
	 IEEE SIGNAL PROCESSING MAGAZINE  [82]  january 2013	 1053-5888/13/$31.00©2013IEEE

I
n recent years, signal processing applications that deal with user-related data have
aroused privacy concerns. For instance, face recognition and personalized recommen-
dations rely on privacy-sensitive information that can be abused if the signal process-
ing is executed on remote servers or in the cloud. In this tutorial article, we introduce
the fusion of signal processing and cryptography as an emerging paradigm to protect

the privacy of users. While service providers cannot access directly the content of the
encrypted signals, the data can still be processed in encrypted form to perform the required
signal processing task. The solutions for processing encrypted data are designed using
cryptographic primitives like homomorphic cryptosystems and secure multiparty compu-
tation (MPC).

Need for Privacy Protection in Signal Processing
Research by the signal processing community has given birth to a rich variety of signal
recording, storage, processing, analysis, retrieval, and display techniques. Signal process-
ing applications are found in many fields of economic and societal relevance, including
medical diagnosis, multimedia information services, public safety, and the entertainment
industry. The design of a particular signal processing solution is commonly driven by
objective or perceptual quality requirements on the processing result and by the tolerable
computational complexity of the solution. In the past decade, however, rapid technological

Digital Object Identifier 10.1109/MSP.2012.2219653

Date of publication: 5 December 2012

[R. (Inald) L. Lagendijk, Zekeriya Erkin, and Mauro Barni]

Encrypted
Signal Processing

for Privacy Protection
[Conveying the utility of homomorphic

encryption and multiparty computation]

developments in areas such as social networking, online applications, cloud computing, and distributed pro-
cessing in general have raised important concerns regarding the security (and in particular, the privacy) of
user-related content. We believe that the time has come to bring privacy-sensitive design to the signal pro-
cessing community.

Privacy concerns about personal information have always existed. For instance, privacy-sensitive informa-
tion might be exchanged during a
video conferencing session. In
such cases, the classic model of
security is applicable, specifically
two parties that trust each other
communicate while protecting
their communication from third,
possibly malicious, parties. It is
generally sufficient that some
cryptographic primitives are
applied on top of transmission,

compression, and processing modules. Another
category of privacy concerns exists when personal
content such as images and videos are shared vol-
untarily—or unknowingly made available by a
third party—on social media. Privacy-related inci-
dents and harms are becoming increasingly com-
mon as a result of the growing popularity of
ubiquitous social media. Here, technology hardly
offers solutions; proper legislative underpinning of
privacy guarantees and simultaneously educating
the users of social media seem far more effective
ways of preventing the abuse of shared privacy-
sensitive material.

The privacy threats that we are concerned with
in this article are associated with the provider of a
particular service. In offering a service that

depends on personal information, the service provider
might learn a lot about a user’s preferences, past behavior,

and biometrics. On the one hand, the user must trust the service
provider with his or her personal information to make use of the ser-

vice. Yet on the other hand, the service provider is not a trusted party per se.
In this article, when we say service provider, we generally refer to parties that

operate on some user-related content. We give three signal processing examples to
illustrate service provider-related privacy issues.

■ ■ Biometric techniques, such as face recognition, are increasingly deployed as a means to
unobtrusively verify the identity of a person. Digitized photos allow the automatizing of identity

checks at border crossings using face recognition [1]. Surveillance cameras in public places have led to
interest in the use of face recognition technologies to automatically match the faces of people shown on
surveillance images against a database of known suspects [2], [3]. The widespread use of biometrics raises
important privacy concerns if the face recognition process is performed at a central or untrusted server.
People might be tracked against their will, and submitting query faces to a database of suspects might
unjustly implicate innocent people in criminal behavior.

■■ People use social networks to get in touch with other people, and they create and share content that
includes personal information, images, and videos. A common service provided in social networks is the
generation of recommendations for finding new friends, groups, and events using collaborative filtering
techniques [4]. The data required for the collaborative filtering algorithm is collected from sources such
as the user’s profile, friendships, click logs, and other actions. The service providers often have the addi-
tional right to distribute processed data to third parties for completely unrelated commercial or other
usage [5].

© istockphoto.com/marcello bortolino

	 IEEE SIGNAL PROCESSING MAGAZINE  [83]  january 2013

	 IEEE SIGNAL PROCESSING MAGAZINE  [84]  january 2013

■■ Many homes have a set-top box with high storage capacity
and processing power. The television service providers use
smart applications to monitor the viewers’ actions to gather
statistical information on their viewing habits and their likes
and dislikes. Based on the information collected, the service
provider recommends personalized digital content like televi-
sion programs, films and products. At the same time, an indi-
vidual’s way of living can be inferred from the information
collected by the service provider.

While users in the above examples clearly experience the
advantages of providing personal information, they also put
their privacy at risk as the service provider might or might not
preserve the confidentiality of personal information, or the
information might be leaked or stolen.

The need for privacy protection has triggered research on the
use of cryptographic techniques within signal processing algo-
rithms. Privacy-sensitive information is encrypted before it is
made available to the service provider—an action that might
seem to impede further processing operations like the ones
described above. However, this is not the case. The use of modern
cryptographic techniques makes it possible to process encrypted
signals, and users and service providers taking part in the pro-
cessing have the opportunity to keep secret the information, or
part thereof, that they provide for the computation. The applica-
tion of cryptographic techniques to enable privacy-protected sig-
nal processing is of invaluable importance in many situations.

The aim of this tutorial article is to expose signal processing
theorists and practitioners to privacy threats due to service pro-
viders executing signal processing algorithms. Certain crypto-
graphic primitives that can be elegantly used to protect the
privacy of the users are described. The article does not assume
particular cryptographic background knowledge, and we explic-
itly take a signal processing perspective on the privacy problem.
Alternative signal processing-based approaches to privacy pro-
tection exist that use, for instance, blinding and randomization
techniques [6]–[8]. We focus specifically the use of encryption
techniques because this approach is far less well known to the
signal processing community.

In “Private Key and Public Key Cryptography,” “Additively
Homomorphic Public Key Encryption,” “Arithmetic Compari-
son Protocol,” and “MPC Using Garbled Circuits,” a concise,
high-level introduction is provided and background knowledge
of cryptographic primitives used in the article. To match the
tutorial level to the signal processing community, some of the
cryptographic protocols’ descriptions have been simplified to
the point that they might look awkward to cryptographic
experts. Our intention is not to give a comprehensive overview
of all cryptographic techniques that are useful in signal process-
ing, but to convey the basic ideas, utility, challenges, and limita-
tions of cryptography applied to signal processing.

This article explains the privacy-protected counterparts of
three well-known signal processing problems: face recognition,
user clustering, and content recommendation. These three algo-
rithms have been deliberately chosen to build up the complexity
of the resulting encrypted signal processing. The algorithms have

also been selected such that key concepts in signal processing are
well covered, specifically, linear operations, inner products, dis-
tance calculation, dimension reduction, and thresholding.

A Simple Privacy-Protected
Signal Processing Algorithm

Algorithm
Let us start by introducing a simple yet representative signal
processing algorithm to expound how cryptographic techniques
are used to achieve privacy protection. The algorithm we use
exemplifies two operations commonly encountered in signal
processing, specifically 1) the weighted linear combination of
input samples, as in linear filtering and signal transformations,
and 2) the comparison of some processed result to a threshold,
an operation reminiscent of signal quantization and classifica-
tion. Two parties are involved in the signal processing operation:
the party denoted by A(lice), which owns the privacy-sensitive
signal (),x i say some recorded biometrics or medical signals;
and the party B(ob), which has the signal processing algorithm
(.),f say some access control algorithm or diagnosis algorithm.

Alice is interested in the result (()),f x i but does not wish to
reveal ()x i to Bob because of privacy concerns. Bob, on the
other hand, cannot or does not wish to reveal (essential parame-
ters of) his algorithm (.)f to Alice for computational or commer-
cial reasons. An example would be the intricate details of a
commercially successful service such as search engines. It is
roughly known which data is used in producing search results,
but the exact function involved is not publicly known. This
setup is typical of the examples mentioned in the section “Need
for Privacy Protection in Signal Processing,” and it will also play
an important role when we discuss more elaborate privacy-pro-
tected signal processing operations in later sections.

The toy example that we will use to convey the main ideas in
privacy-protected signal processing is the following. Bob owns
an algorithm that processes two signal samples ()x 1 and ()x 2 to
obtain a binary classification result C (see also Figure 1):

	
() () ,

C
h x h x T0

1
1 2if

otherwise.
1 2 1

=
+' 	 (1)

Security Model
In this simple example, the value of the signal samples ()x 1 and

()x 2 are private to Alice and hence held secret from Bob. The
linear weights h1, ,h2 and threshold T are private to Bob. The
classification result { , }C 0 1! should be private to Alice. In
other words, Bob must be unaware not only of the input signal

(),x i but also of the output result .C
At this point, we need to make two security model assump-

tions. The first is that Bob plays his role correctly and always
executes (())f x i in a correct manner, without attempting to dis-
rupt .C Bob’s possible attacks concentrate on obtaining the
input signal ()x i or the intermediate results, such as the value
of () (),h x h x1 21 2+ or .C Under this assumption, Bob is called
an honest-but-curious or a semihonest party [9]. The second

	 IEEE SIGNAL PROCESSING MAGAZINE  [85]  january 2013

assumption is that Alice is not able to submit unlimited pro-
cessing requests to Bob, because this would enable her to learn
the values of ,h1 ,h2 and T by trial and error, which is commonly
known as a sensitivity attack [10]. Sensitivity attacks are usually
not treated in cryptography, and they are considered to be out-
side of the attacker model.

Linear Combination of Encrypted Samples
We now consider (1) in the situation that Alice sends Bob her
input signal ()x i in encrypted form. Alice encrypts ()x i sample
by sample, using a public key cryptosystem (see “Private Key
and Public Key Cryptography”) with the additively homomor-
phic property [11], [12]. The key properties of additive homomor-
phic encryption are

	 (() ()) ,m m m mD E ESK PK PK1 2 1 2$ = +

	 (()) .m w mD ESK PK
w $= 	 (2)

We refer to “Additively Homomorphic Public Key Encryption”
for more background information. Alice sends only her public
key PK and ciphertext to Bob. Figure 2 illustrates the subse-
quent processing steps. For the purpose of simplicity, we use
the following shorthand ciphertext notation for encrypted
signal samples using public encryption key :PK

	 () (()) () .x i x i x iE
PK

PK
encrypt with key

" =" , 	 (3)

Thanks to the additive homomorphic property of the crypto-
graphic system used, the linear part of the signal processing algo-
rithm (1) can be rewritten to directly work on the encrypted signal
values ()x 1" , and () .x 2" , Specifically, the counterpart of

() ()h x h x1 21 2+ in the encrypted domain is (see “Additively
Homomorphic Public Key Encryption”)

	 (() ()) () ()h x h x h x h x1 2 1 2EPK 1 2 1 2+ = +" ,
	 () () modh x h x n1 21 2$=" ", ,
	 () () .modx x n1 2h h1 2$=" ", , 	 (4)

This result shows that Bob can directly compute the encrypted
result of the linear combination () ()h x h x1 21 2+ from the
ciphertext values ()x 1" , and ()x 2" , without having access to
Alice’s secret decryption key SK. Bob also does not need to involve
Alice in computing () () ;h x h x1 21 2+" , the computation protocol
does not require interaction between the parties. The result that
Bob obtains is still encrypted, and it can only be decrypted (if
needed) by Alice using .SK

Even though the equivalence of the plaintext-based operation
in (1) and the ciphertext-based operation (4) is elegant, (4)
comes with an important inherent limitation. In (1),

() ()h x h x1 21 2+ can, at least in principle, be evaluated on any
real values ((), ())x x1 2 and (,).h h1 2 The operat ion

() () ,x x1 2h h1 2$" ", , however, assumes that (,)h h1 2 are arbitrary
integers, and that ()x 1" , and ()x 2" , and all intermediate results
are integers in the interval [,] .n0 1- This is because public key
cryptographic operations are carried out in finite

fields, involving arithmetic operations on integers such as the
multiplication (modulo n) in (4). A common workaround is to
multiply real-valued numbers by a sufficiently large constant and
quantize the scaled value. The scaling factor becomes part of the
public key information as, for instance, the value of T must be
scaled too. The loss of accuracy due to quantization is directly
controlled by the scaling factor. Note that indiscriminate scaling
is not possible due to the range limitations on the processed
signal values. If negative numbers are required, these are typi-
cally mapped on the upper half of the interval [,] .n0 1-

[Fig2]  Privacy-protected version of the signal processing
algorithm in (1). The yellow area indicates the operations that
are carried out on encrypted (signal) values.

x(1), x(2)

gx(1)k, gx(2)k

gCk

C

T

Homomorphic Operation
gx(1)kh1 · gx(2)kh2

Decrypt

Compare to Threshold
Secure Comparison Protocol

Encrypt

Encryption
Key

Decryption
Key

Alice Bob

Linear Filter
h1x(1) + h2x(2)

Alice Bob

x(1), x(2)

Compare to Threshold
< T

CC

[Fig1]  Block diagram of the toy signal processing algorithm
in (1).

	 IEEE SIGNAL PROCESSING MAGAZINE  [86]  january 2013

As the multiplications and exponentiation on encrypted
signal values ()x 1" , and ()x 2" , are carried out in modular arith-
metic, the second and third lines of (4) require the operator
“mod n” or “ ,mod n2 ” depending on the ciphertext space used
by the cryptosystem. As is commonly done in cryptography, we
will drop the modulo operator, whenever possible for the sake of
notational simplicity. Nevertheless, it is important to be aware
that computations on encrypted data are always performed in
the algebra of the cipher text space.

Comparison to Threshold
The next step in (1) is that Bob compares the encrypted result

() ()h x h x1 21 2+" , to the plaintext threshold .T Bob cannot cal-
culate the result all by himself. In fact, solutions that would out-
put the decision in clear would be insecure since Bob would
then be able to efficiently decrypt every ciphertext by binary
search. Rather, Bob has to obtain assistance from Alice: the
comparison of an encrypted number and nonencrypted number
requires an interactive protocol. Such a solution is called a
secure two-party computation protocol, or just secure function
evaluation. In “Arithmetic Comparison Protocol” and “MPC
Using Garbled Circuits,” we illustrate the essentials of two-party
computation approaches to the comparison problem. The solu-
tion described in “Arithmetic Comparison Protocol” is represen-
tative of the class of arithmetic protocols, and exploits
homomorphic encryption. “MPC Using Garbled Circuits”
describes an example of the class of Boolean protocols which
uses garbled circuits.

