directed graph without directed loops (so that for any v, there

are no directed paths that begin and end with v). If we denote the set of parents of node v as ρ(v), then

it is easy to show that the pdf of a DAG can be factorized as

p(z) =
∏
v∈V

p(zv|zρ(v)). (2)

An example is shown in Figure 1(a); this can be used to model a quadtree decomposition of radar

images [9] or a multiscale wavelet decomposition of natural images [12].

In contrast, Figure 1(b) depicts an undirected graph with loops to represent the Ising model, where

the variables s ⊂ z represent the latent connections between the signal coefficients x ⊂ z. Similarly,

Figure 1(c) illustrates an extension of the Ising model to the CS measurement setting, which we will

revisit in Section III-B. By defining an appropriate, non-negative compatibility function χC(zC) for each

clique C ⊂ G, the Hammersley-Clifford theorem [7] enables the pdf of the graph to be written as

p(z) =
1

Z

∏
C

χC(zC), (3)

where Z is the partition function that ensures that p(z) is properly normalized. The product in (3) is

taken over all cliques C in the graph G.

2) Inference mechanisms: We refer to the process of estimating local marginal distributions or other

summary statistics of z, such as the most probable configuration of f(x|y), as Bayesian inference.
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Inference algorithms on graphical models typically exploit the factorization properties (2) and (3) of

probability distributions. By manipulating the intermediate factors, it is often possible to compute the

likelihood of a particular z value in an efficient, distributed manner. This strategy is exploited by the

sum-product algorithm (also known as belief propagation) and max-product (also known as min-sum) for

tree-structured DAGs with rigorous estimation guarantees when the random variables live in a discrete

probability space [7]. These algorithms iteratively pass statistical information, denoted as messages, among

neighboring vertices and converge in finite number of steps. Such guarantees, unfortunately, do not extend

to arbitrary DAGs; inference in DAGs is typically NP-hard [11].

The sum-product and max-product algorithms are routinely applied to graphical models with cycles,

leading to loopy belief propagation methods, even if their convergence and correctness guarantees for

DAGs no longer hold in general [3, 11, 13]. Although there are certain local optimality guarantees asso-

ciated with the fixed points of loopy belief propagation, there are a number of natural inference problems

arising in various applications in which loopy belief propagation either fails to converge, or provides

poor results. Loopy belief propagation is therefore an approximate inference method. Surprisingly, state-

of-the-art algorithms for decoding certain kinds of error-correcting codes are equivalent to loopy belief

propagation. We revisit this topic in Section IV to discover a crucial role sparse representations play in

providing theoretical guarantees for such algorithms.

Approximate inference is also necessary in cases where the random variables are drawn from a

continuous space, since corresponding marginal integrals needed for implementing Bayes’ rule cannot

be analytically performed. Monte Carlo Markov chain sampling methods, such as importance sampling,

Metropolis-Hastings and Gibbs sampling, provide computational means of doing approximate inference.

The idea is to represent the pdf by a discrete set of samples, which is carefully weighted by some

evidence likelihood so that the inference is consistent, with guarantees typically improving with larger

sample sizes. See [3] for further background.

Yet another approximate inference method is based on the calculus of variations, also known as

variational Bayes (VB) [3, 8]. The quintessential VB example is the mean-field approximation, which

exploits the law of large numbers to approximate large sums of random variables by their means. In

particular, the mean-field approximation essentially decouples all the vertices in the graph, and then

introduces a parameter, called a variational parameter, for each vertex. It then iteratively updates these

variational parameters so as to minimize the cross-entropy between the approximate and true probability

distributions. Updating the variational parameters then facilitates inference in an efficient and principled

manner, often also providing bounds on the marginal likelihood to be calculated. Another special case of
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the VB approach is the well-known expectation-maximization (EM) algorithm for MAP and maximum

likelihood estimation, which has been extremely successful in a number of applications [3, 8, 14].

B. Compressive sensing (CS)

1) Sparse signal representations: No linear nonadaptive dimensionality reducing Φ can preserve all of

the information in all signals. Hence, researchers restrict the application of Φ to not arbitrary signals

x ∈ RN but rather to some subset of RN , and in particular the set of sparse and compressible signals. A

sparsity/compressibility prior is then exploited as a tie-breaker to distinguish the true signal among the

infinitely many possible solutions of (1).

While sparse signals live in ΣK , the coefficients of a compressible signal x, when sorted in order of

decreasing magnitude, decay according to the following power law:∣∣xI(i)∣∣ ≤ R i−1/r, i = 1, . . . , N, (4)

where I indexes the sorted coefficients, and R > 0 and r > 0 are constants. In the CS setting, we call

a signal compressible when r ≤ 1. Thanks to the power-law decay of their coefficients, compressible

signals are well-approximated by K-sparse signals in an appropriate norm. For instance, for all r < 1

and 0 < ε � 1, ‖x − xK‖1 ≤ ε‖x‖1 holds independent of N for any K ≥ d(r/ε)
r

1−r e, where ‖x‖p =(∑N
i=1 |xi|

p
)1/p

is the `p-norm, xK = arg min‖x′‖0≤K ‖x − x′‖p is the best K-sparse approximation

of x (p ≥ 1), and ‖x‖0 is a pseudo-norm that counts the number of nonzeros of x [15].

