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In this article, we review recent progress in using high-dimensional longitudinal genomic
data collected from virus challenge studies, performed with healthy human volunteers. The
focus of the article is on statistical signal processing, but we also show how the results may
be used to yield biological insights.

INTRODUCTION
We consider the analysis of time-evolving gene-expression and proteomic data. The
proposed models explicitly address issues associated with inferring the time shift between
biological times and “wall-clock” time, inferring the subject-dependent character of the
former. We employ factor-analysis and related dictionary-learning-based approaches. The
use of such methods obviates the need for explicit clustering [1] of genes.

The analysis techniques reviewed here are motivated by and demonstrated with a novel data
set we have measured in recent challenge studies. Specifically, after receiving appropriate
Institutional Review Board approval, we performed separate challenge studies in which
human volunteers were inoculated with two strains of influenza (H3N2 and H1N1), human
rhino virus (HRV), and respiratory syncytial virus (RSV). For each such challenge study,
roughly 20 healthy individuals were inoculated with a particular influenza virus and blood
samples were collected at regular time intervals until the individuals were discharged. These
data provide a unique opportunity to examine the time-evolving host response to such
viruses. The mRNA expression levels in blood were assayed with Affymetrix GeneChip
Human Genome U133A 2.0 Arrays to constitute gene-expression values for 12,023 genes.
See [5] for more details on the messenger ribonucleic acid (mRNA).
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MOTIVATION
There is often interest in predicting an individual’s latent health status based on high-
dimensional genomic biomarkers that vary over time, for example, gene-expression and
proteomic data. Motivated by novel longitudinal gene-expression and proteomic data we
have collected in several viral challenge studies, performed with healthy human volunteers,
we present signal processing methods for analysis of time-evolving genomic biomarkers.
We consider this problem from multiple perspectives related to factor analysis and
dictionary learning, and in each the high-dimensional data trajectories are related to a
relatively low-dimensional vector of latent factors or dictionary elements. The multiple
analyses are employed for cross validation, to assure that the inferred biological processes
are meaningful and uncovered via distinct models. The models infer genes and proteins in
the viral response pathway as well as variability among individuals in infection times. The
inferred low-dimensional space in which the high-dimensional data resides is used to
provide biological interpretation of the inferred viral response pathways.

There has been much recent interest in the analysis of dynamic biological processes,
particularly with data from DNA gene-expression microarray chips [1], [2]. Appropriately
analyzing the trajectories as multivariate functional data is challenging due to the massive
dimensionality, few observations in time, low signal-to-noise ratio, and missing data.
Ideally, methods would allow building a full joint model that allows each biomarker (e.g.,
gene or protein) to have its own trajectory, while accommodating dependence in these
trajectories across biomarkers within shared pathways and variability across individuals. In
such time-dependent modeling, one must often distinguish the observed (“wall clock”) time
at which a measurement was performed from the (latent) biological-clock time, and the
difference between these two must be inferred (since the offset between the two is typically
subject dependent) [3], [4].
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EXISTING METHODS FOR TIME-COURSE ANALYSIS
There have been numerous previous studies on the analysis of time-course gene-expression
data [1], [2] and almost all of these employ a clustering of the genes. To model the
continuous time dependence of the gene expression, researchers have employed the
Gaussian process [3] as well as spline basis functions [1]. Most of these methods employ
mixed-effects models, where the fixed-effects component corresponds to clusters, with the
genes clustered among one of C different classes or clusters. The random effect term
typically has a continuous time dependence that is a function of the specific gene and subject
(inferred, for example, using a spline expansion). One may also employ hierarchical
clustering of the genes [6].

Additional examples of such a mixed-effect clustering model applied to time-course gene-
expression data include [7] and [8]. While this approach has been applied successfully in
many settings, it has limitations that restrict its utility. For example, we are typically
interested in over 10,000 genes when performing microarray analysis, and therefore the
number of spline-based expansions that must be fit is significant. Additionally, for the
application of interest here, we have on the order of 20 different subjects, each manifesting a
distinct time-course profile.

The proposed approaches avoid the need to explicitly perform clustering (it is done
implicitly within the factor modeling and dictionary learning procedures), and the proposed
models infer subject-dependent shifts in the latent biological turn-on time. Typically only a
small fraction of the genes contribute to the biology under study, and in the context of the
factor analysis these genes are inferred by imposing a sparseness constraint. One need only
model the time dependence of the factor scores, rather than separately model the time
evolution of each individual gene or protein.