After the completion of the interactive protocol, Bob holds the
encrypted result .C" , Bob submits C" , to Alice, who obtains the
result of the algorithm (1) after decryption with her secret key .SK

Complexity Analysis
Processing signal samples that have been encrypted using a pub-
lic key cryptosystem is computationally more demanding than
the original plaintext version of the algorithm. The first reason
for the increase in complexity is data expansion. Whereas signal
samples ()x i typically take 8–16 b, their encrypted counterparts
are 1,024 or more bits long. For signal processing applications,
such an enormous amount of data expansion is practically unac-
ceptable, from both a storage and a communication point of
view. Approaches have been developed for some signal processing
problems that pack multiple signal samples into a single
encrypted number [13]. In these cases the data expansion
remains manageable, often at the cost of some computation
overhead. Alternatively, the communication costs can be reduced
by considering cryptosystems that have a smaller ciphertext
space with the same security level, for instance the Okamoto–
Uchiyama cryptosystem [14].

The second reason for the increased complexity is the nature of
the operations involved. In particular, exponentiations such as

()x i hi" , in (4) and rn in the Paillier cryptosystem (see
“Additively Homomorphic Public Key Encryption”), are computa-
tionally most demanding. It is therefore necessary to seek an effi-
cient cryptographic solution that causes as little increase in
complexity as possible.

A common way to quantify and compare the complexity of the
plaintext and ciphertext implementations is to count the number
of multiplications, and (for the ciphertext version) the encryp-
tions, decryptions, and exponentiations. The amount of data com-
municated between parties is also an indicator of the complexity of
the ciphertext implementation. The complexity is usually
expressed in terms of the order of magnitude of some algorithm

Private Key and Public Key Cryptography
The objective of encryption is to hide a number m, commonly
called plaintext message, in a ciphertext c that is unintelligible
to anyone not having access to the proper decryption key. In
signal processing, the message m can be an audio sample (),x i a
pixel (,),x i j or a feature derived from the signal such as the sig-
nal’s mean value or a DFT coefficient.

When encrypting m, one can use private key or public key
encryption, which are also known as symmetric and asymmetric
key encryption, respectively. Private key and public key encryp-
tion differ in which keys are used by the encrypting party A
(commonly called Alice in the field of cryptography) and the
decrypting party B (Bob).

In private key encryption, Alice encrypts m with key ,K yield-
ing the ciphertext ().c mEK= Bob, the recipient of the message,
decrypts c using the same key .K In other words, if ()cDK indi-
cates the decryption of the ciphertext c using key ,K then

(()).m mD EK K= Since the same key K is used for encryption
and decryption, this key must be kept secret from everyone
except Alice and Bob. The difficulty in private key encryption is
the sharing of the key before encryption starts. Key distribution
protocols exist that elegantly solve this difficulty by using public
key encryption approaches [98]. Private key encryption algo-
rithms are typically based on repeatedly applying rounds of

highly efficient but complex operations on input bits or bytes.
The ciphertext is secure because inverting these concatenated
rounds of operations is prohibitively expensive. Examples of
commercially used private key encryption are Data Encryption
Standard (DES) [99] and Advanced Encryption Standard (AES)
[100].

The distinguishing technique used in public key cryptography
is the use of two different keys. The key used to encrypt a mes-
sage is not the same as the key used to decrypt it. The encryp-
tion key PK is made publicly available not only to Alice but, in
principle, globally distributed. Bob uses the private key SK to
decrypt the ciphertext (),mEPK yielding (()).m mD ESK PK= The
two keys are mathematically related, but it is computationally
infeasible to compute the secret decryption key SK from the
public encryption key .PK The security of public key encryption
is based on the presumed hardness of mathematical problems
like factoring the product of two large primes [101] or comput-
ing discrete logarithms in a finite field with a large number of
elements [102]. The advantage of public key encryption is the
simpler key management. Disadvantages are that the keys are
much larger (more bits) and they yield substantially more com-
putational overhead. This is due to the mathematical opera-
tions involved, such as exponentiation with large numbers.

	 IEEE SIGNAL PROCESSING MAGAZINE  [87]  january 2013

parameters. In Table 1, we show the result of counting these oper-
ations for the given example. Perhaps surprisingly, in Table 1 the
complexity is caused not by the homomorphic operations in (4),
but by the interactive protocol comparing () ()h x h x1 21 2+" , to .T
The important parameter is b—the number of bits needed to rep-
resent () ()h x h x1 21 2+ (see “Arithmetic Comparison Protocol”).
The main complexity is the ()O 2b number of exponentiations in
the arithmetic comparison protocol. In addition to the exponenti-
ation, we should also realize that a multiplication of ciphertexts
requires modular arithmetic, which by itself is also more expen-
sive than the multiplication of plaintext values.

Security Models

Privacy Requirements
When we follow the steps in the above privacy-protected signal
processing algorithm, it seems obvious enough that Bob does not
learn anything about Alice’s privacy-sensitive information. After
all, the inputs and the intermediate and output results are

encrypted. Alice does not learn anything about the processing
algorithm except for the processing result C. Such informal
inspection of the cryptographic operations is generally not suffi-
cient to claim that the solution is indeed privacy-preserving. All
cryptographic protocols, including those that concern privacy-pre-
serving signal processing, must be accompanied by a formal secu-
rity proof, or at least by a sketch reducing the proof at hand to a
simpler, well-studied protocol. Another proof technique is to for-
mulate how the protocol should work in an “ideal” world, and
then show that the ideal and real world behave in a “similar” way.

Additively Homomorphic Public Key Encryption
Central to most privacy-preserving signal processing algo-
rithms is that certain public key cryptosystems are additively
homomorphic. This means that there exists an operation on
ciphertext ()mEPK 1 and ()mEPK 2 such that the result of that
operation corresponds to a new ciphertext whose decryp-
tion yields the sum of the plaintext messages .m m1 2+ In the
case that the operation on the ciphertext is multiplication,
we have

	 (() ()) .m m m mD E ESK PK PK1 2 1 2$ = +

Note that m1 and m2 must both be encrypted with the same
public key .PK As a consequence of additive homomorphism,
any ciphertext ()mEPK raised to the power of w results in an
encryption of .w m$ This is easily seen from

	 (()) (() () ())m m m mD E D E E ESK PK
w

SK PK PK PK

w terms

$ f=
1 2 34444444 4444444

	 .m m m w m
w terms

$g= + + + =
1 2 34444 4444

The subtraction of plain text messages can also be realized
directly on the ciphertext, specifically

	 (() (())) ,m m m mD E ESK PK PK1 2
1

1 2$ = --

where a 1- denotes the multiplicative inverse of .a The Pail-
lier public key cryptosystem [103] is an additively homomor-
phic cryptosystem that is quite popular in privacy-protected
signal processing [11], [12]. The secret key consists of two
large primes { , }.SK p q= “Large” in this context means that
the primes contain 1,024 b or more. If ,n p q$= then the
messages to be encrypted need to be in the range [,],n0 1-
or in mathematical proper terms: .m Zn! The Paillier
encryption operation on a message m is then given by

	 (,) ,modm r g r nEPK
m n 2$=

where (,) .m r ZE *
PK n2! The first thing to note is that, as in

many cryptosystems, the operations are in modular arithme-
tic in the algebra of the ciphertext space. There is thus a
limit, albeit an extremely large one, on the number of dif-
ferent messages that can be encrypted. The second thing to
note is that the encryption equation takes two more param-
eters, specifically g and .r The number g is a generator of a
subset (or formally, a subfield) of n values embedded in the
range [,] .n0 12- Together with the value of ,n the public key
of the Paillier cryptosystems is { , } .PK n g= The number r is
randomly picked to ensure that when repeatedly encrypting
the same message ,m each ciphertext (,)m rEPK is different.
Interestingly enough, the random value r is not needed for
decryption of ciphertext. We therefore often drop r from
the notation, that is, (,) ().m r mE EPK PK= Pallier decryption is
somewhat more elaborate than encrypting; we refer readers
to [103] for the details.

The homomorphic property of the Paillier cryptosystem can
easily be verified. If we consider two Paillier encrypted messages

(,)m rEPK 1 1 and (,)m rEPK 2 2 – note that we use two random values
r1 and r2 – we find

	 (,) (,) () () modm r m r g r g r nE EPK PK
m n m n

1 1 2 2 1 2
21 2$ $ $ $=

	 () modg r r nm m n
1 2

21 2 $ $= +

	 (,) .m m r rEPK 1 2 1 2$= +

Indeed, the product of (,)m rEPK 1 1 and (,)m rEPK 2 2 is an encryp-
tion of .m m1 2+ Note that it is tempting to say that the prod-
uct of the encryptions of m1 and m2 is equal to the encryption
of .m m1 2+ This is, however, generally incorrect as different
randomly generated values r will be used for ,m1 ,m2 and

.m m1 2+ Other examples of public key encryption with homo-
morphic properties are Rivest, Shamir, and Adelman (RSA)
[101], ElGamal [102], Damgård, Geisler, and Krøigård (DGK)
[95], [94] Goldwasser–Micali [104], and Okamoto–Uchiyama
[14] cryptosystems.

[TABLE 1] C omputation and communication complex-
ity of plaintext and ciphertext versions of (1).

Plaintext Ciphertext
Multiplication ()1O ()O 2b

Encryption - ()O b

Decryption - ()O b

Exponentiation - ()O 2b

Communication ()1O ()O b

	 IEEE SIGNAL PROCESSING MAGAZINE  [88]  january 2013

All proofs start by explicitly stating which information is to be kept
secret by which party, and which capabilities and intentions poten-
tial adversaries have, be they participating parties or outsiders.

As an illustration, let us consider a security model assumption
we made in the above signal processing algorithm. We said that
“Bob cannot or does not wish to reveal his algorithm (.)f to Alice.”
On closer inspection, we might wonder if we meant 1) that the
parameters (,)h h1 2 and T are secret, or 2) that even the fact that
Bob calculates a linear combination and compares a result to a
threshold is secret, that is, the structure of the algorithm is secret.
The first interpretation can be shown to be privacy-preserving,
whereas the second interpretation is problematic. Bob leaks to
Alice information about the algorithm, for instance, that the algo-
rithm includes a comparison simply because Alice participates in
the comparison protocol. Under this security model, the presented
solution is formally not privacy-preserving from Bob’s perspective.

Security proofs are important, but they are often lengthy and
detailed at the same time. Conforming to the tutorial nature of
this article, we will abstain from giving security proofs of the
privacy-protected signal processing algorithms. Where relevant,
we will refer to literature for further reading.

Attacker Model
Proofs of security critically rely on assumptions about the capabili-
ties and intentions of adversaries. First, in public key cryptography
it is always assumed that the attacker has restricted computational
power. An attacker is therefore not able to break the hard mathe-
matical problem on which the used cryptosystem relies (see
“Private Key and Public Key Cryptography”). We also assume
that, when needed, the keys are generated and certified by a
third trusted party (a certification authority) prior to execution
of the protocols, and the public keys are available to all users in
the system.

A second assumption concerns the intentions of adversaries.
An important assumption in the section “A Simple Privacy-Pro-
tected Signal Processing Algorithm” was that Bob is a curious-
but-honest adversary participating in the computation. This
attacker model describes Bob as a party that will follow all pro-
tocol steps correctly, but who is curious and collects all input,
intermediate, and output data in an attempt to learn some
information about Alice. A much more aggressive attacker
model for Bob is the malicious adversary participating in the
computation. In this case, Bob’s intentions are to influence the
computations such that Alice obtains a possibly incorrect
answer. In the given example, Bob can easily influence the
outcome by ignoring Alice’s values ()x 1" , and () ,x 2" , and using
some fictive input values ()x 1u and ()x 2u . Bob encrypts these
values using Alice’s public key ,PK and the processing proceeds
as explained earlier. In fact, if the communication between
Alice and Bob is not secured using traditional (private key)
cryptographic techniques, even a malicious outsider adversary,
not participating in the computation, might influence the result
by actively capturing Alice’s encrypted input and replacing it
with some encrypted bogus signal values. Even though outsider
adversaries are important in real-world applications, the focus

in encrypted signal processing is on the protection of
privacy toward adversaries that participate in the computing
process.

Achieving security against malicious adversaries is a hard
problem that has not yet been studied widely in the context of
privacy-protected signal processing. There are two likely rea-
sons for this. First, it can be shown that any protocol that is
secure against a curious-but-honest adversary can be trans-
formed into one that is secure against malicious adversaries. The
transformation requires proving the correctness of all interme-
diate computation steps using cryptographic techniques known
as commitment schemes [15] and zero-knowledge proofs [16].
For instance, Alice could prove that she knows a certain value of
an encrypted number without revealing that value itself. The
drawback is that commitment schemes and zero-knowledge
proofs are known to be notoriously computationally demanding
and they increase significantly the number of interactive proto-
cols between Alice and Bob. Loosely speaking, the protocol
slowdown is in the order of a factor of ten [17], [18]. Second,
the objective of privacy-protected signal processing is not to
enforce correct computations on the service provider’s side, as
they already do that in nonprivacy-protected settings. Therefore,
the malicious adversarial model might simply be an unrealisti-
cally aggressive scenario for many signal processing
applications.

A third aspect of the attacker model describes whether and,
if so, how parties involved in the computation might collude
with each other. They could, for instance, exchange pieces of
information that they collected to infer privacy-sensitive infor-
mation. To illustrate collusion attacks, consider the slightly
modified (and in the eyes of cryptographic experts, ridiculously
simple) toy example where Alice has the private signal value

()x 1 and another party, called Charles, has the private signal
value ().x 2 If Alice and Charles make use of the same public-
private key pair, then collusion between Bob and Charles will
leak ()x 1 to Charles as he can decrypt the value () .x 1" , A seem-
ingly obvious solution to make such collusion impossible is to
have Alice and Bob use different public-private key pairs. Unfor-
tunately, we can then no longer exploit the additive homomor-
phic property and (4) no longer holds. We will see a similar
issue arise in a more realistic situation in the section “Privacy-
Protected K-Means Clustering.”

The fourth and final aspect we address is the secrecy of the
algorithm that Bob uses. As we mentioned in the section “A
Simple Privacy-Protected Signal Processing Algorithm,” Alice
should be prohibited from repeatedly sending arbitrary input
signals because she can infer critical parameters from the out-
puts of the algorithm using a sensitivity attack [10]. For
instance, by sending the input (() , ()) (,)x x1 2 1 0=" " " ", , , , Alice
learns whether .h T1 T Furthermore, the secrecy of Bob’s algo-
rithm can be guaranteed only if certain algorithmic parameters
cannot be inferred directly from the input-output relation. Let
us take the example where Bob carries out a convolution with a
filter whose impulse response he wishes to keep secret. If Bob
provides the filter output directly to Alice, he completely reveals

	 IEEE SIGNAL PROCESSING MAGAZINE  [89]  january 2013

his algorithm. After all, Alice simply sends Bob a signal with a
delta impulse, and obtains the impulse response of the (suppos-
edly secret) filter as output. Hence, although in some cases
there might be a need for the secure evaluation of a secret algo-
rithm, the algorithm’s inherent properties might make secrecy
a meaningless concept. Since sensitivity attacks are primarily
related to algorithm properties, they are typically not consid-
ered part of the attacker model in cryptography.