2) Information preserving projections: The sparsity or compressibility of x is not sufficient alone for

distinguishing x among all possible solutions to (1). The projection matrix Φ must also work in tandem

with the signal priors so that recovery algorithms can correctly identify the true signal.

The restricted isometry property (RIP) assumption on Φ achieves this by requiring Φ to approximately

preserve the distances between all signal pairs in the sparse signal set [5]. More formally, an M × N

matrix Φ has the K-restricted isometry property (K-RIP) with constant εK < 1 if, for all x ∈ ΣK ,

(1− εK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + εK)‖x‖22. (5)

An alternative property is the restricted strong convexity (RSC) assumption, which is motivated by convex

optimization arguments [16]. In general, the RSC assumption has an explicit dependence on the recovery

algorithm’s objective function. For instance, if the recovery algorithm’s objective is to minimize the

measurement error (e.g., ‖y −Φx‖22), RSC requires ‖ΦtΦx‖2 to be strictly positive for all x ∈ ΣK . In

different contexts, other conditions on Φ are also employed with varying levels of restrictions, such as

null space property, spark, unique representation property, etc [6].
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While checking whether a measurement matrix Φ satisfies the K-RIP, RSC, etc. has running time

exponential in K and N , random matrices with iid subgaussian entries work with high probability

provided M = O(K log(N/K)). Random matrices also have a so-called universality property in that,

for any choice of orthonormal basis matrix Ψ, ΦΨ also has the K-RIP with high probability. This is

useful when the signal is sparse in some basis Ψ other than the canonical basis.

3) Tractable recovery algorithms: To recover the signal x from y in (1), we exploit our a priori

knowledge of its sparsity or compressibility. For example, to recover strictly sparse signals when there

is no measurement noise, we can seek the sparsest x that agrees with the measurements y. While this

optimization can recover a K-sparse signal from just M = 2K compressive measurements, it is not only

a combinatorial, NP-hard problem, but also is not stable in the presence of noise [1].

Tractable recovery algorithms rely on conditions such as the RIP and RSC for stability and correctness

and therefore require at least M = O(K log(N/K)) measurements. They can be grouped into two main

camps: convex optimization and greedy approximation. The first camp relies on `1-norm minimization as

a convex relaxation of seeking sparse solutions:

x̂ = arg min
x′
‖x′‖1 s.t. y = Φx′. (6)

This optimization problem is known as basis pursuit and corresponds to a linear program that can be

solved in polynomial time [1, 4, 5]. Adaptations to deal with additive noise in (1) have also been proposed;

examples include basis pursuit with denoising (BPDN), and the least absolute shrinkage and selection

operator (LASSO). The second camp finds the sparsest x agreeing with the measurements y through

an iterative, greedy search over the coefficients. Example algorithms include iterative hard thresholding

(IHT), compressive sampling matching pursuit (CoSaMP), and Subspace Pursuit (SP) [1].

Currently, convex optimization obtains the best recovery performance in theory, while its greedy

counterparts, such as IHT, CoSaMP, and SP, offer desirable computational trade-offs, e.g., O
(
N log2N

)
vs. O

(
M2N1.5

)
(interior point methods) [1]. Interestingly, algorithms in both camps have similar theo-

retical recovery guarantees from M = O(K log(N/K)) when the measurement matrix Φ satisfies K-RIP

with an algorithm dependent ε2K (e.g., ε2K <
√

2− 1 for basis pursuit [5]):

‖x− x̂‖2 ≤ C1K
−1/2‖x− xK‖1 + C2‖n‖2, (7)

which we refer to as an `2/`1 guarantee, where the subscripts are matched to the norms adjacent to the

inequality. In (7), x̂ is the algorithm output, C1 and C2 are algorithm-dependent constants, and xK is the

signal-dependent best K-sparse approximation. The term ‖x−xK‖1 is known as the irrecoverable energy.
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When the signals are compressible, we can never recover them fully under dimensionality reduction; we

can only approximately recover them — and only when r ≤ 1 in (4).

III. GRAPHICAL MODELS FOR STRUCTURED SPARSITY

While CS has the potential to revolutionize data acquisition, encoding, and processing in a number of

applications, much work remains before it is ready for real-world deployment. In particular, for CS to

truly live up its name, it is crucial that the theory and practice leverage concepts from state-of-the-art

transform compression algorithms. In virtually all such algorithms, the key ingredient is a signal model

for not just the coefficient sparsity but also the coefficient structure. As we saw in Section II, graphical

models provide natural framework for capturing such dependencies among sparse signal coefficients.