TIME-DEPENDENT FACTOR SCORES
BASIC FACTOR MODEL

Let  represent observed biomarkers (e.g., gene-expression data) for individual i,
considering P markers, collected at T time points (the number of time points could also be
subject-dependent); the jth column of Xi corresponds to the P biomarkers measured at time
tij, for j ∈ {1,…, ni}. We assume a total of S individuals/subjects, constituting cumulative
data {Xi}i=1, S. We consider a factor model with k factors

(1)

where  is the factor loading matrix and Lm is the mth column of L; the factor

scores for individual i are , and  is a row vector (mth row of Si) of time-
varying scores for the ith individual and mth latent factor. The factor loadings are assumed

fixed in time, while we allow the latent factors, , to vary dynamically. The matrix
 is the additive noise or residual.

SHIFTED SPLINE REPRESENTATION
Recall that individual i has data sampled at ni time points; let ti = (ti1, ti2,…, tini) denote the
time points at which data were collected for individual i (in units of minutes/hours, etc.),
with respect to a time reference shared by all S individuals. Note that these are observed
times, on a universal clock, to be distinguished from the latent biological clock of the system
under investigation (in our specific example this corresponds to the host response to a virus),
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which is generally individual dependent. The rows of Si (t) are a continuous function of
time, and the matrix Si represents each such row sampled at the T time points represented by
ti.

Recall that  represents the factor score associated with factor m ∈ {1,…, k} for
subject i ∈ {1,…, I}, evaluated at the T discrete time points in ti (Smi is a column vector, the

transpose of  above). To model Smi, let  represent a column vector,
corresponding to evaluating each of q spline functions at any time t over the support of the
splines [1], defined here by the time window over which data are collected. The number of
splines q and their composition depend upon the specific application. The function

 corresponds to realigning the spline functions to have the time origin shifted
forward by . We allow a time shift τmi specific to latent factor m and individual i by
characterizing the factor score trajectories as

(2)

where  is the transpose of
B(ti; τmi), and  corresponds to the spline coefficients for the mth latent factor. An
illustration of this generative process is presented in Figure 1.

TEMPORAL SHIFT AND DISTINGUISHING HOST-RESPONSE FACTORS
In our motivating application, all individuals are inoculated with a virus at the same time.
Blood is drawn from all subjects at a specified time prior to inoculation (t = −5 h) to
constitute a baseline signature, and another (distinct) blood sample is drawn just before
inoculation (the latter occurring at what is defined as time t = 0 h). The vector ti is defined
such that increasing element index corresponds to increasing time; this vector records the
times at which blood samples were collected. Therefore, each individual shares the same
first two time points in ti, and since the time of inoculation is by definition at t = 0, the first
element in ti corresponds to negative time.

Our objective is to study the host (body) response to the virus, and therefore the spline-based
construction for the time-dependent factors is constituted as in Figure 2. Note that the
function B(ti; τmi = 0)wm has a constant form for t ≤ −5h (with value of the constant inferred
via the analysis), this representing the background/baseline (preinoculation) factor score for
a (presumably) healthy individual. Consequently, with application to our challenge studies,
the shift τmi may be viewed as the delay between inoculation of subject i and the time at
which factor m changes from its background (“normal”) value; i.e., this is the host response
time for pathway m, which is expected to vary between subjects.

Considering Figure 2, note that large shifts τmi imply that individual i has a near constant
host response for factor m, as function of time (“near,” but not exactly constant because of
the addition of the εmi). This model is consistent with our influenza challenge study data, as
approximately half of the individuals did not become symptomatic, and for these all of the
associated factor scores manifested very weak temporal changes. Therefore, the presence of
large τmi for all factors m ∈ {1, …, k} implies that individual i is asymptomatic. Further, if a
particular factor m ∈ {1, …, k} is not related to the host response to the virus for individual
i, the associated τmi will be large, implying that Smi is nearly time invariant.

Concerning the subject and factor-dependent shift τmi, we consider a finite set of discretized
τmi, finely sampled in time, and place a Dirichlet prior on the probability that each of these
shifts are selected. The model infers an approximate posterior density function on which
time shift is most appropriate for each subject and factor.
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SPARSE FACTOR LOADINGS
In many biological applications, it is desirable to impose that the factor matrix is sparse [9].
In the case of gene-expression data, the mth factor can be viewed as measuring overall
expression of the mth pathway, with the nonzero elements in the mth column of the loadings
matrix Lm corresponding to the genes in that pathway. Biologically, we would expect a
small minority of the genes to play a role in any one pathway, implying sparsity. Hence, we
model the loading matrix as

(3)

where ○ represents a pointwise (Hadamard) matrix product between  and Z ∈ {0,
1}P×k. Binary matrix Z is designed to be sparse, and therefore the factor loadings, defined
by the columns of A ○ Z, are also sparse.