We end this section by pointing out that privacy-protected
solutions such as the one in the section “A Simple Privacy-Pro-
tected Signal Processing Algorithm” do not automatically ren-
der Alice anonymous. This is because Bob will be able to identify
Alice not only on the basis of her IP address in the case of an
online service, but (more relevant to this tutorial) also because
of her unique public-private key pair. If a third user, say Charles,
makes use of Bob’s signal analysis service, then Charles will
have a different public and private key. Users are unlikely to
change their keys over time as this requires the re-encryption of

all their data. Therefore, Bob will be able to identify Alice
and Charles when they revisit Bob’s service with another signal
to process.

Processing of Encrypted Signals
We have familiarized ourselves with various aspects of process-
ing encrypted signals through the toy example in (1). In this
section, we provide more details on the applicability of the two
cryptographic primitives used in the sections “A Simple Privacy-
Protected Signal Processing Algorithm” and “Security Models,”
specifically homomorphic encryption and secure multiparty
computation. Whereas “Additively Homomorphic Public Key
Encryption,” “Arithmetic Comparison Protocol,” and “MPC
Using Garbled Circuits” focus on the cryptographic aspects of
homomorphic encryption and secure multiparty computation,
this section takes the signal processing perspective to get a feel-
ing for what could be “the right” cryptographic approach for a
given privacy-sensitive signal processing problem. In later

Arithmetic Comparison Protocol
We illustrate the principle of arithmetic two-party computa-
tion (secure function evaluation) by describing the main
steps of a well-known protocol for comparing an encrypted
number a" , and an unencrypted number b [95], [30]. Here,
a" , has been encrypted by Alice using an additively homo-

morphic cryptosystem with public key .PK Note that in the
toy example in the section “A Simple Privacy-Protected Sig-
nal Processing Algorithm,” we have () ()a h x h x1 21 2= +" ", ,
and .b T=

The idea of the comparison protocol is to consider the differ-
ence of a and b, and determine the sign, or the most significant
bit, of this difference. Since a is only available as the encryption
a" , it is impossible to get direct access to the sign bit. Instead, the

sign bit is obtained by modulo reduction of encrypted differ-
ences. We next describe the protocol in more detail.

Initially, Bob has access to a" , and ,b and he also knows that
, ,a b0 21# b where .N!b As a first protocol step, Bob com-

putes the encrypted number z" , as

	 .z a b a b2 2 1$ $= + - =b b -" " " " ", , , , ,
Bob uses Alice’s public key PK to compute the encryptions of
2b and .b Note that we exploit the homomorphic property to
add numbers under encryption. The value of z is a positive
()1b+ -bit number. Moreover, ,zb the most significant bit of ,z
is exactly the comparison result we are looking for:

	 .z a b0 + 1=b

If Bob had an encryption of ,modz 2b the result would be
immediate, because in the second protocol step zb could be
computed as

	 (()) .modz z z2 2$= -b
b b-

The subtraction sets the least significant bits of z to zero.
Bob can compute the difference of z and modz 2b on

encrypted values thanks to the homomorphic property. The
multiplication by 2 b- effectively divides ()modz z 2- b by ,2b
in this way shifting down the interesting bit. Multiplying by
the plaintext constant 2 b- – that is the multiplicative inverse
of 2b – can be done again thanks to the homomorphic
property.

Unfortunately, the value z is available to Bob only in encrypted
form, so the modulo 2b reduction cannot easily be performed.
The solution is to engage with Alice in the third and interactive
protocol step. Essentially Bob will ask Alice to first decrypt ,z" ,
then compute ,modz 2b and finally re-encrypt the result before
sending it to Bob. Obviously, such approach would reveal z to
Alice, which leaks information about a and .b Therefore, Bob first
blinds the value of z by adding a randomly generated value r
only known to Bob:

	 .d z r z r$= + =" " " ", , , ,
If r has the right random properties, Bob can safely send d" ,
to Alice, who will learn no useful information after decryp-
tion. Alice then computes ,modd 2b and sends Bob the
encrypted result. Bob finally removes the initially added
random value r as follows

	 () ()mod mod modz d r2 2 2 2m= - +b b b b" ", ,
	 .mod modd r2 2 1 2

$ $ m= b b -
b" " ", , ,

Here, 2m b is a correction term with { , }0 1!m indicating
whether ()modd 2b is larger or smaller than ()modr 2b .
The encrypted value m" , is obtained using a subprotocol,
known as Yao’s millionaire problem [24], which compares
Alice’s plaintext value ()modd 2b to Bob’s plaintext value
().modr 2b We refer to [105]–[108] for details on this
subprotocol, which operates on the b individual bits of the
values to be compared. That is why the parameter b shows
up in various computation complexity tables in this article.

	 IEEE SIGNAL PROCESSING MAGAZINE  [90]  january 2013

sections, we elaborate on concrete applications of these crypto-
graphic primitives in recent publications.

Using Homomorphic Cryptosystems
At the heart of many signal processing operations, such as
linear filters, correlation evaluations, and signal transforma-
tions, is the calculation of the inner product of two discrete-
time signals or arrays of values ()x i and ()y i . If both signals
contain M samples, then their inner product I is defined as

	 (.), (.) (), (), , ()

()
()

()

x y x x x M

y
y

y M

1 2

1
2

I $f
h

G H= =

R

T

S
S
S
SS

6

V

X

W
W
W
WW

@

	 () () .x i y i
i

M

1
=

=

/ 	 (5)

We can directly carry out this calculation on encrypted signals
provided that in one signal, say ()x i , the samples are individu-
ally encrypted, and the other signal, say ()y i , is in plaintext. The
encryption system used must also have the additive homomor-
phic property (see “Additively Homomorphic Public Key
Encryption”). Using the notation in (3) and applying the addi-
tive homomorphic property of, for instance, the Paillier public
key cryptosystem, we can rewrite (5) in a form that directly
operates on the encrypted signal samples ()x i" ,
	 () () () () ()x i y i x i y iE I E EPK PK

i

M

PK
i

M

1 1
= =

= =

e ^o h%/

	 (()) () .x i x iE () ()
PK

y i

i

M
y i

i

M

1 1
= =

= =

" ,% % 	 (6)

This expression is a generalization of (4) for M , rather than
just two, samples. Equation (6) is an important result, as it
allows us to implement efficiently linear operations on
entire encrypted signals, without having to resort to interac-
tive protocols between parties. As we will see in later sec-
tions, although interactive protocols are unavoidable in
privacy-protected signal processing, the more of the pro-
cessing that can be done by exploiting homomorphic prop-
erties, the more efficient the ciphertext version of the
algorithm will be.

The result ()E IPK is encrypted and can be decrypted only by
the party that has access to the secret key .SK Note that the
homomorphic addition is applied in a modular fashion, which
allows for a finite number of different amplitudes of the samples

().x i Especially for larger values of ,M it is therefore essential to
choose a plaintext space that is large enough so that overflows
due to modular arithmetic are avoided when operations are
performed on encrypted data.

One particular example of (5) is to make ()y i equal to the
samples of the basic functions of the discrete Fourier transform
(DFT). Equation (6) then implements the DFT of an encrypted
signal, yielding encrypted DFT coefficients. The computational
complexity and memory requirements are studied in [19] and

[20] as a function of M and mod n for such encrypted DFT and
the commonly used fast implementation FFT.

One might wonder whether a similar reformulation of (5)
exists in the case that both ()x i and ()y i have been encrypted. Fol-
lowing (6), this boils down to the question whether the following
identity holds:

	 (() ()) (()) (()) .x i y i x i y iE E EPK PK PK$ 9= 	 (7)

Here, 9 represents a “multiplication-like” operation that produces
() ()x i y i$" , as a result. Note that 9 is not the usual modular mul-

tiplication of two encrypted numbers, as this is equivalent to
() ()x i y i+" , in an additively homomorphic cryptosystem.
For (7) to be true, the cryptosystem must also possess the mul-

tiplicative homomorphic property. A cryptosystem that possesses
both the additive and multiplicative homomorphic property is
called a fully (or algebraically) homomorphic cryptosystem. The
existence of a secure fully homomorphic cryptosystem has long
been studied by cryptographers. The seminal paper by Gentry [21]
constructs a particular encryption scheme ()xEPK that has the
algebraic homomorphism property. From a theoretical perspec-
tive, this solves any secure computation problem. Alice just pub-
lishes her encrypted private data, and Bob can compute (at least in
theory) an arbitrary (computable) function. Only Alice can recover
the result of the computation using her secret key. Despite some
recent advances [22], [23] to date, fully homomorphic encryption
schemes are mainly of theoretical interest and far too inefficient to
be used in practice. Thus, a secure two-party multiplication pro-
tocol is required for multiplying two encrypted samples. We will
describe the secure multiplication protocol in the section “Using
Blinding.”

Besides linear operations, a common operation in signal esti-
mation, compression and filtering is to calculate the squared error
distance between two signals. If the signals ()x i and ()y i contain
M samples, then their squared error distance D is defined as

(.) (.) (() ())x y x i y iD
i

M
2 2

1
= - = -

=

/

	 () () () () .x i x i y i y i2
i

M

i

M

i

M
2

1 1

2

1
= - +

= = =

/ / / 	 (8)

Let us consider again the case that ()x i is only available as cipher-
text () .x i" , We can then compute the encrypted value of D as
follows:

	 () (() ())x i y iE D EPK PK
i

M
2

1
= -

=

e o/

	 () () (()) ()x i x i y i y i2
i

M

i

M

i

M
2

1 1

2

1
$ $= -

= = =

)))3 3 3/ / /

	 () () () .x i x i y i()

i

M
y i

i

M

i

M
2

1

2

1

2

1
$ $=

=

-

= =

" " ", , ,% % % 	 (9)

The terms in this expression deserve further investigation. The last
term requires the encryption of () ,y i 2 which is easy to compute

	 IEEE SIGNAL PROCESSING MAGAZINE  [91]  january 2013

using the public key .PK The second term is reminiscent of the
earlier inner product calculation and can also be directly com-
puted. Only the first term of (9) cannot be computed directly
since it requires the encryption of ()x i 2 whereas only the
encryption of ()x i is given. In fact, obtaining ()x i 2" , from ()x i" ,
is a problem analogous to (7), and requires a simplified version
of the secure multiplication protocol. We conclude that on
the one hand computing squared error distances and derived
versions such as perceptually weighted squared errors can
be done directly on encrypted data. On the other hand, the
computations are more involved than the inner product calcula-
tion, as they require an interactive protocol for squaring M
encrypted samples.

Using Secure Two-party Computation
The homomorphic property comes in handy for linear signal
processing operations on entire signals and allows for efficient
implementations of inner products and squared error distance
calculations. There is, of course, a large class of signal process-
ing operations for which homomorphic properties are not
immediately helpful. We encountered the example of multiply-
ing two numbers that have been encrypted, but also common
operations such as division by a constant or by an encrypted
number, exponentiations, logarithms, and trigonometric func-
tions, require secure two-party, or in general, MPC [24]–[26].
Secure MPC is arguably the most important approach in cryp-
tography to evaluate an arbitrary function (, , ,),f x x xm1 2 f
where the input x j is private to the jth party. In other words,
the m parties need each other’s input to be able to jointly evalu-
ate the function (.),f but each party wishes to keep its input
secret. We point out that in traditional secure MPC, the func-
tion (, , ,)f x x xm1 2 f is known to all parties involved in the com-
putation. In encrypted signal processing this is the case if just
the parameters of the function are private to the service pro-
vider. However, as mentioned earlier, (the structure of) the
function itself might also be private as it represents commercial
value to the service provider. This distinction can lead to differ-
ent solutions in server-oriented encrypted signal processing
than in traditional secure MPC.

For many years, MPC has been considered to be of theoreti-
cal interest only. In the last few years great improvements and
actual implementations have made MPC of practical interest,
even if the protocols are still computationally costly. After initial
applications in domains such as electronic voting, actioning,
and data mining, secure MPC is now becoming part of solutions
for privacy-protected signal processing [26].

MPC comes in two flavors. The first type are arithmetic pro-
tocols. These protocols are often based on additively homomor-
phic encryption, and involve operations such as additions,
multiplications, and blinding of encrypted integers. We give the
example of comparing an encrypted and unencrypted number
using arithmetic two-party computation in “Arithmetic Com-
parison Protocol.” Arithmetic two-party protocols are interac-
tive in that they require both parties to take part in the
computation. A characteristic of these protocols is that it is

usually not possible to derive the protocol from first principles.
Many protocols are derived from prototypical solutions, for
instance from secure comparison or secure multiplication.

The second kind of MPC is based on formulating the joint
function (.)f as a circuit of Boolean operations, and next protect-
ing each Boolean operation by garbling input and output using
private key encryption. “MPC Using Garbled Circuits” illustrates
the principles of garbled circuits on the problem of securely
comparing two plaintext numbers. Garbled circuits also require
interaction between the parties. Bob creates and garbles the cir-
cuit, after which Alice evaluates the circuit without knowledge of
Bob’s private keys. Garbled circuits rely on private-key encryp-
tion rather than public-key encryption (see “Private Key and
Public Key Cryptography”). Since no complex operations are
required such as exponentiations, garbled circuits can be evalu-
ated efficiently. However, the formulation of (.)f as a series of
garbled Boolean operations is memory and consequently com-
munication intensive. Furthermore, garbled circuits typically
require a cryptographic protocol known as oblivious transfer
(OT) to let Alice determine the right input keys corresponding to
her private input to the garbled circuit. OT protocols are often
computation and communication more demanding than the
creation and evaluation of the garbled circuit itself.

Since MPC protocols can be used to evaluate an arbitrary
function (.),f an obvious alternative way to achieve the secure
evaluation of (1), (5), and (8) is to use an arithmetic protocol or
a garbled circuit. While such solutions can certainly be derived,
it is a matter of relative efficiency. The homomorphic operations
central to (4), (6), and (9) are computationally quite efficient.
Whether exploiting homomorphic encryption is to be preferred
over MPC is quite dependent on the signal processing task. It is
clear, however, that few signal processing problems can be
implemented using only additions on homomorphically
encrypted data. For instance, the encrypted versions of (1) and
(8) also require MPC for some operations, yielding hybrid over-
all solutions. As a rule of thumb, problems that predominantly
require algebraic operations can usually be implemented effi-
ciently using homomorphic encryption; problems that require
many nonlinear operations or problems that rely on access to
individual bits are better implemented using garbled circuits.

Finding practically efficient MPC protocols is of prime
importance, not only for signal processing problems but for the
field of applied cryptography at large. Moore’s law obviously
helps, as does continuously increasing communication data
rates. But also the protocols themselves need to become more
efficient. In the precomputing approach, parts of the protocols
that are not dependent on the party’s inputs are computed
offline, for instance in idle time of a server. Precomputations
might involve, for instance, key generation, as well as the gener-
ation, encryption and exponentiation of random values (see
“Additively Homomorphic Public Key Encryption”). Especially
in signal processing where we deal with large volumes of sam-
ples or pixels, the challenge is to design protocols that allow for
as much precomputing as possible, thus significantly increasing
MPC efficiency in the online phase of the protocol.