Hence, we review below some of the graphical models that are relevant for structured sparsity and the

algorithms that result for sparse signal recovery.

A. Sparsity priors

Our first departure from the standard, deterministic CS approach is to adopt a more general, Bayesian

viewpoint as several others have pursued [1, 17, 18]. A probabilistic sparsity prior enforces sparsity or

compressibility in each coefficient by heavily weighting zero or small-magnitude values in the probability

distribution, while allowing a large range of values with low probabilities to obtain a small number of

large coefficients. While this is expected in principle, we also require a generative aspect for such priors

in order to build up structured sparsity models; that is, their statistical realizations result in sparse or

compressible signals. This, in turn, is crucial for statistical consistency in high-dimensional scalings of

the sparse signal recovery problem.

Two-state mixture models are the canonical iid models for generating strictly sparse signals. Among

mixture models, the spike-and-slab prior stipulates a density with a spike at zero surrounded symmetri-

cally by a uniform distribution with specified boundaries. The mixture probability of the spike at zero

approximately determines the percentage of zero coefficients of the signal, and the uniform distribution

establishes the distribution of the signal coefficients on the signal support.

To model compressible signals, we can use compressible priors, whose statistical realizations exhibit

the power-law decay in (4) [15]. For algorithmic recovery guarantees for CS, we must have r ≤ 1 for

such priors (c.f. (4)). For instance, Table III-A demonstrates that N -sample iid realizations of generalized

Pareto, Student’s t, Frechet, and log-logistics distributions (each parameterized by a shape parameter

q > 0 and a scale parameter λ > 0) are compressible with parameter r = q. There also exist non-iid

compressible priors; multivariate Lomax distribution provides an elementary example whose pdf is given
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TABLE I

EXAMPLE DISTRIBUTIONS AND THE COMPRESSIBILITY PARAMETERS OF THEIR IID REALIZATIONS

Distribution pdf R r

Generalized Pareto q
2λ

(
1 + |x|

λ

)−(q+1)

λN1/q q

Student’s t Γ((q+1)/2)√
2πλΓ(q/2)

(
1 + x2

λ2

)−(q+1)/2 [
2Γ((q+1)/2)√
πqΓ(q/2)

]1/q
λN1/q q

Fréchet (q/λ) (x/λ)−(q+1) e−(x/λ)−q

λN1/q q

Log-Logistic (q/λ)(x/λ)q−1

[1+(x/λ)q ]2
λN1/q q

Laplacian 1
2λ

e−|x|/λ λ logN logN

by MLD(x; q, λ) ∝
(

1 +
∑N

i=1 λ
−1 |xi|

)−q−N
[15]. The compressibility parameter MLD is simply r = 1,

irrespective of its shape parameter.

To illustrate how we can exploit probabilistic priors in sparse signal recovery, we focus on two

compressible priors on x: MLD and Student’s t. While MLD is relatively unknown, the Student’s t distri-

bution has enjoyed tremendous attention in many fundamental problems, such as statistical modeling of

natural images, relevance vector machines (RVM) and automatic relevance determination, and dictionary

learning. We consider the case when there is no noise; the observations are then given by y = Φx with

M = O(K log(N/K)), which has infinitely many solutions for x, as discussed in Section II. We know

that such projections preserve the information of the largest K-coefficients of signal realizations. We will

assume that the parameters of MLD and the Student’s t priors are matched (i.e., the shape parameter of

Student’s t is 1) so that the statistical realizations of both priors have the same decay profile.

1) MLD and basis pursuit: We first exploit the MLD likelihood function for sparse signal recovery. For

instance, when we ask for the solution that maximizes the MLD likelihood given y for λi = λ, it is easy to

see that we obtain the basis pursuit algorithm formulation in (6). In contrast, the conventional probabilistic

motivation for the basis pursuit algorithm assumes that x is iid Laplacian, e.g., f(x) ∝ exp (−‖x‖1/λ)

for some λ ∈ R+. We then face the optimization problem (6), when we seek the most likely signal from

the Laplacian prior given y. Unfortunately, iid Laplacian realizations cannot be approximated as sparse

since their compressibility parameter is r = logN , which is greater than 1 in general (c.f. Table III-A);

it can be shown that ‖x− xK‖1 ≤ ε‖x‖1 requires K ≥ (1−
√
ε)N with high probability [15]. Hence,

while the `1 minimization correctly recovers the sparse vectors from M = O(K log(N/K)), it seems

that it does not correspond to an iid Laplacian prior on the sparse signal coefficients in a consistent

Bayesian framework and may correspond to the MLD prior as this example demonstrates.