The binary matrix Z is constituted via a so-called Indian buffet process (IBP) [10],
implemented in practice by setting k large, and allowing the model to infer the number of
needed factors. In the context of the IBP, each of the P genes are “customers” in a buffet
restaurant, and the mth factor represents the mth dish. If gene g selects dish (factor) m, then
Zgm = 1, and otherwise Zgm = 0.

EXAMPLE RESULTS
Of the k factors, one of them manifested a time trajectory B(ti; τmi)wm that was closely
aligned with the clinical scores, it is this factor that is examined in further detail, as it is
deemed to be associated with the (time-evolving) host response to the virus. Results are
shown for the gene g corresponding to RSAD2, for the H3N2 virus. This gene had the
strongest contribution to the loading of this factor (largest Zgm|Agm|). All computations with
this method are performed using a Gibbs sampler.

We compare the individual- and time-dependent factor score of this factor with clinical
symptom score provided by medical doctors. The clinical symptom score was recorded
twice daily using standardized symptom scoring [11]. The modified Jackson score requires
subjects to rank symptoms of upper respiratory infection (stuffy nose, scratchy throat,
headache, cough, etc.) on a scale of 0–3 of “no symptoms,” “just noticeable,” “bothersome
but can still do activities,” and “bothersome and cannot do daily activities.” For all cohorts,
modified Jackson scores were tabulated to determine if subjects became symptomatic from
the respiratory viral challenge. A modified Jackson score of ≥6 over the quarantine period
was the primary indicator of successful viral infection [12] and subjects with such a score
were denoted as “symptomatic” the latter individuals are represented with blue points in
Figure 3.

In Figure 3, we plot the inferred time-dependent factor score for each of the subjects as well
as the clinical symptom scores. Note that the clinical symptom score generally tracks the
inferred factor score well for this time-evolving factor. Additionally, for the asymptomatic

 is almost a constant with time, but it is not
zero.

We now examine the inferred mean trajectory  of the (typical)
individuals who became symptomatic (Zgm = 1). In Figure 4 we depict the inferred host
response for this factor. Note that this trajectory has a constant value at early time; it is used
as a prototype trajectory for both symptomatic and asymptomatic subjects, and the two are
distinguished by the manner in which the trajectory evolves with time and the inferred
temporal shifts.
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ORDER PRESERVING FACTOR ANALYSIS
DICTIONARY LEARNING AND FACTOR ANALYSIS

In addition to Bayesian factor analysis, we have also examined the data using non-Bayesian
dictionary learning. The two distinct classes of models have inferred very similar underlying
biological processes. The use of independent analyses is deemed important for accurately
uncovering new biology based on limited high-dimensional data.

Dictionary learning refers to a class of methods that seek to represent data by sparse
combinations of an overcomplete basis set, called a dictionary [13]. Note that here we take a
different approach from the factor modeling in the section “Time-Dependent Factor Scores,”

with  from this section corresponding to Yi. Dictionary learning is also called sparse
coding and is widely used in neuroscience, speech, audio, and image processing. On the
surface, dictionary learning resembles factor analysis in that they both seek a factored
representation for the data matrix. For example, when Yi is the matrix of subject i with rows
corresponding to T time points and columns corresponding to P gene indices dictionary
learning seeks a factorization of the form

(4)

where S is the number of subjects, the f columns of matrix M form the universal dictionary
of basis elements, and Ai is a sparse coefficient vector (the code) associated with subject i’s
particular linear combination of dictionary elements composing Yi. In dictionary learning, as
in factor analysis, both the dictionary and the coefficients are learned from the data {Yi}.
However, while in standard factor analysis the objective is to find a low rank Ai, in
dictionary learning the objective is to find a sparse matrix Ai.

For consistency, we will use the standard factor analysis terminology for the dictionary
learning model (5): columns of M and rows of Ai will be called factor loadings and factor
scores, respectively. While this model can be used for a wide range of applications it is not
applicable when there are unknown delays among factor loadings shared by different
subjects. We describe a variant of the dictionary learning model, called order preserving
factor analysis (OPFA), which accounts for temporal misalignment, incorporates
smoothness constraints on the factor loadings, and preserves their relative ordering over the
subject population.

ORDER PRESERVING FACTOR ANALYSIS
The principle of evolutionary conservation suggests that major gene regulation mechanisms,
such as cell growth and death, operate similarly over the human population. According to
this principle, all healthy individuals share the same basic mechanisms of immune response.
Systems biology models formalize this principle by modeling gene regulation according to a
causal cascade of modules or pathways. Under such a model, signals associated with viral
sensing and antigen presentation precede signals for the inflammation response to the virus.
The order in which these signals occur is important to effective immune response while the
precise timing of these signals may be less important. The order may in some cases be
known, or hypothesized based on known biology, or it may be unspecified and learned from
data [14].