	 IEEE SIGNAL PROCESSING MAGAZINE  [92]  january 2013

Using Blinding
The final cryptographic primitive often used in signal process-
ing is blinding. In the usual cryptographic context, blinding is a
technique whereby Bob hides a value in such a way that Alice
can decrypt the value, perform some operation(s), re-encrypt

and send the result to Bob. For instance, in “Arithmetic Com-
parison Protocol,” blinding is used in calculating .modd 2b
Here we give another relevant example, specifically secure
squaring and multiplication. Let us assume that Bob has avail-
able the value x" , encrypted with Alice’s public key. Bob invokes

MPC Using Garbled Circuits
Garbled circuits provide a generic approach to secure func-
tion evaluation [109]. We illustrate the construction of a
garbled circuit for verifying if two numbers are equal. Let us
assume that Alice’s and Bob’s private values a and ,b respec-
tively, consist of 2 b ()a a1 0 and ().b b1 0 The output { , }c 0 1! of
the protocol is .a b c 1+= = First, Alice and Bob formulate
their joint function as a series of Boolean operations on the
bits of their private inputs. For the equality function we eas-
ily derive () ().c a b a b0 0 1 15 $ 5= The following Boolean cir-
cuit with two XOR-gates and one AND-gate in Figure S1
implements the equality function. As an illustration, Figure S1
shows two of the logic tables. Bob then constructs an encrypted
version of the circuit in the following way.
•	 For each input bit , , ,a a b b0 1 0 1 he selects two private

keys, one for each bit-value. For example, for a0 he
selects key Ka

0
0 for ,a 00 = and Ka

1
0 for .a 10 = In total

Bob selects eight uniformly distributed random keys:
, , , , , , ,K K K K K K Ka a a a b b b

0 1 0 1 0 1 0
0 0 1 1 0 0 1 and .Kb

1
1

•	 Bob also selects private keys for all the intermediate con-
nections of the circuit. In our example, he uses the follow-
ing four uniformly distributed random keys for r0 and r1:

, ,K K Kr r r
0 1 0
0 0 1, and .Kr

1
1

•	 Bob replaces the entries in each gate’s logic table by
encrypting the output key with the input keys correspond-
ing to the tables entry. For instance, for ,a b0 00 0= = we
have .r 10 = The output key corresponding to r 10 = is Kr

1
0

that is encrypted with the input keys Ka
0

0 and ,Kb
0

0 i.e.,
(()) .KE EK K r

11
b a
0 0

00 0

•	 The encrypted logic table for the first XOR-gate of the
circuit thus becomes

	

Input Input Output
(())
(())
(())
(())

a
K
K
K
K

b
K
K
K
K

K
K
K
K

E E

E E

E E

E E

a

a

a

a

b

b

b

b

K K r

K K r

K K r

K K r

0
0

0

1

1

0
0

1

0

1

1

0

0

1

a b

a b

a b

a b

0

0

0

0

0

0

0

0

0 0
0

0 1
0

1 0
0

1 1
0

0 0

0 0

0 0

0 0 .

[FigS1]  Boolean circuit implementing the equality function
a b c 11 2= = = .

r0 r1 c

0 0 0

0 1 0

1 0 0

1 1 1

a0 b0 r0

0 0 1

0 1 0

1 0 0

1 1 1 c

r0

a0 b0 a1 b1

r1

	

A similar table can be derived for the second XOR-gate. For
the garbled table of the AND-gate implementing ,c r r0 1$=
we have

	

Input Input O put
(())
(())
(())
(())

utr
K
K
K
K

r
K
K
K
K

c
0
0
0
1

E E

E E

E E

E E

r

r

r

r

r

r

r

r

K K

K K

K K

K K

0
0

0

1

1

1
0

1

0

1

r r

r r

r r

r r

0

0

0

0

1

1

1

1

0 0

0 1

1 0

1 1

0 1

0 1

0 1

0 1 .

Since this is the final gate of the circuit, the output is the
encryption of the output bit c rather than an encryption
key.

•	 Bob randomizes the positions of the four entries in the
garbled tables to break the association between entry
number and input-output bit values.

•	 Bob sends the resulting garbled circuit to Alice while keep-
ing all keys ,K /

a
0 1

j K /
b
0 1

j , and K /
r
0 1

j secret. That is, Bob sends Alice
only the last column of the garbled logic tables. Bob also
specifies which gate outputs have to be used as inputs for
subsequent gates.

It is important to notice that the encryption keys are con-
structed in such a way that Alice can correctly decrypt only
one output key K /0 1

) per gate, depending on the provided
input keys. Alice can be informed which key has been
decrypted correctly by, for instance, appending each key-to-
be-encrypted with a number of trailing zeros, thus replacing

(())KE EK Ka b by ((|)) .K 00 0E EK Ka b g

To start the evaluation of the garbled circuit, Alice needs the
keys associated with Bob’s input and the keys associated with her
own input bits .K /

a
0 1

j Bob directly sends his keys to Alice since she
cannot retrieve Bob’s bits from the keys. However, Bob should
not know which keys among K /

a
0 1

j he has to transfer to Alice as
this might reveal Alice’s bits to Bob. To solve this apparent dead-
lock, Bob and Alice run a oblivious transfer (OT) protocol, which
allows Bob to transfer the proper keys to Alice without Bob
learning which keys have been selected [9], [110]. Once Alice
knows K /

a
0 1

j and K /
b
0 1

j she can decrypt the output of the first two
gates of the circuit. The outputs contain the keys K /

r
0 1

j associated
to the actual value of r0 and .r1 Alice uses these keys to evaluate
the output of the final gate of the circuit, which reveals to her
whether a b= or not.

The above highly structured procedure can easily be general-
ized, thus permitting the private computation of virtually any
function, including the comparison function in “Arithmetic Com-
parison Protocol,” which can be expressed by a nonrecursive
Boolean circuit. We conclude by observing that garbled circuits
are implemented using symmetric encryption only. This avoids
the need for long keys and the necessity to perform computa-
tionally expensive operations. A drawback is, however, the need
to describe the (potentially complicated) function at the level of
logical gates, which might lead to very large circuits.

	 IEEE SIGNAL PROCESSING MAGAZINE  [93]  january 2013

an interactive protocol with Alice to obtain x2" , as follows. He
first blinds the value x by homomorphically adding a random
value :r .z x r x r$= + =" " " ", , , , After sending the value z" , to
Alice, she decrypts, squares z and re-encrypts to .z2" , Alice
sends the value z2" , to Bob, who can now compute x2" , because
he knows r and because of the homomorphic property

	 () .x z xr r z x r2 r2 2 2 2 2 2 1
$ $= - + = - -" " " " ", , , , , 	 (10)

The random properties of r must be chosen such that x r+
does not leak information to Alice. If, for instance, ,x Zn! then
r must be uniformly distributed over .Zn We can easily extend
the above protocol to secure multiplication of two encrypted
numbers x" , and .y" , Bob homomorphically blinds x" , and y" ,
with random values rx and ,ry respectively. Alice decrypts
z x rx x= +" ", , and ,z y ry y= +" ", , multiplies, and re-encrypts

the result .z zx y" , Note that even though Alice decrypts zx and
,zy she does not learn x and y since these have been blinded by

the random values rx and ,ry respectively. Bob then calculates
the final result of the secure multiplication 9 as

	 ()x y z z xr yr r rx y y x x y9 = - + +" " ", , ,
	 .z z x y r rx y

r r
x y

1y x$ $ $= - - -" " " ", , , , 	 (11)

In signal processing, an alternative way of using blinding has been
developed. In this approach, which is sometimes called data per-
turbation, random components ()r i are added to signal values

()x i in such a way that 1) the individual values ()x i are “suffi-
ciently” hidden, and 2) the random components cancel out in the
targeted signal processing algorithm [27]. As a straightforward
example, consider the following alternative to (6) to obtain a pri-
vacy-preserving implementation of (5), and let ()y i 1= for the
sake of simplicity. If Alice adds random values ()r i to her input
signal (),x i then Bob computes the desired (now unencrypted)
output I degraded by a random component ().r i

i

M

1=/ The ran-
dom properties of ()r i are chosen such that 1) individual signal
values () ()x i r i+ are sufficiently random, and 2) the degrading
term is small. The degrading term can even be made equal to zero
by choosing () ().r M r i

i

M

1

1
=-

=

-/ Obviously, depending on the
random properties of (),r i this signal processing-inspired blinding
approach might be significantly less secure, and even arguably inse-
cure, than cryptographic blinding. Nevertheless, data perturbation
can be an attractive alternative for some parts of encrypted signal
processing since its computational requirements are much lower.

Privacy-Protected Face Recognition
Next, we address a number of well-known privacy-sensitive signal
processing problems and show how the ideas put forward in the
previous sections can be used. We commence by describing a pri-
vacy-protected face recognition system that is based on eigenfaces
[28], [29]. The solution allows both the biometric data and the
authentication result to be hidden from the server that performs
the matching [30], [31]. Related approaches for privacy-protected
face recognition based on other face features have been published

in [32], and for obscuring faces while analyzing suspected behav-
ior in video surveillance in [33]–[37].

Alice owns a face image (the query image) and Bob owns a
database containing a collection of face images (or corresponding
feature vectors) of individuals. Alice and Bob wish to determine
whether the picture owned by Alice shows a person whose data is
in Bob’s database. While Bob accepts that Alice might learn basic
parameters of the face recognition system, he considers the con-
tent of his database private data that he is not willing to reveal. In
contrast, Alice trusts Bob to execute the algorithm correctly, but is
not willing to share with Bob either the query image or the recog-
nition result. Finally, Alice will only learn if a match occurred. In a
real-world scenario, Bob could be an honest-but-curious police
organization, and Alice could be some private organization run-
ning an airport or a train station. It is of common interest to iden-
tify certain people, but it is generally considered too privacy
intrusive to use Bob’s central server directly for identification, as
this would allow him, for instance, to create profiles of travelers.

The face recognition system we use is illustrated in Figure 3.
In this figure, the yellow part includes the operations that need to
be performed on encrypted data to protect the user’s privacy. The
system has five basic steps.

■■ Alice submits the query image (,)x i j to Bob. The query
image contains a total of M pixels.

■■ Bob transforms the query face image into a characteristic
feature vector ~v of a low-dimensional vector space, whose basis
is composed of L eigenfaces (,)e i j, (, ,).L1, f= The eigen-
faces are determined through a training phase that Bob has
already carried out when building the faces database.

[Fig3]  Block diagram of privacy-protected face recognition based
on eigenfaces.

Encrypt

Decrypt

Project

Compute Distances
Secure Multiplication Protocol

Find Match
Comparison Protocol

Face Image x(i, j)

eℓ(i, j)

Alice Bob

Eigenfaces

g~k

gmk

m
Yes/No

gDjk

Xj
"

	 IEEE SIGNAL PROCESSING MAGAZINE  [94]  january 2013

■■ Bob computes the Euclidean distances D j between the fea-
ture vector ~v of the query image and the feature vector jXv
(, ,)j N1 ff= of each face enrolled in the database. The total
number of faces in the database is .Nf

■■ Bob finds the best matching face (smallest Euclidean dis-
tance Dmin), and determines if the face is similar enough by
comparing the distance Dmin to a threshold .T

■■ Bob sends the outcome { , }0 1!m of the recognition process
to Alice, where .T1 Dmin, 1m = .

The knowledge provided in the sections “A Simple Privacy-Pro-
tected Signal Processing Algorithm” and “Processing of Encrypted
Signals” allows us to see how a privacy-protected version of the
face recognition system can be designed. Alice encrypts the indi-
vidual pixels of the query image (,)x i j using her public key
encryption scheme, and sends (,)x i j" , to Bob. The transformation
of the query face image into the feature vector ~v requires the cal-
culation of L inner products of (,)x i j and eigenfaces (,).e i j, Simi-
lar to the result in (6), we obtain for the L elements in ~v

	 (,) , , .x i j L1 2(,)

,

e i j

i j
, f~ = =,

," ", ,% 	 (12)

Bob calculates the distances between the encrypted feature vector
(, ,)L1 2 f~ ~ ~ ~=v" " " ", , , , and unencrypted feature vectors .jXv

This problem was addressed in the section “Processing of
Encrypted Signals,” and the result in (9) directly applies. As dis-
cussed, the evaluation of (9) can be done by Bob on his own,
except for the calculation of 2~," , from .~," , For these terms, Bob
and Alice invoke the secure squaring protocol described in the sec-
tion “Using Blinding.”

To find the minimum distance Dmin" , among the Nf encrypted
distances ,D j" , and to compare this minimum to the threshold ,T
Bob again runs a two-party protocol with Alice. To find the mini-
mum, a straightforward recursive procedure can be used. In the
first step, Bob compares distances D j2 1+" , and D j2 2+" , for

, , , / .j N0 1 2ff= This requires a protocol for comparing two
encrypted values, for instance, similar to the protocol in “Arithme-
tic Comparison Protocol” [30] or a garbled circuit solution [31]. To
prevent Bob learning which of the two values is smallest, Alice
rerandomizes the output of the comparison protocol. Rerandom-
ization is the process of changing the random value r used in the
(for instance, Paillier) encryption process (see “Additively Homo-
morphic Public Key Encryption”). The rerandomized encryption
of the smaller distance is retained after the comparison. After this
step we have /N 2f values left, and we repeat the procedure for the
remaining encryptions, and so forth. After ()log Nf2 iterations
there is exactly one encryption left, the minimum .Dmin" , Bob
uses a protocol such as the one in “Arithmetic Comparison Proto-
col” to determine whether Dmin" , is smaller than the threshold ,T
and finally returns the encrypted result m" , to Alice.

The computational complexity of the above encrypted signal
processing algorithms is given in Table 2 as a function of the vari-
ous parameters. The parameter b is the number of bits required to
represent the distances .D j The encryption of the query image
pixel-by-pixel takes considerable computational power due to the
sheer amount of data. Other computationally expensive parts of
the algorithm are the ()MLO exponentiations in (12) and the

(())N LO f
2b+ exponentiations in the comparison protocol. The

complexity of the privacy-protected algorithm grows linearly with
the number of pixels M and the size of the database .Nf

A number of publications have studied the implementation of
the above privacy-protected face recognition system [30], [31].
Table 3 summarizes the run-time results of two implementations
for images of size 92 112# pixels. Both use homomorphic opera-
tions for the calculation of .~," , The result from [30] is based on
using arithmetic MPC protocols for the various comparison calcu-
lations and [31] uses garbled circuits. We refer to these papers for
details on the choice of parameters and various implementation
and optimization aspects. In both cases, however, the largest part
of the CPU time is spent on the comparison protocols. The table
also shows that it pays off to make a given protocol more efficient
by employing precomputations that are carried out offline in idle
time of the server.