2) Student’s t and iterative reweighted least squares: We now exploit the Student’s t likelihood function

9



for sparse signal recovery, similar to MLD likelihood function above:

x̂ = max
x′

f(x) = min
x′

∑
i

log
(
1 + λ−2x′2i

)
, s.t. y = Φx′. (8)

Unfortunately, (8) is a non-convex problem. However, we can circumvent the non-convexity in (8) using

a simple variational Bayes idea where we iteratively obtain a tractable upperbound on the log-term in (8)

using the following inequality: ∀u, v ∈ (0,∞), log u ≤ log v + u/v − 1. After some straightforward

calculus, we obtain the iterative algorithm below, indexed by k, where x̂{k} is the k-th iteration estimate

(x̂{0} = 0):

x̂{k} = min
x′

∑
i

wi,{k}x
′2
i , s.t. y = Φx′; where wi,{k} =

(
λ2 + x′2i,{k}

)−1
. (9)

The decoding scheme in (9) is well-known as the iterative reweighted least squares (IRLS), where each

iteration has an analytical solution [19].

Both priors in the above algorithms are trying to approximate their signal realizations, which have the

same decay profile, and yet result in radically different algorithms. Both schemes have provable recovery

guarantees; however, they differ in terms of their computational costs: O(M2N) (IRLS) vs. O(M2N1.5)

(BP).

B. Structured sparsity via GMs

Compressible priors provide a natural launching point for incorporating further structure among the

sparse signal coefficients. Here, by structure, we specifically mean the probabilistic dependence and

independence relationships among sparse signal coefficients as summarized by directed and undirected

graphs. Such relationships are abundant in many diverse problems, such as speech recognition, computer

vision, decoding of low-density parity-check codes, modeling of gene regulatory networks, gene finding

and diagnosis of diseases. Graphical models also provide powerful tools for automatically learning these

interactions from data. While learning GMs is an active research area, it is beyond the scope of this

paper.

1) Tree graphs: Wavelet transforms sparsify piecewise smooth phenomena, including many natural and

manmade signals and images. However, the significant discrete wavelet transform (DWT) coefficients do

not occur in arbitrary positions for such signals. Instead they exhibit a characteristic signal-dependent

structure, with the large and small wavelet coefficients clustering along the branches of the wavelet tree.

We highlight the persistency of the parent child relationship for several large DWT coefficients on the

wavelet image in Figure 2.

Hidden Markov trees (HMT) models and Gaussian scale mixtures (GSMs) on steerable pyramids

succinctly and accurately captures this statistical structure [12, 20, 21]. The HMT models the probability

10



Original Compressed DWT-compressible image

DWT coefficients 10% of DWT coefficents Shuffled DWT coeff.

Fig. 2. Most of the discrete wavelet transform (DWT) coefficients of natural images are small (blue in the bottom

row corresponds to zero amplitude). However, the significant coefficients appear clustered on the wavelet trees [12,

20], as illustrated by the solid red lines. The dependence structure of the coefficients is crucial; by randomly shuffling

the DWT coefficients of the original image, we obtain a reconstruction that does not even remotely resemble a natural

image, let alone the original.

density function of each wavelet coefficient as a mixture density with a hidden binary state that determines

whether the coefficient is large or small. Wavelet coefficient persistence along the tree branches is

captured by a tree-based Markov model that correlates the states of parent and children coefficients.

GSMs exploit the Student’s t prior or its variants. Both models have been successfully applied to improve

the performance of denoising, classification, and segmentation algorithms for wavelet sparse signals. For

an explanation of the EM algorithm applied to GSMs, see the original EM paper [14].

Another Bayesian approach leverages the clustering of the DWT coefficients using the spike-and-slab

prior along with VB inference. The main idea is to construct a tree-structured, conjugate-exponential

family sparse model for wavelet coefficients where the mixture probability of the spike at an individual

sparse coefficient on the wavelet tree is controlled by the size of its parent on the tree. Then, the VB

updates can be efficiently calculated with convergence guarantees. For instance, [17] demonstrates that the

VB approach simultaneously improves both the recovery speed and performance over the state-of-the-art

greedy and convex optimization based CS recovery approaches, discussed in Section II. Moreover, as
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target sparse recovery LAMP recovery

Target LaMP Iter. #1 LaMP Iter. #2 LaMP Iter. #3 LaMP Iter. #4 LaMP Iter. #5

Fig. 3. (Top) A real background subtracted image is shown where the foreground is sparse and clustered (blue

corresponds to zero). We represent the pixels on the image by an Ising model with hidden binary support variables

s that are connected to their adjacent pixels over a lattice to explain clustered behavior. Exploiting this structure in

sparse signal recovery leads to improved performance over the state-of-the-art for the same number of measurements.