The systems biology viewpoint motivates an order preserving modification of the dictionary
learning model (5) that restricts immune-related signaling to occur in a (unknown) temporal
precedence order. The modified model accounts for temporal misalignments between signals
up to these order restrictions
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(5)

where di is a vector of unknown delays that specifies the delay of each factor, a column of
F. When the factors satisfy a precedence order constraint the vector of delays will lie in a
cone shaped region for all subjects i, for example,

 is the region where each factor precedes the next
in the natural index order of the factors. The factors, delays and coefficients are estimated
from the data by solving a nonconvex optimization problem of the form

(6)

where minimization is performed over vectors of delays di that lie in the order-preserving
set for all subjects and over nonnegative matrices F, Ai. The nonnegativity constraint on the
factors is natural since gene expression is measured in units of abundance of mRNA. The
functions P1 and P2 are penalties that induce temporally smooth columns of F and shared
sparsity across rows of Ai, for each i. For more details on the implementation of the
optimization algorithm for solving the order preserving dictionary learning problem (6) the
reader is referred to [15].

EXAMPLE RESULTS
Our formulation (6) of OPFA can be interpreted as an extension of sparse factor analysis
(SFA) [16], parallel matrix factorization (PARAFAC) [17], and nonnegative matrix
factorization (NMF) [18] that accommodates factor misalignment and unknown factor
ordering common to all measurements. PARAFAC and NMF generalize PCA to higher
dimensions (tensors) and to nonnegative matrices, respectively. These matrix factorization
methods are highly sensitive to misalignments of the factors. The order preserving
restriction of OPFA over-comes this misalignment sensitivity as illustrated in Figure 5 for a
toy example.

Figure 6 shows the result of applying OPFA to real data, in particular the set of nine
clinically sick subjects in the H3N2 challenge study described above. OPFA factors were
discovered that correspond to three characteristic temporal profiles: suppressed response
(factor 1 in red), suppressed response followed by recovery (factor 2 in blue), and enhanced
response (factor 3 in green). The genes in these three groups are associated with the Jun N-
terminal kinases (JNK) pathway (factor 1), ribosomal protein (RP) expression (factor 2), and
interferon inducible (IFN) genes (factor 3). Furthermore, the factor order reconstructed by
OPFA indicates that the gene onset times in factor 2 occur earlier than those in factor 3, a
finding that is consistent with previous studies of temporal immune host response [19].
Remarkably, OPFA discovered this ordering de novo despite subject misalignments in the
gene expression trajectories. Furthermore, even though clinically determined symptom onset
times reported in [20] were not used by OPFA, the subject-dependent delays of OPFA factor
3 track these clinical symptom onset times. This provides independent confirmation of the
power of the OPFA method.

Figure 7 illustrates the utility of OPFA for improving cluster separation performance for
unsupervised clustering. The two scatter plots show the coefficients of each gene over the
first two OPFA factors and the two first principal components of the covariance matrix of

the misaligned data, . Each gene is color coded according to the clusters found by
performing hierarchical clustering on the OPFA-aligned and on the original misaligned data,
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respectively. The scatter plots show how the OPFA coefficients show better separation
between the up-regulation genes (reds) from the down-regulation genes (dark blues). In the
OPFA scatter plot, the red and dark blue groups are separated by genes with weak temporal
response (light blue). In contrast, the PCA-based representation of the raw misaligned data
does not separate these groups well, reflecting the higher variance in the red and dark blue
genes groups due to misalignment. This tightening of the clusters is further illustrated by
comparing the far-left time profiles (cluster means after OPFA alignment) to the farright
time profiles (cluster means without first applying OPFA alignment).

METAPROTEIN EXPRESSION MODELING
MASS SPECTROMETRY PROTEOMICS

Unbiased mass spectrometry (MS)-based proteomics has made tremendous progress since
initial studies using matrix-assisted laser desorption/ionization-time of flight (MALDI-ToF)
machines in the late 1980s. Current machines are now capable of splitting samples
according to a number of different features such as pK, hydrophobicity, and ion mobility,
and the resolution of measurements of mass-to-charge ratios are now high enough to detect
the difference between two polypeptides that are identical except for the inclusion of a
single extra neutron. In this section, we present a different extension of the factor model
used in [21] that is specific for the analysis of unbiased, label-free MS proteomics data. We
incorporate multiple sources of information about correlation in the hierarchical structure of
the model, and this leads to significant improvement in posterior estimation.