Privacy-Protected K-Means Clustering
The second privacy-sensitive signal processing problem we con-
sider in more detail is cluster analysis using the K-means algo-
rithm. Clustering is a well-studied combinatorial problem in data
mining [38]. It concerns finding a structure in a collection of
unlabeled data. The K-means algorithm partitions a given data set
into K clusters while minimizing an overall error measure. Pri-
vacy is important if the unlabeled data reflect user information, or
when the assignment of data to a particular cluster is privacy sen-
sitive, as in the following two examples.

■■ Users provide information about themselves to find kindred
spirits. Based on the data provided, the K-means algorithm
clusters users into groups that have a high level of similarity.
Such social grouping might be based on tastes (delicious.com),
dating, television viewing behavior, or chronic diseases (www.
patientslikeme.com). The honest-but-curious server carrying

[TABLE 2] C omputational complexity of the privacy-
protected face recognition system (from [30]).

Alice Bob
Encryption ()M NO fb+ (())N LO f b+

Decryption ()NO fb -

Multiplication - (())ML N LO f
2b+ +

Exponentiation - (())ML N LO f
2b+ +

[TABLE 3] R un time (in seconds) of the privacy-
protected face recognition system.

Arithmetic
MPC [30]

Garbled
circuits [31]

Number of
faces Nf

With
precomputations

10 24.0   8.5 13.2
50 26.0 10.0 13.5
100 29.0 11.5 13.8
200 34.2 14.5 15.1
300 39.6 17.5 16.4

	 IEEE SIGNAL PROCESSING MAGAZINE  [95]  january 2013

out the clustering should not be aware of either the users’
unlabeled data or the group assignment of an individual user.

■■ Two companies, each owning a customer relationship man-
agement (CRM) database, wish to determine market segmenta-
tions or customer profiles based on their joint CRM data. They
are not willing to share their data because of market competi-
tion, or because legislation does not allow this. The server car-
rying out the clustering should therefore not have access to
the plaintext CRM data.

Privacy-protected clustering is a relatively well-studied problem
in the pattern recognition community. Comprehensive overviews
of approaches to privacy-preserving data mining are given in
[39]–[41]. Cryptographic techniques toward privacy-preserving
K-means clustering are based on MPC and secure permutations
[42], random shares [43]–[45], or secure multiplications [46].
The approaches in [47] and [27] are examples of signal process-
ing-based blinding techniques. We follow the cryptographic
approach described in [48]. This approach is easy to explain
because of its similarities to the secure face-recognition solution.
There are, however, a number of interesting differences between
the two solutions.

Figure 4 illustrates the K-means algorithm. Again, the yellow
part includes the operations that will be performed on encrypted
data to protect the user’s privacy. The K-means algorithm consists
of the following steps:

■■ The ith user Alice (, ,)i N1 uf! has an L dimensional data
vector piv with preferences on the basis of which the clustering
will take place.

■■ We need to find C cluster centres or centroids c jv that best
represent the Nu user data vectors. We use the Euclidean
distance as error measure. The algorithm starts with C ran-
domly selected centroids.

■■ Bob computes for each user data vector the distance to each
centroid as

	 (() ()) ,p cD ,i j i j

L
2

1
, ,= -

,=

/ 	 (13)

for , , ,i N1 uf! and , , .j 1 Cf!

■■ Bob assigns Alice and her associated data vector piv to the
cluster Cm of the closest centroid ,cmv in this way partitioning
the user data vectors into C subsets:

	 , .arg minm i m p cD ,
j

i i m! !,= j v v 	 (14)

■■ As a final step, Bob computes the updated centroid c jv for
each cluster C j based on the subset of user data vectors piv
assigned to :C j

	 .c p1
C

j
j

i
i C j

=
!

v v/ 	 (15)

■■ The algorithm terminates after a fixed number of iterations,
or if the average distance between user data vectors and closest
centroids has converged. If this is not the case, repeat the itera-
tions starting from the third bullet.

Different privacy-protected versions of the K-means algorithm
have been developed depending on the privacy requirements. We
consider the case where Alice only learns to which cluster index m
she has been assigned. The data piv of user Alice and the assign-
ment of Alice to cluster Cm is privacy-sensitive information that
the honest-but-curious server Bob and all other users should not
learn. Bob is, however, allowed to learn the resulting centroids .c jv

When we compare the calculation of the distances D ,i j in (13)
to the distance calculation in the section “Processing of Encrypted
Signals” and the matching process in the section “Privacy-Pro-
tected Face Recognition,” we see strong similarities. Indeed, the
expression for calculating the encrypted distances ()E D ,PK i j is
nearly identical to (9). However, an important difference is that we
cannot let different users, say Alice and Charles, encrypt their pri-
vate data piv with their own public-private key pair since this will
make it impossible to further combine results. As an illustration,
consider (15), which requires the addition of user data vectors .piv
The homomorphic addition of the vectors piv assigned to cluster C j
is possible only if all piv have been encrypted using a homomorphic
public key cryptosystem with the same modulus ,mod n specifi-
cally the same key. This of course will not be the case if we let
users choose their own keys.

It is therefore Bob who selects a public-private key pair. He
keeps the private decryption key to himself and provides the public
encryption key to all users. We immediately realize that an
encrypted data vector ()pEPK i is now secured toward other users,
but not toward Bob. Hence, we cannot let Bob compute the dis-
tances ()E D ,PK i j using encrypted user data ().pEPK iv Alternatively,

[Fig4]  Block diagram of privacy-protected K-means algorithm.

Encrypt

Decrypt

Convergence

Yes

No

Compute Distances

Find Closest Centroid
Secure Comparison Protocol

Update Centroids
Blinding

Alice Bob

gDi,jk

gCjk
"

pi
"

cj
"

gmik
"

g!idCj
pik gbCjOk
"

!idCj
pi ,
"
bCjO

	 IEEE SIGNAL PROCESSING MAGAZINE  [96]  january 2013

the users now compute the distances ()E D ,PK i j using encrypted
centroids ().cEPK jv The expression for encrypted distances can be
derived analogously to (9). The result takes the following form

	 () ()pE D ,PK i j i

L
2

1
$,=

,=

) 3/ 	 () () .c c()
j

p
L

j

L
2

1

2

1

i $, ,,

, ,

-

= =

"), 3% / 	 (16)

Alice can easily compute ()DE ,PK i j since she can encrypt
()pi

2," ,/ using Bob’s public key, and Bob provides the encryp-
tions ()c j ," , and () .c j

2," ,/
To find the closest centroid for user i, Alice needs to find the

minimum among C encrypted distances ()E D ,PK i j with
, , .j 1 Cf! We have already seen a two-party protocol solution to

this problem in the section “Privacy-Protected Face Recognition”
and in “Arithmetic Comparison Protocol.” The result is an
encrypted vector imv" , of dimension ,C with ()m 1im = if user i has
been assigned to cluster Cm as in (14), and ()j 0im = for all other
values of .j Note that at this point Alice does not yet know to
which cluster Cm she has been assigned as she cannot decrypt the
elements of the vector .imv" ,

If Alice sends Bob the encrypted L C# matrix

	 () () () , , , , , , ,p j j L j1 1 C()
i i i

pi$, , f fm m= = =," ", , 	 (17)

he can homomorphically compute the sum term in (15) needed
for the updated cluster centroids as follows:

	 (()) () , , .c j L1E ()
PK j i

p

i

N

1

i
u

, , fm= =,

=

" ,% 	 (18)

Unfortunately, Alice cannot send Bob the matrix in (17) because
Bob can decrypt this information using the private decryption
key, thus directly obtaining Alice’s private information piv . A pos-
sible solution is that users collaboratively blind their values

()j ()
i

pim ," , in such a way that the blinding factors cancel out when
computing the product in (18). Similarly, the dividing factor 1

C j

in (15) can be computed securely using the encrypted vector imv" ,
with collaborative blinding. We refer to [48] for further details
on the blinding process.

After the final iteration, Alice learns her cluster number by first
computing the (encrypted) sum ()m mim 1

C $ m
=

/ under

homomorphism, and then running a secure decryption protocol
with Bob. For the decryption protocol, Alice blinds the encrypted
sum with a random number, sends the blinded value to Bob for
decryption, and finally subtracts the random number.

The computational complexity is given in Table 4 as a function
of the various parameters. The parameter b is the number of bits
required to represent the distances D ,i j [see (13)]. The top half of
the table gives the complexity of the privacy-protected algorithm
described in this section. As we can see, the computationally most
expensive part is the (())C LO 2b+ exponentiations, where the
term ()CLO originates from (16) to (18) and ()CO 2b originates
from the comparison protocol that finds the closest centroid.

The bottom half of the table gives the computational com-
plexity if we parallelize Alice’s computation of (16) to (18) by
packing C cluster centres into a single encrypted number. We
refer to [49] and [13] for a discussion on data packing. The com-
putational advantage is that the ()CLO exponentiations reduce
to ().LO Nevertheless, the main complexity due to the compari-
son protocol, specifically ()CO 2b exponentiations, remains and
forms the computational bottleneck in actual implementations.
Table 5 illustrates the run time of the algorithm without data
packing, where about 80% of the run time is spent on repeated
execution of the comparison protocol. As in the section “Pri-
vacy-Protected Face Recognition,” precomputations reduce the
run time by a factor of two to three.

An alternative cryptographic approach discussed in [49]
uses, in addition to users and the clustering server, a curious-
but-honest privacy service provider. Although this setup compli-
cates the architecture of the solution (a third party is now needed
to perform the K-means algorithm), the collaborative blinding is
no longer needed. Further the computation burden of calculating
distances ()E D ,PK i j and finding the closest centroid cmv is removed
from the user’s shoulders. We expand on the idea of using a curi-
ous-but-honest privacy service provider in the following section,
which deals with collaborative filtering.

Privacy-Protected Content Recommendation
The third and final signal processing application that we discuss
in greater detail is content recommendation. Here, our focus is
on a popular technique used in recommender systems, specifi-
cally collaborative filtering [50], [51]. Rather than explicitly
grouping users into clusters like the K-means algorithm does,
collaborative filtering directly generates recommendations for
users based on the profiles, preferences and ratings of similar

[TABLE 4] C omputational complexity of the privacy-
protected K-means algorithm (from [48]).

Described algorithm
Alice Bob

Encryption (())C LO b+ (())C LO b+

Decryption - (())C LO b+

Multiplication (())C LO 2b+ ()N CLO u

Exponentiation (())C LO 2b+ -

Modified With Data Packing
Alice Bob

Encryption ()CO b ()L CO b+

Decryption - ()CO b

Multiplication ()CO 2b ()N CO u

Exponentiation ()L CO 2b+ -

[TABLE 5] R un time (in minutes) of the privacy-
protected K-means algorithm (from [48]).

Nu

With
precomputations

100   17.9   6.9

250   44.1 17.2

500   88.0 33.8

750 134.5 51.6

943 166.1 64.5

	 IEEE SIGNAL PROCESSING MAGAZINE  [97]  january 2013

users. The item recommendations are
specific to an individual user, but are
based on information obtained from
many users. As before, the objective of
privacy protection is to hide from the ser-
vice provider the profiles, preferences and
ratings of users as well as the item rec-
ommendations to individual users.

Among the approaches to privacy-pro-
tected collaborative filtering, we again find
blinding [52], [53] and cryptographic tech-
niques such as differential privacy [54],
MPC and secret sharing [55], and dimen-
sion reduction based on homomorphic
encryption [56], [57]. We follow the
approach in [58] and [59], in which the
similarity between users and recommenda-
tions are computed on homomorphically
encrypted user data. In addition to users
and the recommendation service provider,
we introduce a third party that allows us to
exclude users from participation in crypto-
graphic protocols.

We first summarize collaborative fil-
tering for plaintext user data. The thi user
Alice (, ,)i N1 uf! has a preference vec-
tor piv of dimension ,L which typically
contains nonnegative ratings on content items. To generate rec-
ommendations for Alice, we follow a five-step procedure.

■■ Alice sends the recommendation service provider (RSP) her
preference vector piv .

■■ The RSP computes the similarity between Alice and all other
users based on a set of Lr items that all users have rated. For the
purpose of simplicity, we assume that these rated items are
the first Lr elements in preference vector piv , and that they
have been normalized such that () .p 1i

L

1
r

, =
,=
/ A common

measure to compute similarity between the ith user Alice
and jth user Charles is the cosine similarity or inner product

	 () () .sim p p,i j i j

L

1

r

$, ,=
,=

/ 	 (19)

■■ The RSP selects the top Mi most similar users by com-
paring their similarities to a threshold .T

■■ The recommendations riv for user Alice on all L Lr-
remaining items are computed as the average ratings of the
Mi most similar users

	 () (), , , .r M p L L1 1i
i

m r
m

M

1

i

, , , f= = +
=

/ 	 (20)

■■ Alice obtains the recommendations riv from the RSP.
We focus on the main signal processing operations of the
above algorithm. The privacy requirements we consider are as
follows. First, the preference vector ,piv the recommendation
vector riv and the number of most similar users Mi are private
to user .i Second, privacy-sensitive intermediate information,

including the similarity values sim ,i j and data of the Mi most
similar users, are hidden from all users and the honest-but-
curious recommendation service provider.

Much like in the K-means algorithm, we need a public-
private key pair common to all users to encrypt the ratings in
the preference vectors piv (, ,).i N1 uf! In principle, we can
follow an approach similar to the one mentioned in the sec-
tion “Privacy-Protected K-Means Clustering,” whereby the rec-
ommendation service provider creates the public encryption
and private decryption key, and users carry out a large propor-
tion of the computations on encrypted data.

As an alternative that avoids the required user involve-
ment, we introduce a privacy service provider (PSP). The
honest-but-curious PSP is a third party to which part of the
computation is outsourced [60]. The PSP creates the public-
private key pair for the homomorphic public key cryptosys-
tem. We can now store the database of all encrypted user data

()pEPK iv at the recommendation service provider as it does not
have access to the decryption key of the PSP. Compared to the
privacy-protected K-means algorithm, the users’ computa-
tional complexity will become much lower. However, the
users’ privacy might be violated if the recommendation service
provider and the privacy service provider collude by sharing
encrypted data and/or keys. Hence, in this setup additional
legal or organizational measures must be taken to prevent col-
lusion between the RSP and PSP.

We achieve privacy-protected collaborative filtering as fol-
lows (also see Figure 5). Alice, like all other users, encrypts

[Fig5]  Block diagram of privacy-protected collaborative filtering.