(Bottom) Reconstructing the Shepp-Logan phantom under 10dB measurement SNR with lattice matching pursuit

(LAMP). N = 100× 100 = 104, K = 1740, M = 2K = 3480.

opposed to providing single point estimates, probabilistic predictions are made within the VB framework;

for instance, the precision of each sparse coefficient can be inferred.

2) Markov random fields: Background-subtracted images play a fundamental role in making inferences

about objects and activities in a scene in computer vision and, by nature, have structured spatial sparsity

corresponding to the foreground innovations. That is, compared to the scale of the scene, the foreground

innovations are usually not only sparse and but also clustered in a distinct way, corresponding to the

silhouettes of moving humans and vehicles; see Figure 3. Such clustering behavior are also encountered

in neuroscience problems that are involved with decoding of natural images in the primary visual cortex

(V1) or understanding the statistical behavior of groups of neurons in the retina [1].

Markov random fields (MRF) can capture interactivity and produce collective effects among sparse

signal coefficients; previous applications have included sonar image segmentation, scene geometry estima-

tion using multiple sensors, and designing discriminative classifiers. To enforce clustered sparse behavior,

we use a special MRF, called the Ising model, with latent support variables s ∈ RN such that si = −1

12



when xi is small and si = 1 when xi is large; the support variables thus have the following pdf:

f(s) ∝ exp

 ∑
(i,j)∈E

λijsisj +
∑
i∈V

λisi

 , (10)

where prior parameters consist of the edge interaction parameters λij and the vertex bias parameters

λi; c.f., Section II. Interestingly, when the underlying graph of support variables in the Ising model is

tree-structured or chordal (i.e., each cycles in the graph of four or more nodes has a chord, which is an

edge joining two nodes that are not adjacent in the cycle), the pdf in (10) can be equivalently represented

by HMTs since, for instance, the set of distributions parameterized by directed trees is exactly the same

as the set of distributions parameterized by undirected trees (c.f., Sect. 4.5.3 of [11]).

The following optimization problem emerges as result of the MAP formulation of (1) over a lattice

graph on the image pixels, as illustrated in Figure 3, when the observations are corrupted by iid Gaussian

noise with variance σ2:

[x̂, ŝ] = arg max
x′,s′

∑
(i,j)∈E

λijs
′
is
′
j +

∑
i∈V

[
λis
′
i + log(p(x′i|s′i))

]
− 1

2σ2
∣∣∣∣y −Φx′

∣∣∣∣2
2
. (11)

For the compressibility of the structured sparse signal x as signal dimensions vary, the pdf’s p(xi|si)

should be chosen to result in a compressible prior for the signal coefficients, such as Student’s t, with

proper scale parameters to differentiate the small and large coefficients. Although the objective function

is non-convex, a local optimum can be efficiently obtained via variational methods and alternating

minimization techniques over the support and the signal coefficients.

In the context of sparse signal recovery, recent work [18] exploits the Ising model and demonstrates

that it naturally motivates a greedy search algorithm for background subtraction with clustered sparsity,

dubbed Lattice matching pursuit (LAMP). Enabled by the Ising model, the LAMP algorithm (i) converges

significantly faster due to the reduction in the search space and (ii) recovers sparse signals from a much

smaller number of measurements without sacrificing stability. Similar optimization formulations can also

be seen in applications involving face recognition in the presence of occlusions, where the occlusions

are not only sparse but also contiguous.

To solve (11), the LAMP algorithm relies on an approach inspired by the RIP assumption on the

measurement matrices. The key observation for this iterative recovery scheme is that when the sampling

matrix Φ has K-RIP with constant εK � 1 in (5), then the vector b = ΦTy can serve as a rough

approximation of the original signal x. In particular, the largest K entries of b point toward the largest

K entries of the K-sparse signal x. Then, given the signal coefficient estimates, LAMP uses graph

cuts to obtain the MAP estimates of the latent support variables s. By clever book-keeping of the data
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Target Incomplete Lin. interp. (27.6dB) IBP (35.2dB) Learned dictionary
Fig. 4. Natural images exhibit significant self similarities that can be leveraged using the Indian buffet processes (IBP) in sparse

signal recovery even if a large number of pixels are missing. The IBP mechanism automatically infers a dictionary, in which the

image patches are sparse, and the composition of these patches on the image to significantly improve the recovery performance

over linear interpolation.

residual along with the auxiliary support estimates, LAMP iteratively refines its signal estimates until

convergence; see Figure 3 for a robust recovery example from M = 2K, where the signal-to-noise ratio

(SNR) in measurements is 10dB.

3) Structured power-law processes: In many sparse signal recovery problems, the appropriate signal spar-

sifying basis or dictionary Ψ is oft-times unknown and must be determined for each individual problem.