MS data may be summarized at a number of different levels, and the analysis of that data
may be tailored to any of these summarizations. The smallest unit that is measured by liquid
chromatography-tandem MS (LC-MS-MS) is a single peak, which is termed a feature, and
there are typically on the order of 105 such features. This is a single peak in the two-
dimensional surface over a plane defined by the retention time (amount of time a
polypeptide takes to pass through the liquid chromatography column) and mass-to-charge
ratio. The intensity of this feature is defined to be the volume under this peak. Because a
certain percentage of carbon in nature has an extra neutron, each polypeptide leads to
multiple features. The collection of features from a single polypeptide that differ in mass-to-
charge ratio only by an integer number of neutrons is called an isotope group, and the
intensity of the isotope group is the sum of the intensities of its associated features—this is
the level at which we summarize our data in this article. In addition to differences in mass,
polypeptides may accept a variable, integer number of protons during electrospray
ionization. Thus there may be multiple isotope groups per peptide. Finally, for a collection
of isotope groups that are known to originate from the same protein one might summarize
the data at the protein level. We note that, in contrast to gene expression microarray data in
which each spot on the array is fully characterized, the chemical species that make up a MS
peaks are often unknown.

EXISTING METHODS FOR ANALYSIS
There are a number of different regression models designed for summarization of
proteomics data at the protein level. The simplest such procedures involve direct
summarization of all features/isotope groups/peptides that are identified for each protein.
This may involve averaging or robust summarization based on quantiles [22]. In addition to
these algorithms, there are a number of different analysis of variance (ANOVA) approaches
that include fixed effects for protein, peptide, and experimental group [23]; include an
additional random effect for cases in which subjects are measured in replicate [24]; or add
additional interaction effects between treatment and feature [25]. These may assume
constant or varying noise levels across isotope groups and have been shown to exhibit better
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performance than naive summarization approaches that do not adjust for confounding
factors [25]. While all generally acknowledge the existence of incorrect identifications, none
of these approaches directly address this problem. In addition, other than our previous work
which examines an earlier factor model in greater detail in a different biological context
[26], we are unaware of any such techniques that utilize correlation between features/isotope
groups/peptides in any way, nor do any of them utilize unidentified features in protein level
quantitation. We review in this article a statistical model first described in [27] that allows
the direct modeling of correlation structure and its deconvolution into separate protein and
pathway effects. We do not examine any improvements that might be made by the inclusion
of fixed and random effects associated with treatment group or replicate measurements of
sample. However, the model we describe is a regression model, and would, therefore, be
amenable to the inclusion of such effects.

FACTOR MODEL AND HIERARCHICAL STRUCTURE
There are two key sources of information we might use to collect isotope groups into
coherent subsets—identifications and coexpression. The identifications tell us which isotope
groups originate from the same protein, and if we assume that proteomics is actually
measuring differential expression of proteins, then all of the isotope groups from the same
protein should coexpress. However, identifications are incomplete, and while those that are
obtained are reasonably high accuracy, there are still some mistakes. Additionally, there are
a number of biological processes that add chemical modifications to specific regions of
proteins. These modifications change the relative abundance of the unmodified regions of
the proteins, which exerts strong effects on the resulting measurements (thus proteomics is
actually measuring something more subtle than just differential expression of proteins).

Aside from biological processes that may lead to differential expression of individual
proteins, there is technical variation that will lead to differential measurements of expression
across large portions of the data set. We will utilize a factor model to represent the
correlation structure present in the data, but we break that model into two parts, each of
which will have its own hierarchical structure. We suppose that  is a matrix of
intensities, with columns Xi, where P is the number of measured isotope groups and N is the
number of samples. We assume

Note that the basic form of this model is related to the factor model in the section “Basic
Factor Model,” but now X corresponds to proteomic data. Both MA and LS describe latent
factors, but we have split them because they describe different types of correlation with
different hierarchical structures.

We represent technical noise with the MA factor structure where M ∈ Rp×d is a factor
loadings matrix and A ∈ Rd×N is a factor scores matrix. We assume that this noise is
ubiquitous throughout all isotope groups and therefore do not impose sparsity, Mi,j~N(0, τ0).
We may optionally include design variables in A if we want to control the for specific
known features of data. This may include either known batch effects (although we find that
these are captured well by latent factors) or known phenotypes of the samples. Otherwise,
we assume latent factors such that Ak,j~N (0, 1).

The correlation structure that is present in the data because there are multiple isotope groups
are derived from the same protein is modeled by a separate factor structure LS. As before

 is a factor loadings matrix and  is a matrix of factor scores. This
structure of L is expected to be sparse—correlation described by this structure should be
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largely restricted to sets of isotope groups from the same proteins. We assume that every
isotope group originates from a single protein, and therefore that every row of the loadings
matrix L contains only one nonzero element. Thus we introduce a latent variable zi which
identifies, for isotope group i, the metaprotein factor to which it belongs (i.e., which element
of the ith row of L is nonzero). Thus element Li,j = 0 when j ≠ zi and Li,zi~N(0, τ0). Our
hierarchical prior for zi is

(7)

We utilize an informative choice of Dirichlet distribution parameters ai in cases where we
have prior information telling us in which protein isotope group i originated. Specifically, if
isotope group i is from protein k then we assume that ai = (a0, …, a0, ak, a0,… a0)’ where ak
> > a0.