Calculate Recommendations
Secure Multiplication Protocol

Find Similar Users
Secure Comparison Protocol

Calculate Similarities
Secure Multiplication Protocol

All Other Users

Interaction

Encrypt

Decrypt

Ratings pi
"

fpk (pj)
"fpk (pi)

"

Alice Recommendation
Service Provider (RSP)

Privacy
Service Provider (PSP)

"
gMik gmik

gsimi,jk

grik
"+

ri
"+ Mi

Interaction

Interaction

	 IEEE SIGNAL PROCESSING MAGAZINE  [98]  january 2013

her preference vector using the PSP’s public key and sends
()pEPK iv to the RSP. The RSP aims to compute the encrypted

value of the similarity (19) directly on users’ encrypted data

	 () () () () .p p p psim ,i j i j

L

i j

L

1 1

r r

$ 9, , , ,= =
, ,= =

") " ", 3 , ,%/ 	 (21)

Note that the operation 9 denotes the secure multiplication
of two encrypted numbers, which is needed here since the
RSP has access only to encrypted preference vectors. The
RSP and PSP use the protocol explained in the section
“Using Blinding” to carry out the secure multiplications.
Also note that the privacy service provider does more than
just key management: it also participates in some two-party
computation protocols.

To find the Mi most similar users, the recommendation
service provider compares the similarities sim ,i j" , for user i to
the threshold .T We have already seen such a comparison pro-
tocol in the section “Privacy-Protected Face Recognition”; the
same two-party protocol described in “Arithmetic Comparison
Protocol” can be used by the RSP and the PSP. The result is an
encrypted Nu-dimensional vector .imv" , Here, () { , },j 0 1i !m and

()m 1im = indicates that the similarity between the ith and
mth user is larger than the threshold .Tsim ,i m 2 Computing
the encrypted total number of similar users Mi is
straightforward

	 () () () .M j jE
() ()

PK i i
j j i

N

i
j j i

N

1 1

u u

m m= =
! != =

) "3 ,%/ 	 (22)

The sum term of the secure equivalent of (20) is obtained by
first multiplying ()jim and ,p jv and then adding the products:

	 (()) () ()r j pE
()

PK i i j
j j i

N

1

u

$, ,m=
!=

u) 3/

	 () () .j p
()

i j
j j i

N

1

u

9 ,m=
!=

" ", ,% 	 (23)

Note that in this expression the summation runs over all users
(except user i itself), since the RSP does not know for which
users () ,m 1im = as these values are encrypted. The product

() ()j pi j$,m selects the user preference vectors to be included in
the summation. As in (21), the RSP and the PSP need to run a
secure multiplication protocol for the product of the encrypted
values ()jim" , and () .p j ," , The recommendation service pro-
vider sends encrypted results ()MEPK i and ()rEPK iuv to Alice, who

decrypts the results by running a simple (blinding-based)
decryption protocol with the privacy service provider [59]. Alice
obtains the final recommendations by dividing the elements in
riuv by .Mi

The computational complexity is shown in Table 6. The
parameter b is the number of bits to represent the similarity
values .sim ,i j It is immediately clear that thanks to the
introduction of the PSP, users (like Alice) have a relatively low
complexity of just ()LO encryptions. The main complexity is the

()N LO u encryptions and exponentiations of the recommenda-
tion service provider, and the (())N LO u b+ encryptions of the
privacy service provider. In both cases, this complexity is caused
by the secure multiplication protocol needed in (21) and (23).
This computational complexity can be reduced significantly by
packing subsets of the user’s ratings into a single encrypted
number. We refer to [59] for details on the data packing opera-
tions and the resulting parallelization of (21) and (23). The
effect of the data packing operation can best be illustrated using
run time figures from an actual implementation. Table 7 shows
the run times of the straightforward implementation of the col-
laborative filtering algorithm, as well as the version that packs
60 items of the users’ rating data into a single encrypted num-
ber. The latter implementation, although still computationally
expensive, is about 60 times faster.

Other Emerging Applications
Here, we briefly address other signal processing applications
in which encrypted signal processing has been used or is
emerging as a means for privacy protection and other security
requirements.

Neural Network Classification for e-Health
The health-care industry is moving at a fast pace toward tech-
nologies offering personalized online self-service, medical error
reduction, customer data collection, and more. These technolo-
gies have the potential of revolutionizing the way medical data
are processed and made available to millions of users through-
out the world. Respecting the privacy of customers is an impor-
tant design constraint.

We consider a remote diagnosis service that classifies
electrocardiograms (ECGs) provided by users into a number of
categories, including healthy subjects and some disease catego-
ries. The server should carry out the classification without get-
ting any knowledge about the private ECG data provided by the
users. At the same time, the service provider is not willing to
disclose algorithmic details since they represent the basis for

[TABLE 6] C omputational complexity of privacy-
protected collaborative filtering (from [59]).

RSP PSP Alice
Encryption ()N LO u (())N LO u b+ ()LO

Decryption - ()N LO u -

Multiplication (())N LO u b+ - ()LO

Exponentiation ()N LO u - -

[TABLE 7] R un time (in minutes) of privacy-protected
collaborative filtering (from [59]).

Nu

Without data
packing

With data
packing

1,000 260 5

5,000 1,500 26

10,000 3,100 51

	 IEEE SIGNAL PROCESSING MAGAZINE  [99]  january 2013

the diagnosis service it is providing. As illustrated in Figure 6,
the classification is performed in two steps [61], [62]. First, a set
of features are extracted by modeling the ECG signal as an
autoregressive (AR) process. Six features are computed corre-
sponding to the (four) coefficients of the AR model and two
measures of the prediction error. Because this phase is quite
complex yet fairly standardized, it is carried out on the plaintext
ECG signal by Alice. The actual classification can be performed
by Bob in several ways. In the following we describe a solution
based on a neural network (NN) that has the advantage of being
easily extendable to other scenarios. For an alternative solution
based on branching programs, we refer to [61]. The NN compu-
tation protocol is fed with the features encrypted with Alice’s
public key and gives as an output the encrypted index of the
class to which the ECG belongs. Only Alice can decrypt the clas-
sification index by using her secret key.

Let us consider the security requirements. On Alice’s side,
the situation is quite simple. She requires that Bob does not
obtain any information about the ECG signal (features) and the
result of the classification. As to Bob, he wants to keep secret
the classification algorithm. As discussed in the section “Privacy
Requirements,” we see that it is impossible for Bob to keep all
the details of the classification algorithm private. For instance,
Alice knows the features the classifier relies on because she cal-
culates these features. Similarly, we need to assume that Bob
agrees to reveal to Alice that he uses an NN-based classifier.
Even more, we also assume that Bob agrees to reveal to Alice
the internal structure of the NN, that is, the number of layers
and nodes in the neural network, and the shape of the activation
functions, such as a threshold activation function. The only
parameters that Bob wishes to protect are the NN weights and
the offset value of the activation functions. This is a reasonable
assumption since the NN weights and offsets are likely to be the
result of an extensive and expensive training procedure carried
out by Bob to set up an accurate diagnosis service.

With the solutions described in the previous sections in
mind, the design of a protocol for private ECG classification is
now straightforward. Let us focus on a single neuron in the NN.
The operation the neuron performs consists of computing the
weighted sum of the neuron inputs and offset, followed by
thresholding the resulting weighted sum

	 () (,) (,) (),v i x i j w i j b i
j

M

1
= +

=

/

	 ()
()

() ,
.

y i
y i

v i0 0if
otherwise

#
= ' 	 (24)

Here (,)x i j are the M inputs of the ith neuron, (,)w i j are the
corresponding weights, and ()b i is the offset of the ith neuron.
The weighted sum and offset addition can be computed pri-
vately by Bob using additively homomorphic encryption. Bob
knows (,)w i j and ()b i as plaintext values, and he has an
encrypted version of (,).x i j For the first layer of the NN, (,)x i j" ,
are provided by Alice, for the other layers they are the encrypted
output of previous neurons. Effectively, Bob uses (6) to obtain

the encrypted output () .v i" , Then Bob and Alice run a secure
comparison protocol (as in “Arithmetic Comparison Protocol”
or “MPC Using Garbled Circuits”). The output is the encrypted
value () ,y i" , which Bob uses as input to the neurons of the next
layer. The final classification result is the maximum of the out-
puts of the final layer in the neural network. To find this maxi-
mum, Alice and Bob run a protocol similar to the one described
for the face recognition system in the section “Privacy-Pro-
tected Face Recognition.” The performance of this privacy-pre-
serving ECG analysis algorithm is that a single heart beat can be
classified in 5–10 s [62].

The above privacy-preserving algorithm illustrates how
encrypted signal processing is used to protect the privacy of
users’ medical information. With the technological advance-
ment of genome sequencing and DNA profiling, the privacy pro-
tection of medical data will have to be taken to the next level.
For instance, abuse of DNA information may open the door for
discrimination based on genomics. Initial privacy protection
approaches employ cryptographic protocols that compare DNA
sequences while hiding the data of the query DNA sequence and
the searched DNA sequence [63], [64].

Biometric Matching
The handling of biometric signals for person identification and
access control requires privacy protection since biometric data

[Fig6]  Block diagram of privacy-protected ECG classification.

Alice

Neural Network
Parameters:
w(k, i) b(k)

ECG Signal

Feature
Extraction

Bob

Encrypt

Neural Network
Threshold Protocol

Maximum Selection
Maximum Protocol

Decrypt

gECG Classk

Last NN Layer go(k)k

ECG Class

	 IEEE SIGNAL PROCESSING MAGAZINE  [100]  january 2013

is indissolubly associated to the identity of the owner. In
the section “Privacy-Protected Face Recognition,” we have
already seen a privacy-protected system for biometric-based per-
son recognition. This section is concerned with privacy protec-
tion in generic biometric systems [65].

A biometric matching protocol consists of four steps: feature
extraction, distance calculation, minimum distance selection,
and thresholding. Biometric systems differ significantly with
regard to the choice of features and the feature-based distance
measure. In the section “Privacy-Protected Face Recognition,”
features were computed from encrypted face images. Alterna-
tively, the features might also be extracted directly from the
plaintext data by the owner of the biometric signal in cases
where is it acceptable if the owner of the biometric data is aware
of the features used by the server. The computational advantage
is that more complicated features can be easily computed. Fur-
thermore, the amount of data that needs to be transmitted and
encrypted is smaller in case features are extracted on the client
side; this might also reduce the bottleneck of communicating
large amounts of encrypted data.

Some of the feature-based distance measures are not very
suitable for implementing in a privacy-protected setting as they
require complicated two-party protocols, for instance if the bio-
metric systems is based on minutiae [66]. It is therefore up to
the designers of a biometrics system to select a proper set of fea-
tures for which distances can be calculated easily in a privacy-
protected fashion. The final steps of biometric matching are the
minimum distance selection and thresholding, which can
always be implemented using the protocols explained in
the section “Privacy-Protected Face Recognition.”

Fingerprint images are the most widely used biometric
traits. A particular feature choice is the fingercode representa-
tion [68], which is illustrated in Figure 7. The fingerprint image
is first divided into radial and angular sectors. The sectors are
then filtered by a number of Gabor filters to determine the
energy content of each sector into different frequency bands.

Finally, the feature vector is formed by the sequence of a prop-
erly quantized version of sector energies. The fingercode repre-
sentation is attractive for privacy-protected biometric matching
since it allows for the use of the Euclidean distances to compare
fingerprints [67], [69]. Computing Euclidean distances on
encrypted features has been discussed in detail in the section
“Privacy-Protected Face Recognition.” The protocol for privacy-
preserving fingercode-based authentication presented in [67]
permits to perform fingercode matching against a database with
100 entries in about 40 s.

Iris images are increasingly used for biometric authentica-
tion. The images are first transformed into a binary template
[70] by thresholding, then Hamming distances between tem-
plates are calculated using exclusive OR (XOR) operations. A
privacy-preserving solution that computes the binary template
from encrypted fingerprint images is described in [65]. We
might also assume that the binary template is extracted from
plaintext images. Since computing a Hamming distance with
XORs is easily translated into a Boolean circuit, garbled circuits
(see “MPC Using Garbled Circuits”) then suit privacy-preserving
iris-based authentication particularly well. The iris-based
authentication system of [71] matches 2,048-b long iris tem-
plates in 60 ms.

Watermark Detection and
Fingerprinting for DRM
Digital watermarks offer solutions to digital rights manage-
ment (DRM) of music, photographs, and videos, such as prov-
ing ownership. Robust watermarks have been designed to
survive common media processing operations and watermark-
removal attacks such as compression and filtering unless an
unreasonable amount of damage has been inflicted upon it
[72], [73]. A watermark consists of a very small but structured
amount of noise that is added to media such that it impercep-
tible to the user. Watermarking algorithms are usually pub-
licly known. However, the particular structure of an individual

watermark is kept secret as this knowl-
edge makes it very easy to remove the
watermark. We consider the simplest
watermarking approach of all, specifi-
cally the one that just adds a small
amount of pseudorandom noise ()w i to
the signal [74]. The seed that drives the
pseudorandom generator for ()w i essen-
tially represents a secret key S

	 () () () .x i x i w iSa= +t 	 (25)

The parameter a controls the signal-to-
watermark ratio, and ()x it is the water-
marked signal. In watermarking, two
security issues arise for which encrypted
signal processing offers a solution, par-
ticularly secure watermark detection and
privacy-protected watermark embedding, [Fig7]  Fingercode representation of fingerprints. (Figure used with permission from [67].)

Matching
Result

Input Image

Locate the
Reference

Point

Divide
Image in
Sectors

Normalize
Each

Sector Filtering

Compute
A.A.D.
Feature Input Fingercode

Template Fingercode

Euclidean Distance

	 IEEE SIGNAL PROCESSING MAGAZINE  [101]  january 2013

which is also known as anonymous fingerprinting or buyer-
seller protocols.

Secure watermark detection addresses the problem that an
individual or device needs S to detect the presence of a particular
watermark ()w iS [75]–[77]. This
is because watermark detection
is carried out by correlating ()x it
and (),w iS and comparing the
correlation t to a detection
threshold T

	 () () .x i w i T watermark detectedS
i

M

1
&$t =

=

t/ 	 (26)

We immediately see that the detector’s knowledge of S to
regenerate ()w iS makes it an easy target for adversaries wish-
ing to remove the watermark from ().x it At the same time we
realize that (26) is just an inner product as in (5), which offers
us the possibility to encrypt one of the terms. A proposed solu-
tion is to homomorphically encrypt ()w iS with a private-public
key pair (,)SK PK . The detector computes the correlation using
the encrypted watermark (()) ()w i w iEPK S S=" , as

	 () () () () .x i w i w iE ()
PK S

i

M

S
x i

i

M

1 1
t = =

= =

t t) "3 ,%/ 	 (27)

Since neither ()w iS nor S can be obtained from () ,w iS" , the
detector will not leak information about the watermark. Clearly,
the final detection result is known only after comparing ()EPK t
and .T As in the previous sections, a two-party protocol needs to
be run with the party that holds the decryption key SK , for
example the watermark embedder or a privacy service provider
as in the section “Privacy-Protected Content Recommendation.”