In dictionary learning problems, researchers develop algorithms to learn a sparsifying dictionary directly

from data using techniques where a set of signals are compressible in particular with nonparametric

Bayesian priors. By nonparametric, we mean that the number of parameters within the prior distribution is

beforehand unspecified. Recent work in this area focused on vision applications and developed structured

random processes to capture the power-law distribution of the image patch frequencies and segment sizes.

Such distributions lay the foundations of a scale, resolution independent inference mechanism, which is

key for compressible structured sparse models.

We highlight two examples. Indian buffet processes (IBP), which provide exchangeable distributions

over binary matrices, exploit hierarchical probability models and can be used to infer the dictionary

size and its composition for natural images. Recent work exploits the IBP formalism for sparse signal

recovery by jointly learning the sparsifying dictionary and demonstrates that significant improvements can

be achieved in sparse recovery, denoising, and inpainting of natural images [22]; see Figure 4. Similarly,

Pitman-Yor processes provide a statistical framework for unsupervised discovery and segmentation of

visual object categories with power-law properties. Further applications of such power-law priors to the

sparse signal recovery problem are yet to emerge [23].

IV. GRAPHICAL MODELS FOR STRUCTURED MEASUREMENTS

While random matrices have information preserving guarantees for the set of sparse signals, they are

difficult to store, implement in real-hardware, and are computationally costly in sparse signal recovery.
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(a) A bipartite graph. (b) Expansion.

Fig. 5. An example of a bipartite graphs G = (A,B,E), over the “left” set A of size N and the “right” set B of size M . A

graph is an expander if any “small” subset S of A has “many” neighbors Γ(S) in B.

Hence, in this section, we focus on another use of graphical models, to design high-performance mea-

surement matrices Φ that are sparse. Specifically, we consider matrices Φ whose entries are mostly equal

to zero, while the non-zero entries are equal to 1.1 Each such matrix can be interpreted as bi-partite graph

G = (A,B,E) between a set A = {1 . . . N} of N nodes, and a set B = {1 . . .M} of M nodes: the

edge i − j is present in the graph if and only if Φj,i = 1. Note that the nodes in A correspond to the

coordinates of the signal x, while the nodes in B correspond to coordinates in the measurement vector

y. See Figure 5 for an illustration.

Sparse measurement matrices have several desirable features: (i) matrix-vector products during the

encoding of the vector x into Φx can be performed very efficiently, in time proportional to the number of

non-zeros in Φ ; (ii) the measurement vector Φx can be quickly updated if one or a few of its coordinates

are modified — crucial for processing massive data streams; (iii) the recovery process is quite efficient as

well, since it relies on the matrix-vector product as a subroutine. Moreover, the graphical interpretation

of such matrices enabled designing recovery algorithms using the belief propagation approach, leading

to highly accurate recovery methods. Because of these reasons, various forms of sparse recovery using

sparse matrices has been recently a subject of extensive research; see the recent survey [2] and the

references therein.

To complement the above, we also point out some disadvantages of sparse matrices. One of them

is that they are directly applicable only to the case where the signal x is approximately sparse in the

1Some of the constructions (e.g., [24]) allow the non-zero values to be equal to −1 as well.
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canonical basis, i.e., x = α (see the introduction for the notation). If the signal (as it is often the case)

is sparse only after applying a linear transformation Ψ, then the actual measurement matrix is equal to

ΦΨ. This requires that the matrix Ψ is known before the measurements are taken. Note that the product

matrix ΦΨ might not be sparse in general, and the encoding therefore must perform extra computation,

corresponding to matrix multiplication; the order of these computations is O(NM) for general matrices,

but it is much lower for special bases, such as discrete Fourier and wavelet transforms.

A. Intuition and the randomized case

We start from an intuitive overview of why properly chosen sparse matrices are capable of preserving

enough information about sparse signals to enable their recovery. We focus on the case where x is

exactly K-sparse, the matrix Φ is random, and the goal is to exactly recover x from y = Φx with

“high” probability.

Consider first a particularly simple distribution over sparse matrices, where the i-th column of Φ

contains exactly single 1, at a position, indexed by h(i), chosen independently and uniformly at random

among the rows {1 . . .M}. Multiplying Φ by x has then a natural message-passing interpretation; each

coordinate xi is sent to the h(i)-th coordinate of the measurement vector y, and all coordinates sent

to a given entry of y are added together. Assuming that M is sufficiently larger than K, we make the

following observation: since the vector x is K-sparse and the indices h(i) are chosen randomly from

{1 . . .M}, there is only a small probability that any particular coordinate xi will collide with any other

non-zero entry xi′ (where by collision we mean h(i) = h(i′)). Therefore, xi = yh(i) and we can recover

sparse coefficients by inverse mapping from the measurement vector.

Unfortunately, the above procedure also creates many erroneous entries over the entire vector x. In

short, we note that each zero entry xi has approximately K/M chance of colliding with some non-zero

entry. Each such collision results in a erroneous non-zero entry in the recovered vector. As a result, a

recovered vector can have K/M × (N − K) � K erroneous entries, and therefore becomes a poor

approximation of a K-sparse signal x.