In addition to correlation between isotope groups due to originating from the same protein,
expression of the proteins themselves is also correlated due to that expression being
regulated within the same biological pathways. Because we have information about the
relationships between some isotope groups and proteins, we are able to deconvolute these
two sources of structure in the data. To capture this “pathway level” correlation between
proteins, we impose a binary tree model on the metaproteins. We suppose that each row, Sk
of S (each metaprotein) identifies an expression pattern that is associated with a leaf in a
binary tree. We define ta→b to be the “distance” between node a and its child node, b, and
wa to be an N-dimensional vector describing an expression pattern associated with node (or
leaf) a. Then, assuming b is a child of a, we assume

Given any pair of leaves, we a priori assume that the distance between one of those leaves
and the first node which is an ancestor of both is exponential with rate parameter 1. This is
the Kingman’s coalescent [28]. It describes a uniform distribution on the space of binary
trees and provides a proper prior distribution on child-to-parent distances, t.

We introduce a factor for each protein that has more than one identified isotope group in the
data set. This model is conjugate, and we utilize Gibbs sampling in a Markov chain Monte
Carlo (MCMC) algorithm to obtain posterior distributions for all model parameters.
Sampling of coalescense times for the tree model is accomplished via belief propagation
[29], [27]. Trees are constructed through the coalescence procedure described in [28] and in
[27].

PLASMA PROTEOMICS DURING VIRAL INFECTION
Working with the same set of subjects discussed in the previous sections (inoculated with an
H3N2 strain of viral influenza), we obtained LC-MS/MS proteomics data from blood plasma
at baseline (time = 0), at the time of maximum symptoms (time = 1) and at times .2 and .8.
The resulting MS traces were then used to estimate the concentrations of approximately
40,000 isotope groups in each sample (with ≈ 5% overall missing data). Approximately
10% of these were identified—the amino acid sequence of the peptide was characterized and
that sequence was mapped to a known protein.

In our viral infection data, this leads to a very sparse model with 109 latent factors, each
nominally representing the expression of a particular protein. Due to uncertainties in
identifications as well as biological perturbations of particular sections of the proteins, there
are many peptides (approximately half) that do not follow a pattern of expression across the
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samples that is consistent with the majority of peptides from that protein (see, for example,
Figure 8).

We were able to identify a number of metaproteins that are associated with the disease state,
the strongest of which is shown in Figure 9. We note that the majority of isotope groups in
this factor are identified as belonging to the protein A2GL and that it is grouped together by
the tree model with c-reactive protein and lipopolysaccharide binding protein (Figure 10),
both of which are known to react to the presence of infection. It is informative to examine
the full collection of isotope groups from A2GL (Figure 8). We note that, while around two
thirds of the isotope groups show clear visible coexpression, the remainder show patterns
that are not highly correlated. An understanding of this structure in the data provides a
number of benefits. First, in cases where it is the bulk of the protein that shows differential
expression that correlates with biological phenotypes, as is the case with A2GL and the
“symptomatic versus asymptomatic” phenotype, the aggregate expression from the
metaprotein model will provide a much stronger predictor than a summarization based on
isotope group identifications. Second, if our goal is the development of biosignatures then
we must be careful about which peptides, not just which proteins, we will use for that
biosignature. Finally, in cases where we are looking for association between protein
expression and phenotype data, we will be able to perform many fewer hypothesis tests, and
have commensurate higher power, if we can perform those tests on just metaproteins rather
than on peptides. This is also true of protein summarization approaches based on
identifications as well, however, we find that there are approximately half as many
metaproteins versus proteins, that the metaproteins are typically less correlated with each
other than are proteins, and that we can include potentially informative but unidentified
isotope groups in targeted studies when we select them based on the metaprotein model.