In anonymous fingerprinting, a merchant embeds a buyer’s
identity into a purchased signal [78]. The buyer provides an
identity watermark ()w iS to the merchant, who embeds it into
the purchased signal ()x i and sends the fingerprinted signal

()x it to the buyer. If the merchant finds an illegally redistributed
copy of (),x it he can recover the identity from the watermark
and confront the violating buyer. The problem with this sce-
nario is that the merchant can act as adversary by claiming that
he found an illegally redistributed copy while this is just the
copy he sent to the buyer.

A desirable setup is that the merchant anonymously embeds
the buyer’s identity, that is, the watermark, into the purchased
signal [79]–[81]. To this end, we again use an additively homo-
morphic public key cryptosystem. If we let the buyer encrypt his
identity watermark using public key ,PK and the buyer sends

()w iS" , to the merchant, then the merchant embeds the
encrypted watermark sample by sample as follows:

	 (()) () () () () .x i x i w i x i w iEPK S S$= + =t t t" " ", , , 	 (28)

Note that the result of this operation is an encrypted finger-
printed signal () ,x it" , which only the buyer can decrypt using his
private key .SK Since the merchant does not see the plaintext

identity watermark ()w iS and he has no access to ,SK he is
unable to produce ()x it himself and hence cannot act as
adversary.

Smart Grids
Smart grids are increasingly seen
as a vital solution for the better
modeling and management of
power grids. Although there are
clear benefits to deploying smart
grids, the accurate and fine-

grained measurement of household energy consumption trig-
gers serious privacy concerns [82]. A vast amount of sensitive
information can be derived from such measurements, e.g., types
of electrical devices being used and the number of inhabitants.
Since the inclusion of smart meters is essential to facilitate bet-
ter grid management, privacy aspects of smart grids—including
privacy-preserving billing and data collection—have been
addressed in the literature in recent years [83]–[87].

MPC techniques are used to privately compute the total con-
sumption in a smart grid without disclosing individual con-
sumptions [88]. If xi is the measurement obtained from ith
smart meter smi, then in a neighborhood with Ns smart meters
the total consumption calculated by a substation is

.xT ii

N

1
s

=
=
/ To hide the individual measurements, smi splits

its measurement xi into Ns random parts ()x ji (usually called
shares) such that () ,modx x j ni ij

=/ where n is a large inte-
ger. Each share is then encrypted using the public key PK j of
the jth smart meter .sm j

Next, smi sends the encrypted shares to the substation
except for its share ().x ii After receiving all encrypted shares
from all smart meters, the substation multiplies the N 1s-
shares that are encrypted with the jth smart meter’s key .PK j
Since we use an additively homomorphic cryptosystem, we
obtain

	 (()) () .x j x jT E E
() ()

j PK i PK
i i j

N

i
i i j

N

1 1
j j

s s

= =
! != =

u e o% / 	 (29)

The substation returns the ciphertext result T j
u to sm j for

decryption. After decryption, sm j adds its share ()x jj to the
plaintext, and sends back the result to the substation. Finally,
the substation adds the contributions from all smart meters to
obtain the total consumption .T The above method protects
the individual measurements xi using homomorphic encryp-
tion, but it introduces a significant data expansion, a large
number of encryptions and considerable data transfer. Alterna-
tive methods are being studied that use the computationally
less demanding data perturbation approaches of the section
“Using Blinding” [89].

Future Developments in
Privacy-Protected Signal Processing
The processing of encrypted signals constitutes an exciting
combination of cryptography and signal processing.

The processing of encrypted
signals constitutes an exciting
combination of cryptography

and signal processing.

	 IEEE SIGNAL PROCESSING MAGAZINE  [102]  january 2013

This article has provided an
introduction to various aspects
of encrypted signal processing, in
particular for the purpose of pri-
vacy protection. Encrypted signal
processing can also be consid-
ered a specific approach to com-
putational privacy, privacy by
design, or privacy-enhancing technologies (PETs) [90]. In the
section “Other Emerging Applications,” however, we also
indicated other reasons for manipulating encrypted signals.

The application of cryptographic techniques in the con-
text of signal processing poses many new challenges for cryp-
tographic researchers and signal processing researchers
alike, as well as for the practitioners of signal processing
algorithms in business. We elaborate on these challenges in
this section.

We have seen several instances in which the combination of
multiplicative and additive operations on encrypted data is
highly desirable. This would remove the need for the expensive
secure multiplication protocol (11) in, for instance, (21) and
(23). In the cryptographic community, this challenge is known
as the search for a fully algebraically homomorphic cryptosys-
tem [91], [21], [92]. While promising initial results have been
found [21], it is unclear whether an efficient and generally
applicable algebraically homomorphic cryptosystem exists. It is
clear, however, that the efficiency of many applied cryptography
solutions, including encrypted signal processing, would benefit
highly from such a cryptosystem. Compromises exist in the
form of “somewhat” homomorphic cryptoschemes, which offer
a limited number of multiplication operations, but which are
also much more efficient than fully homomorphic schemes
[22], [93].

Homomorphic cryptosystems are well suited to typical linear
signal processing operations, and we have seen quite a number
of examples in this article. Nevertheless, MPC protocols are
unavoidable. Generic MPC solutions are often far too expensive,
and it is therefore important to optimize the efficiency of MPC
protocols using specific domain knowledge. In the signal pro-
cessing domain, relevant domain knowledge is that encryptions
and multiplications nearly always operate on samples that take
on a limited number of different values. In many cases these
sample values can be represented by 8–16-b integers. This
knowledge can be exploited by selecting the DGK cryptosystem
[94]–[96], which is tailored to input and output data with only a
limited number of possible different values.

We have also seen another way of exploiting the same domain
knowledge, specifically to pack multiple 8–16-b values into a sin-
gle number consisting of n bits, where n is the modulus of the
field in which the encrypted operations take place. For instance,
if ,n 1 024= then we can pack around 60 samples into a single
value. If done properly, the packing operation reduces the num-
ber of homomorphic operations and MPC protocols by the same
factor of 60, as was illustrated by the example in Table 7. Data
packing is effectively a way to parallelize some of the

computationally more expensive
operations such as secure multi-
plication. Parallel processing has
been widely studied for computa-
tionally intensive signal processing
algorithms; that knowledge can
now also be used for speeding up
encrypted signal processing.

The applications illustrated in this article represent impor-
tant fundamental signal processing operations such as linear fil-
ters and squared error distances. These operations fit
generically to homomorphic cryptosystems. Signal processing
operations to which the homomorphic property cannot be
generically applied—for instance, signal quantization—can be
formulated as series of Boolean operations to which the garbled
circuits approach can be generically applied. In this tutorial
article we have given an overview of carefully designed protocols
for privacy-protected signal processing. Whether these tailor-
made signal processing protocols are more efficient than the
generic garbled circuit approach is subject of future research. A
related challenging research question is if there exist funda-
mental building blocks for privacy-protected signal processing,
other than those based on the homomorphic property and gar-
bled circuits. We believe this question is an interesting
challenge for the signal processing and cryptographic commu-
nity alike.

At this point we will also mention that privacy-protected ver-
sions of signal processing algorithms have computation and
storage demands that very much surpass their plaintext coun-
terparts. Even though the relative complexity increase is huge,
the challenge for research in encrypted signal processing is the
question if privacy can be reached at all with, in absolute
terms, reasonable efforts. We believe that the recent progress in
encrypted signal processing presented in this tutorial article
shows that these feasible solutions are at the horizon, but that
there is also ample room for further research and efficiency
improvements.

The final challenge that we should like to mention concerns
security models, efficiency and business aspects simultaneously.
In cryptography, fundamental security concepts have been for-
malized through, for instance, indistinguishability of cipher-
texts (under various attacks). Encrypted signal processing
might need to develop its own security concepts, for instance to
distinguish between the privacy of the user data and the privacy
of the service provider’s algorithm. We believe that such secu-
rity definitions are a potential area for future research, and that
they can be beneficial in further shaping the field of encrypted
signal processing.

As we pointed out in the section “Security Models,” a mali-
cious adversary model might be too aggressive for many
encrypted signal processing applications. Also, if we had to deal
with the malicious adversary model, many, if not all, of the solu-
tions described in this article would need to be reconsidered,
most likely resulting in computationally more complex proto-
cols involving commitment [15] and zero-knowledge schemes

the challenge will be to find
encrypted signal processing

solutions that balance
the user’s and the service
provider’s interests in a

negotiable fashion.

	 IEEE SIGNAL PROCESSING MAGAZINE  [103]  january 2013

[16], or alternative forms of garbled circuits [17], [18]. At the
same time, the honest-but-curious model is not perfect either.
There are two reasons for this. First, users might try to influ-
ence the “correctness” of the outcome of the signal processing
operations by submitting manipulated input values. For
instance, in the privacy-protected collaborative filtering, a user
might try to submit extremely high ratings on certain items to
influence the collaborative filtering outcome for all other users.
In a plaintext version, the recommendation service provider can
observe and prevent such behavior. But this is not the case if the
recommendation service provider deals only with encrypted val-
ues. Since the assumption regarding semihonest behavior does
not suffice, and security in the presence of malicious adversaries
is excessive and expensive to achieve, alternative security mod-
els need to be investigated for privacy-protected signal process-
ing. The covert adversary model [97] attempts to faithfully
model the adversarial behavior in commercial, political and
social settings. Covert adversaries have the property that they
might deviate arbitrarily from the protocol specification in an
attempt to cheat, but do not wish to be “caught” doing so. The
application of the covert adversary model to privacy-protected
signal processing is a new direction that is worth pursuing.

The second reason why the honest-but-curious model is
not always suitable is that it puts the service provider in a
position that might eventually make the service no longer
commercially interesting or even impossible. For instance,
in collaborative filtering, the recommendation service pro-
vider currently learns the interests of its users, allowing it
to develop personalized content advertisement models.
Without knowing at least the aggregated interests of users,
the recommendation service provider’s business model
might fail, and users will no longer have access to the rec-
ommendation service. We clearly see that there can also be
good reasons why service providers are curious. Therefore,
where in current practices the user’s personal data is com-
pletely in the hands of service providers, and in the
described encrypted signal processing solutions user’s data
could potentially be completely hidden from service provid-
ers, the challenge will be to find encrypted signal processing
solutions that balance the user’s and the service provider’s
interests in a negotiable fashion.

Acknowledgments
This article is the result of ongoing collaboration between signal
processing and cryptography researchers. The authors thank
them for their contributions to the furthering of encrypted sig-
nal processing, and for the joint papers that have resulted from
various collaborations. Particular thanks go to (in alphabetical
order) Michael Beye (Delft University of Technology), Tziano
Bianchi (University of Florence), Dario Catalano (University of
Catania), Martin Franz (Technische Universität Darmstadt), Ton
Kalker (DTS, Inc., US), Stefan Katzenbeisser (Technische Uni-
versität Darmstadt), Riccardo Lazzeretti (University of Siena),
Jorge Guajardo Merchan (Robert Bosch LLC, US), Claudio
Orlandi (Bar-llan University), Alessandro Piva (University of

Florence), Ahmad-Reza Sadeghi (Technische Universität Darm-
stadt), Tomas Toft (University of Aarhus), and Thijs Veugen
(TNO-ICT, The Netherlands). The authors also wish to thank the
anonymous reviewers for their careful reading and detailed sug-
gestions to improve the article.

authors
R. (Inald) L. Lagendijk (R.L.Lagendijk@TUDelft.nl) received his
M.Sc. and Ph.D. degrees in electrical engineering from Delft
University of Technology (TU Delft) in 1985 and 1990, respec-
tively. He was a visiting scientist in the Electronic Image Pro-
cessing Laboratories, Eastman Kodak Research, Rochester, New
York, in 1991 and visiting professor at Microsoft Research and
Tsinghua University, Beijing, China, in 2000 and 2003, respec-
tively. He was a consultant at Philips Research Eindhoven from
2002 to 2005. Since 1999, he has been a full professor at TU
Delft in the field of multimedia signal processing, where he
holds the chair position of multimedia signal processing. He is
the author of Iterative Identification and Restoration of Images
(Kluwer, 1991) and coauthor of Motion Analysis and Image
Sequence Processing (Kluwer, 1993) and Image and Video
Databases: Restoration, Watermarking, and Retrieval (Elsevier,
2000). He was on the conference organizing committees of the
International Conference on Image Processing in 2001, 2003,
2006, and 2011. He has been a member of the IEEE Signal Pro-
cessing Society’s Technical Committee on Image and Multidi-
mensional Signal Processing as well as associate editor of IEEE
Transactions on Image Processing, IEEE Transactions on Sig-
nal Processing’s Supplement on Secure Digital Media, and
IEEE Transactions on Information Forensics and Security. He
is an elected member of the Royal Netherlands Academy of Arts
and Sciences (KNAW). He is a Fellow of the IEEE.

Zekeriya Erkin (Z.Erkin@TUDelft.nl) received his B.Sc. and
M.Sc. degrees in computer engineering from Istanbul Technical
University in 2002 and 2005, respectively. He received his Ph.D.
degree in secure signal processing from TU Delft in 2010. He par-
ticipated in the European Commission (EC)-funded project Sig-
nal Processing in the Encrypted Domain (SPEED). He was a
short-term visiting researcher at Aarhus University and the Uni-
versity of California Irvine in 2009 and 2011, respectively. His
research interests are watermarking, steganography, and privacy
protection in online social networks, trusted health-care systems,
and smart metering systems. He is currently a postdoctoral
researcher in the Information Security and Privacy Lab, TU Delft.

Mauro Barni (barni@dii.unisi.it) graduated with a degree in
electronic engineering at the University of Florence in 1991. He
received the Ph.D. degree in informatics and telecommunications
in 1995. He has carried out his research activity for over 20 years,
first in the Department of Electronics and Telecommunication of
the University of Florence, then in the Department of Information
Engineering of the University of Siena, where he is an associate
professor. He is author/coauthor of approximately 250 papers
published in international journals and conference proceedings
and holds four patents in the field of digital watermarking and
image authentication. He is a coauthor of Watermarking Systems

	 IEEE SIGNAL PROCESSING MAGAZINE  [104]  january 2013

Engineering: Enabling Digital Assets Security and Other
Applications (Dekker Inc., 2004). He coordinated the EC-funded
project SPEED. He was the founding editor of EURASIP’s Journal
on Information Security. He is an associate editor of IEEE
Transactions on Circuits and Systems for Video Technology and
IEEE Transactions on Information Forensics and Security. He
was the chair of the IEEE Information Forensic and Security
Technical Committee from 2010 to 2011.

References
[1] O. Bowcott. (2008, Oct. 20). Interpol Wants Facial Recognition Database to
Catch Suspects. [Online]. Available: http://www.guardian.co.uk/world/2008/
oct/20/interpol-facial-recognition

[2] T. Grose. (2008, Feb. 11). When surveillance cameras talk. Time Mag. [Online].
Available: http://www.time.com/time/world/article/0,8599,1711972,00.html

[3] M. Magnier. (2008, Aug. 07). Many eyes will watch visitors. Los Angeles Times
[Online]. Available: http://articles.latimes.com/2008/aug/07/world/fg-snoop7

[4] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions,” IEEE Trans.
Knowledge Data Eng., vol. 17, no. 6, pp. 734–749, 2005.