To improve the quality of recovery, we reduce the probability of such erroneous entries via repetition.

Specifically, instead of having only one 1 per column of the measurement matrix Φ, we can select D

random entries of each column and set them to 1.2 In the graph representation, this means that each

node i ∈ A has a set of D neighbors in B; we denote this set by Γ(i). On one hand, this increases

2There are several different distributions of D-tuples from {1 . . .M} than can be used, leading to essentially identical recovery

results; see the survey [2].
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the probability of a collision, since now y can contain up to DK non-zero entries. However, if we set

M = CDK for some constant C > 1, then for any fixed node i ∈ A, each of the D neighbors of i has

at most DK/M = 1/C chance of colliding with another non-zero entry. Therefore, the probability that

all neighbors of i collide with other non-zero entries is very small, at most 1/CD.

Therefore, a sparse matrix Φ can potentially preserve information for an overwhelming fraction of the

coordinates of x by encoding it into y. Then, how can we recover x from y? If C > 2 and D = d logN

for large enough constant d, then one can show that, with high probability, less than half of the neighbors

of each node i ∈ A collide with other non-zero entries. In that case, taking the median or the mode (the

most frequently occurring value) of the entries {yj : j ∈ Γ(i)} returns the correct value of xi. This is

the basic idea behind Count-Median [25] and Count-Sketch [24] algorithms, which further extend this

approach to general vectors x.3 The resulting algorithms require M = O(K logN), and the recovery is

performed in time proportional to O(N logN).

In order to reduce the number of measurements, the researchers have developed more elaborate

algorithms, based on loopy belief propagation [26, 27] and related message-passing approaches [28].

Here, we sketch the Counter Braids algorithms of [27]. That algorithm works assuming that the vector

x is K-sparse and non-negative.

First, observe that for non-negative signals x, the median-based approach of estimating xi can be

further simplified. Specifically, one can observe that for any neighbor j of i in G, we have yj ≥ xi,

since collisions with non-negative entries of x can only increase the values of yj . Therefore, we can

estimate xi by taking the minimum–instead of the median–of the set {yj : j ∈ Γ(i)}. Note that this can

only lead to an overestimation of xi. This variant of the one-shot approach, called Count-Min, has been

discovered in [25, 29].

The Counter Braids algorithm can be now described as an iterative refinement of Count-Min. Consider

the estimation vector x′ obtained above, i.e., x′i = min{yj : j ∈ Γ(i)}. From the discussion, we have

x′ ≥ x. The key idea is that we can now use x′ to obtain an underestimation of x. Consider any edge

i − j. Since yj =
∑

l−j∈G xl, and xl ≤ x′l, it follows that for x′′i = yj −
∑

l−j∈G,l 6=i x
′
l we have

xi ≥ x′′i . Thus, we obtained a refined bound for x, this time from below. We can now iterate this

approach, alternating between upper and lower bounds on x, until they are equal, in which case the

recovery is exact, or some other stopping condition is satisfied.

The analysis given in [27] shows that, for a proper distribution over matrices Φ, one can give the

3For this case, however, we need to use the median estimator; the mode estimator does not work in this setting. In fact, the

”small” entries of x can make all coordinates of y distinct, in which case the mode estimator can report an arbitrary value
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following guarantee. Let x be any K-sparse signal. Then, the Counter Braids algorithm, when given a

random matrix Φ and the measurement vector Φx, recovers x with high probability, as long as K/N is

small enough and M ≥ κK log(N/K) for κ ≈ 2.08.

In a very recent work [28], the authors present a message-passing scheme (for general sparse vectors

x) which achieves a bound for M matching that of `1 minimization. Unlike other algorithms described

in this section, the algorithm of [28] uses dense random matrices.

B. Deterministic case

The above discussion provides an intuition why multiplying a fixed vector x by a randomly chosen

sparse matrix Φ should preserve sufficient information about K-sparse approximation to x. In order

to be able to construct one (deterministic) matrix Φ that works for all vectors x, we need concrete

matrices that behave in a semi-random fashion. For sparse matrices such property is encapsulated by the

notion of graph expansion. For any set S ⊂ A, we let Γ(S) be the set of neighbors of nodes in S, i.e.,

Γ(S) = ∪i∈SΓ(i). We say that the graph G is an (s, α)-expander if for any S ⊂ A, |S| ≤ s, we have

|Γ(S)| ≥ α|S|. Note that the expansion factor α is always at most D, since each node can have at most

D neighbors. However, there exist graphs that achieve α = (1− ε)D for any constant ε > 0; such graphs

require D = O(log(N/s)) and M = |B| = O(s log(N/s)). See Figure 5 for an illustration.