INFERRED BIOLOGY
As summarized in the sections “Time-Dependent Factor Scores” and “Order Preserving
Factor Analysis,” two very distinct techniques were employed to analyze the time-course
gene-expression data (in the section “Time-Dependent Factor Scores,” a fully Bayesian
approach was employed, while in the section “Order Preserving Factor Analysis,” a non-
Bayesian optimization approach was employed). It is encouraging that these approaches
agreed on the following 50 genes as being important to the host response to the virus (these
contribute significantly to the factor linked to the host response to the virus): RSAD2,
OAS1, IFI44L, RTP4, IFIT3, IFITM1, IFI44, PLSCR1, LY6E, ISG15, P2RX5, IFI27,
GBP1, KIAA0125, APOBEC3A, EPB41L3, IFIT1, XAF1, PSMB9, TRIM22, SERPING1,
HERC5, OASL, SCO2, IFI6, DDX60, BLK, MS4A4A, TNFRSF9, BLVRA, LOC26010,
MX1, C1QA, OAS3, IRF7, VAMP5, IFIT5, SMPDL3A, FER1L3, UBE2L6, SIGLEC1,
C13orf18, PSME2, IFI35, C1QB, BST2, OAS2, PNOC, RRAS, and SRBD1. These same
genes were found to be important to all viruses we have studied (H3N2, H1N1, HRV, and
RSV), and therefore we refer to these as constituting a “pan-viral” factor. Further, we
emphasize that we only list 50 genes for brevity, but hundreds of other genes are also
inferred to play a role in the host response. In the context of the factor analysis in the section
“Time-Dependent Factor Scores,” for example, these genes are those that contribute
appreciable amplitude to the factor loading highlighted in Figures 3 and 4. In a third distinct
analysis (not covered in this article), based upon elasticnet and Bayesian elastic-net analyses
[30], these genes were again found to play principal roles in the host response; we therefore
emphasize that these genes have been analyzed and reanalyzed from multiple statistical
perspectives, and their robustness suggests biological importance.

These findings are also supported by our proteomics data. Three of the proteins (CRP,
A2GL, and CO9), and 35 of the 50 top genes, have in their promoter regions binding sites
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for interferon regulatory factor 1. This suggests that activation of this interferon pathway is
critical for an active response to infection, although this has yet to be tested thoroughly.

In Figure 11, we relate the aforementioned genes to an inferred pathway. This pathway is
deemed to be of high accuracy as the strength of association of the multitask gene list with
this pathway is quite robust (z-score [an indication of how many genes in the gene list are
represented in a particular network] 76.83). The top represented pathway, the ISG15
pathway in Figure 11, is highly involved in viral immunity as it is activated by initial viral
sensing and subsequent interferon production. ISG15 is known to target the influenza A
protein NS1 and result in limitation of viral replication [31].

SUMMARY
An underlying theme of the statistical analysis is constituted by use of factor analysis to
yield a small number of factors responsible for the high-dimensional data. This framework
significantly aids analysis, as we typically have far fewer samples than genes and proteins,
and therefore dimensionality reduction is essential. The factor analysis has been
implemented from various perspectives. Specifically, in one analysis of the gene-expression
data, and when analyzing the proteomic data, the factor loadings were related to the genes/
proteins, and the factor loadings were assumed sparse, as to infer the low-dimensional set of
genes/proteins responsible for biological pathways. In a distinct factor analysis, related to
dictionary learning, the factor loadings were employed to model the time dependence of the
gene expressions, and in this case the loadings are not sparse, but smooth. In addition to
these different usages of the underlying model, we also employed Bayesian and non-
Bayesian inference methods. It is highly encouraging that these very different methods
yielded very similar biological interpretations, concerning the genes that play a pivotal role
in the host response to virus.

We have focused here on the H3N2 influenza virus, to simplify the discussion. However, we
have performed related analyses on all virus investigated in our challenge studies, and we
found consistent host responses and underlying genes/proteins across all of them. This has
led us to constitute what we term a “pan-viral” factor, with an associated pathway we have
briefly discussed.
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[FIG1].
Generative process for the factors Smi = B (ti; τmi) wm + εmi. Part (a) shows the basis
functions, corresponding to spline functions and a step function at earliest times (the latter
represents the factor before the virus under study causes changes to the host). The basis
functions are weighted by wm and superposed, to constitute a continuous-time factor, termed
here a (b) “prototypical trajectory.” For individual i, the trajectory is shifted by time τmi, and
then sampled at the times defined by ti, manifesting the discrete samples in (c). Finally, i.i.d.
noise is added to each discrete observation, manifesting the (d) final discrete individual-
dependent factors for factor m. Part (d) corresponds to factor scores for actual samples from
the H3N2 challenge study (microarray data), with the “prototypical trajectory” representing
the inferred typical host response, apart from the individual-dependent shift τmi . The (a)
basis functions are used for all factors m ∈ {1,…, k}, and separate wm and shift time τmi are
used to yield the shifted factors within the box.
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[FIG2].
Basis functions used for modeling the time dependence of the factor scores.
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[FIG3].
Parts (a)–(q) show subject-dependent plots of average