To see why expansion is desirable for sparse recovery, consider the case when ε is very close to 0 and

s = K. Let x be a K-sparse vector , and let S be a set of indices of non-zero entries in x. Then we

observe that for most nodes i ∈ S, only a small fraction of their neighbors Γ(i) collide with any other

non-zero entry. Such entries xi can be thus recovered correctly by the median-based procedure outlined

earlier.

To recover all entries, we can use an iterative refinement approach, similar to the one from the previous

section, and inspired by the “bit-flipping” algorithm for decoding low-density parity check codes. Consider

first the case where x is exactly K-sparse. The algorithm [30] starts by setting an initial approximation

x′ to 0 and iteratively refines x′ in order to achieve Φx′ = y. In each step, it tries to reduce ‖Φx′−y‖0,

by finding a pair (i, g) such that incrementing x′i by g reduces the `0 difference. It is then shown that

if the graph is an (O(K), (1 − ε)D)-expander for a sufficiently small value of ε, then x′ converges

to x in O(K) iterations. The running time of the algorithm is dominated by the preprocessing step,

which takes time O(ND), after which each iteration can be performed in O(logN) time or, in some

cases, even faster. Since the graph G is an expander, it follows that the number of measurements is

M = O(KD) = O(K log(N/K)).
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When x is not exactly K-sparse, then the `0 norm is no longer a suitable measure of progress, and

we need to use a more refined approach. To this end, we first observe that the graph-theoretic notion of

expansion has a natural and useful geometric interpretation. Specifically, consider the following variant

of the K-RIP in (5): we say that an M ×N matrix Φ has the K-restricted isometry property in the `1

norm (K-RIP1) with constant ε, if for all K-sparse vectors x, we have

‖x‖1(1− ε) ≤ ‖Φx‖1 ≤ ‖x‖1. (12)

It has been shown in [31] that if Φ is a matrix underlying a (K,D(1 − ε/2))-expander, then Φ/D

satisfies K-RIP1 with constant ε. As a result, both `1 minimization and variants of the iterative algorithms

described in Section II can be used for sparse matrices. Unlike the methods using the standard RIP, the

algorithms produce x̂ which satisfies a somewhat weaker guarantee of the form

‖x− x̂‖1 ≤ C‖x− xK‖1 (13)

Perhaps surprisingly, the simplest of the algorithms, called Sequential Sparse Matching Pursuit [32],

is similar to the aforementioned algorithm of [30]. There are two key differences though. Firstly, each

iteration reduces not the `0 error ‖Φx′− y‖0, but the `1 error ‖Φx′− y‖1. This is because by the RIP1

property, the error ‖x′−x‖1 is small when ‖Φx′−y‖1 is small. Second, in order to be able to apply the

RIP1 property, we need to ensure that the vector x′ continues to be O(K)-sparse after we perform the

updates. Since this property might cease to be true after some number of steps, we need to periodically

re-sparsify the vector x′ by setting to zero all but the K largest (in absolute value) entries of x′. This

re-sparsification step is a standard tool in the design of iterative recovery algorithms for general vectors

x.

See the survey [2] for a more detailed description of the algorithms for sparse matrices.

V. CONCLUSIONS

A great deal of theoretic and algorithmic research has revolved around sparsity view of signals over

the last decade to characterize new, sub-Nyquist sampling limits as well as tractable algorithms for

signal recovery from dimensionality reduced measurements. Despite the promising advances made, real

life applications require more realistic signal models that can capture underlying, application dependent

order of sparse coefficients, better sampling matrices with information preserving properties that can

be implemented in practical systems, and ever faster algorithms with provable recovery guarantees for

real-time operation.

On this front, we have seen that graphical models (GM) are emerging to effectively address the core

of many of these desiderata. GMs provide a broad scaffold for automatically encoding the probabilistic
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dependencies of sparse coefficients for sparse signal recovery. By exploiting the GM structure of signals

beyond simple sparsity, we can radically reduce the number of measurements, increase noise robustness,

and decrease recovery artifacts in signal acquisition. GMs are instrumental in constructing measurement

matrices based on expander graphs. These matrices not only stably embed sparse signals into lower

dimensions but also lead to faster recovery algorithms with rigorous guarantees. Moreover, the GM-

based inference tools, such as variational methods, can estimate a posterior distribution for the sparse

signal coefficients, providing confidence bounds that are critical in many applications.

To date, the sparse signal acquisition and recovery problems–surprisingly–have been studied largely

in isolation. Real progress in efficient signal recovery, processing and analysis requires that we unify

probabilistic, structured sparsity models with sparse measurement matrices to simultaneously reduce

sampling requirements and the computational complexity of recovery without compromising the recovery

guarantees. This will in turn entail investigation of streaming algorithms, coding theory, and learning

theory with a common, connecting element, which we expect to be graphical models.
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