, for gene RSAD2 from the factor
linked to H3N2 (blue) as well as the clinically observed symptom score (green). We
consider RSAD2 gene, for which Zgm = 1. The horizontal axes correspond to time from
inoculation, in hours, and the vertical axes correspond to (left) factor or (right) clinical score.
The subjects with a + 1 label (top of each subfigure) corresponds to individuals who became
symptomatic, and those with −1 labels were asymptomatic. Time t = 0 h corresponds to
when the virus inoculation occurred. To reduce clutter in the figures, the axes are not
labeled; the horizontal axes correspond to time in hours, and the vertical axes represent the
(left) factor score or the (right) clinical score.
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[FIG4].
(a) Inferred average trajectory for the (presumed) factor associated with the time-dependent

host response to H3N2,  (with standard-deviation error
bars), corresponding to the gene RSAD2 (Zgm = 1). (b) Inferred shifts for all individuals.
Note that the shifts cluster naturally into two groups (red: asymptomatic, blue:
symptomatic), consistent with the clinical label information.
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[FIG5].
Illustration of the effect of temporal misalignment on OPFA for a synthetic example with
ten subjects (only four shown), 50 genes, 50 time points and f = 2 factors in a low-noise
environment (SNR = 10dB). Parts (a)–(d) show the gene trajectories of four of the subjects;
the misalignment of the signal features is evident. Part (e) shows the OPFA estimated and
original factors, after realignment to a common reference time-point. Part (f) shows the same
for SFA, a model that does not account for the order-preserving misalignments. The OPFA
estimates correlate significantly better with the original factors than the SFA ones.
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[FIG6].
(a) Gene expression trajectories of 13 highly variant genes for four of the nine symptomatic
subjects in the H3N2 challenge study. (b) OPFA discovers three factors (red, blue, and
green), and their corresponding alignment parameters, that explain these gene expression
trajectories by solving the optimization problem in (6). The clinical onset times, determined
by physicians, are shown in black. It is clear that the peak of the green factor predicts the
onset time and that precedence order among the three factors is consistent across subjects.
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[FIG7].
Scatter plots: Representation of each gene trajectory on the first two OPFA coordinates
(given by the first two columns of Ai) and the coordinates obtained through a PCA analysis

of the misaligned joint covariance . Parts (a) and (d) show the correspondence
between the color coding and the clusters obtained by doing hierarchical clustering on the
(b) OPFA realigned data and the (c) raw misaligned data. The down-regulated genes (reds)
are clearly clustered away from the up-regulated genes (dark blues) in the OPFA
representation, and both groups are separated by the genes that show little or no variation
(light blue). The PCA analysis (c) suffers from misalignments and the first two principal
components fail to separate the up-regulated genes (reds) from the down-regulated genes
(dark blues). Furthermore, the temporal clusters in (a), obtained from OPFA realigned data
are more concentrated than those in (d), obtained from raw misaligned data, as can be seen
from the tighter confidence envelopes on the OPFA cluster means.
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[FIG8].
All isotope groups originating from the protein A2GL. The columns have been ordered to
make the first principal component monotone (independently in each heatmap) and the rows
have been ordered from top to bottom in order of decreasing correlation with the first
principal component in (a), with that ordering preserved in (b). We have broken the figure
by batch to demonstrate that the correlation structure is preserved even when the experiment
is repeated on different samples months apart.
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[FIG9].
A heatmap of the metaprotein showing the strongest association with disease. Each row is an
isotope group and each column is a sample. Note that the majority of the peptides are from
the protein A2GL (Leucine-rich alpha-2-glycoprotein), but that there are peptides that were
identified as belonging to other proteins such as Apolipoprotein B-100 (APO B),
Complement factor B (CFAB), Kallistatin (KAIN) and other unidentified isotope groups.
The red color represents a relatively high concentration of the isotope group in the sample
while blue represents low (each row has been standardized to have mean zero and variance
1). Samples from subjects who became symptomatic are labeled with + and those who
remained asymptomatic are labeled with −. The label colors, black, blue, pink, and red
represent times 0, .2, .8, and 1, respectively. The samples are ordered so that the associated
factor is increasing, and because almost all samples from symptomatic individuals at times .
8 and 1 (red and pink +’s) are at the far right we can see that this factor clearly distinguishes
sick from healthy individuals.
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[FIG10].
The tree with the highest posterior likelihood from among those that were visited during the
MCMC chain. A2GL is shown at the top in a subtree with c-reactive protein and
lipopolysaccharide binding protein, both of which are known to react to the presence of
infection.
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[FIG11].
Genes identified from a key antiviral immune pathway. Pathway analysis
(www.genego.com) illustrates the ISG15 pathway, with over-representation of genes
identified by the multitask elastic net. ISG15 is a ubiquitin-like modifier that is induced by
interferon to restrict viral replication [32]. Downstream elements of ISG15 activation
include activation of STAT-1.
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