[5] N. Ramakrishnan, B. Keller, B. J. Mirza, A. Y. Grama, and G. Karypis, “Privacy
risks in recommender systems,” IEEE Internet Comput., vol. 5, no. 6, pp. 54–62, 2001.

[6] W. Lu, A. L. Varna, A. Swaminathan, and M. Wu, “Secure image retrieval
through feature protection,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Processing (ICASSP), Washington, DC, 2009, pp. 1533–1536.

[7] S. Rane, S. Wei, and A. Vetro, “Privacy-preserving approximation of L1
distance for multimedia applications,” in Proc. IEEE Int. Conf. Multimedia Expo
(ICME), 2010, pp. 492–497.

[8] J. K. Pillai, V. M. Patel, R. Chellappa, and N. K. Ratha, “Secure and robust IRIS
recognition using random projections and sparse representations,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 33, no. 9, pp. 1877–1893, Sept. 2011.

[9] O. Goldreich, Foundations of Cryptography II. Cambridge, U.K.: Cambridge
Univ. Press, 2004.

[10] P. Comesana, L. Perez-Freire, and F. Perez-Gonzalez, “Blind Newton
sensitivity attack,” IEE Proc. Inform. Security, vol. 153, no. 3, pp. 115–125, 2006.

[11] C. Fontaine and F. Galand, “A survey of homomorphic encryption for
nonspecialists,” Eurasip J. Inform. Security, vol. 10.1155/2007/13801, 2007.

[12] Z. Erkin, A. Piva, S. Katzenbeisser, R. L. Lagendijk, J. Shokrollahi, G. Neven,
and M. Barni, “Protection and retrieval of encrypted multimedia content:
When cryptography meets signal processing,” Eurasip J. Inform. Security,
vol. 0.1155/2007/78943, 2007.

[13] T. Bianchi, A. Piva, and M. Barni, “Composite signal representation for fast and
storage-efficient processing of encrypted signals,” IEEE Trans. Inform. Forensics
Sec., vol. 5, no. 1, pp. 180–187, 2010.

[14] T. Okamoto and S. Uchiyama, “A new public-key cryptosystem as secure as
factoring,” in Proc. EUROCRYPT, 1998, pp. 308–318.

[15] G. Bassard, D. Chaum, and C. Crepeau, “Minimum disclosure proofs of
knowledge,” J. Comput. Syst. Sci., vol. 37, no. 2, pp. 156–189, Oct. 1986.

[16] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield nothing but their
validity for all languages in NP have zero-knowledge proof systems,” J. ACM, vol. 38,
no. 3, pp. 691–729, 1991.

[17] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party compu-
tation using garbled circuits,” in Proc. 20th USENIX Sec. Symp., San Francisco,
Aug. 2011.

[18] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra, “A new approach
to practical active-secure two-party computation,” Cryptology ePrint Archive,
vol. arXiv:1202.3052v1 [cs.CR], 2011.

[19] T. Bianchi, A. Piva, and M. Barni, “Encrypted domain DCT based on homomor-
phic encryption,” Eurasip J. Inform. Security, vol. 10.1155/2009/716357, 2009.

[20] T. Bianchi, A. Piva, and M. Barni, “On the implementation of the discrete
Fourier transform in the encrypted domain,” IEEE Trans. Inform. Forensics Sec.,
vol. 4, no. 1, pp. 86–97, Mar. 2009.

[21] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc. 41st
Annu. ACM Symp. Theory Comput., New York, 2009, pp. 169–178.

[22] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from
ring-lwe and security for key dependent messages,” in Proc. Advances Cryptology,
CRYPTO, 2011, pp. 505–524.

[23] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic
encryption scheme,” Cryptology ePrint Archive Rep. 520, 2010 [Online].
Available: http://eprint.iacr.org

[24] A. C. Yao, “Protocols for secure computations,” in Proc. IEEE Symp. Found.
Comput. Sci., 1982, pp. 160–164.

[25] R. Cramer, I. Damgård, and J. B. Nielsen, “Multiparty computation
from threshold homomorphic encryption,” in Proc. Int. Conf. Theory Appl.
Cryptographic Tech. (EUROCRYPT), London, U.K., 2001, pp. 280–299.

[26] C. Orlandi, “Is multiparty computation any good in practice?,” in Proc. IEEE
Int. Conf. Acous. Speech Signal Processing. May 2011, pp. 5848–5851.

[27] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” SIGMOD Rec.,
vol. 29, no. 2, pp. 439–450, May 2000.

[28] M. A. Turk and A. P. Pentland, “Eigenfaces for recognition,” J. Cognitive
Neurosci., vol. 3, no. 1, pp. 71–86, 1991.

[29] M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit., 1991, pp. 586–591.

[30] Z. Erkin, M. Franz, S. Katzenbeisser, J. Guajardo, R. L. Lagendijk, and
T. Toft, “Privacy-preserving face recognition,” in Proc. Symp. Privacy Enhanced
Technol., Seattle, Aug. 2009, pp. 235–253.

[31] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient privacy-preserving
face recognition,” in Proc. Int. Conf. Inform. Security Cryptology. Dec. 2009,
LNCS [Online]. Available: http://eprint.iacr.org/2009/507

[32] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich, “Scifi: A system for secure
face identification,” in Proc. IEEE Symp. Security Privacy, 2010, pp. 239–254.

[33] A. Senior, A. Oankanti, and A. Hampapur, “Enabling video privacy through
computer vision,” IEEE Security Privacy Mag., vol. 3, no. 3, pp. 50–57, 2005.

[34] F. Dufaux and T. Ebrahimi, “Scrambling for video surveillance with privacy,”
in Proc. Conf. Comput. Vision Pattern Recognit. Workshop, 2006.

[35] T. Boult, “Pico: Privacy through invertible cryptographic obscuration,”
Comput. Vision Interactive Intell. Environ., 0-7695-2524-5, pp. 27–38, 2005.

[36] E. M. Newton, L. Sweeney, and B. Malin, “Preserving privacy by de-identifying
face images,” IEEE Trans. Knowledge Data Eng., vol. 17, no. 2, pp. 232–243, 2005.

[37] J. Schiff, M. Meingast, D. Mulligan, S. Sastry, and K. Goldberg, “Respectful
cameras: Detecting visual markers in realtime to address privacy concerns,” in
Proc. Int. Conf. Intell. Robots Syst., 2007, pp. 971–978.

[38] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” ACM
Comput. Surveys, vol. 31, no. 3, pp. 264–323, 1999.

[39] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” Advances in Cryp-
tology (CRYPTO 2000), pp. 36–54, 2000.

[40] J. Vaidya, C.W. Clifton, and Y. M. Zhu, Privacy Preserving Data Mining
(Advances in Information Security, vol. 19). New York: Springer-Verlag, 2006.

[41] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin, and
Y. Theodoridis, “State-of-the-art in privacy preserving data mining,” SIGMOD Rec.,
vol. 33, no. 1, pp. 50–57, 2004.

[42] J. Vaidya and C. Clifton, “Privacy-preserving K-means clustering over
vertically partitioned data,” in Proc. 9th ACM SIGKDD Int. Conf. Knowledge
Discovery Data Mining, New York, 2003, pp. 206–215.

[43] G. Jagannathan and R. N. Wright, “Privacy preserving distributed K-means
clustering over arbitrarily partitioned data,” in Proc. 11th ACM SIGKDD Int.
Conf. Knowledge Discovery Data Mining, 2005, pp. 593–599.

[44] G. Jagannathan, K. Pillaipakkamnatt, and R. N. Wright, “A new privacy-
preserving distributed K-clustering algorithm,” in Proc. 6th SIAM Int. Conf.
Data Mining, 2006.

[45] P. Bunn and R. Ostrovsky, “Secure two-party K-means clustering,” in Proc.
14th ACM Conf. Comput. Commun. Security, 2007, pp. 486–497.

[46] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen, “On private scalar
product computation for privacy-preserving data mining,” in Proc. 7th Int. Conf.
Inform. Security Cryptology, 2004, pp. 2–3.

[47] S. R. M. Oliveira and O. R. Zaiane, “Achieving privacy preservation when
sharing data for clustering,” Lecture Notes in Computer Science, New York:
Springer, 2004, pp. 67–82.

[48] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk, “Privacy-preserving user
clustering in a social network,” in Proc. 1st IEEE Workshop Inform. Forensics
Security, 2009, pp. 96–100.

[49] M. R. T. Beye, Z. Erkin, and R. L. Lagendijk, “Efficient privacy preserving
k-means clustering in a three-party setting,” in Proc. IEEE Workshop Inform.
Forensics Security, 2011, pp. 1–6.

[50] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-based collaborative
filtering recommendation algorithms,” in Proc. 10th Int. Conf. World Wide Web,
2001, pp. 285–295.

[51] M. Deshpande and G. Karypis, “Item-based top-N recommendation
algorithms,” ACM Trans. Inform Syst., vol. 22, no. 1, pp. 143–177, 2004.

[52] H. Polat and W. Du, “SVD-based collaborative filtering with privacy,” in Proc.
ACM Symp. Appl. Comput., New York, 2005, pp. 791–795.

[53] H. Polat and W. Du, “Privacy-preserving collaborative filtering using
randomized perturbation techniques,” in Proc. IEEE Int. Conf. Data Mining,
2003, pp. 625–628.

[54] F. McSherry and I. Mironov, “Differentially private recommender systems:
Building privacy into the net,” in Proc. 15th ACM SIGKDD Int. Conf. Knowledge
Discovery Data Mining, 2009, pp. 627–636.

	 IEEE SIGNAL PROCESSING MAGAZINE  [105]  january 2013

[55] M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara, “Private collabora-
tive forecasting and benchmarking,” in Proc. ACM Workshop Privacy Electron.
Soc., 2004, pp. 103–114.

[56] J. F. Canny, “Collaborative filtering with privacy via factor analysis,” in Proc.
ACM SIGIR, 2002, pp. 238–245.

[57] J. F. Canny, “Collaborative filtering with privacy,” in Proc. IEEE Symp.
Security Privacy, 2002, pp. 45–57.

[58] Z. Erkin, M. R. T. Beye, T. Veugen, and R. L. Lagendijk, “Efficiently com-
puting private recommendations,” in Proc. Int. Conf. Acoust. Speech Signal
Processing, 2011, pp. 5864–5867.

[59] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk, “Generating private recom-
mendations efficiently using homomorphic encryption and data packing,” IEEE
Trans. Inform. Forensics Security, vol. 7, no. 3, pp. 1053–1066, 2012.

[60] S. Kamara, P. Mohassel, and M. Raykova, “Outsourcing multi-party com-
putation,” Cryptology ePrint Archive Rep. 272, 2011 [Online]. Available: http://
eprint.iacr.org

[61] M. Barni, P. Failla, R. Lazzeretti, A. Paus, A.-R. Sadeghi, T. Schneider, and
V. Kolesnikov, “Efficient privacy-preserving classification of ECG signals,” in
Proc. 1st IEEE Workshop Inform. Forensics Security, 2009, pp. 91–95.

[62] M. Barni, P. Failla, R. Lazzeretti, A.-R. Sadeghi, and T. Schneider,
“Privacy-preserving ECG classification with branching programs and neural
networks,” IEEE Trans. Inform. Forensics Security, vol. 6, no. 2, pp. 452–468,
June 2011.

[63] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik, “Privacy preserv-
ing error resilient DNA searching through oblivious automata,” in Proc. 14th
ACM Conf. Comput. Commun. Security, 2007, pp. 519–528.

[64] R. Wang, X. F. Wang, Z. Li, H. X. Tang, M. K. Reiter, and Z. Dong, “Privacy-
preserving genomic computation through program specialization,” in Proc. 16th
ACM Conf. Comput. Commun. Security (CCS), New York, 2009, pp. 338–347.

[65] Y. Huang, L. Malka, D. Evans, and J. Katz, “Efficient privacy-preserving bio-
metric identification,” in Proc. 18th Network Distributed Syst. Security Conf.,
2011.

[66] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint
Recognition. London, U.K.: Springer-Verlag, 2009.

[67] M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Donida Labati,
P. Failla, D. Fiore, R. Lazzeretti, V. Piuri, A. Piva, and F. Scotti, “A privacy-
compliant fingerprint recognition system based on homomorphic encryption
and fingercode templates,” in Proc. IEEE 4th Int. Conf. Biometrics Theory Appl.
Syst., Washington DC, 2010, pp. 1–7.

[68] A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti, “Filterbank-based
fingerprint matching,” IEEE Trans. Image Processing, vol. 9, no. 5, pp. 846–859,
2000.

[69] M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Donida Labati,
P. Failla, D. Fiore, R. Lazzeretti, V. Piuri, A. Piva, and F. Scotti, “Privacy-
preserving fingercode authentication,” in Proc. ACM Multimedia Security
Workshop, Rome, 2010, pp. 231–240.

[70] J. Daugman, “How iris recognition works,” IEEE Trans. Circuits Syst. Video
Technol., vol. 4, no. 1, pp. 21–30, 2004.

[71] Y. Luo, S. C. Samson Cheung, T. Pignata, R. Lazzeretti, and M. Barni,
“An efficient protocol for private iris-code matching by means of garbled circuits,”
in Proc. IEEE Int. Conf. Image Processing, 2012.

[72] S. Katzenbeisser and F. Petitcolas, Information Hiding Techniques for
Steganography and Digital Watermarking. Norwood, MA: Artech House, 2000.

[73] G. C. Langelaar, I. Setyawan, and R. L. Lagendijk, “Watermarking digital im-
age and video data: A state-of-the-art overview,” IEEE Signal Processing Mag., vol.
17, no. 5, pp. 20–46, 2000.

[74] I. Pitas, “A method for signature casting on digital images,” in Proc. IEEE
Int. Conf. Image Processing, 1996, vol. III, pp. 215–218.

[75] S. Craver, “Zero knowledge watermark detection,” in Proc. Int. Workshop
Inform. Hiding, 1999, pp. 101–116.

[76] A. Adelsbach and A.-R. Sadeghi, “Zero-knowledge watermark detection and
proof of ownership.,” in Proc. Int. Workshop Inform. Hiding, 2001, pp. 273–288.

[77] A. Adelsbach, S. Katzenbeisser, and A.-R. Sadeghi, “Watermark detection
with zero-knowledge disclosure,” ACM Multimedia Syst. J. vol. 9, no. 3, pp.
266–278, 2003.

[78] N. R. Wagner, “Fingerprinting,” in Proc. IEEE Symp. Security Privacy,
1983, pp. 18.

[79] B. Pfitzmann and M. Waidner, “Anonymous fingerprinting,” in Proc.
Eurocrypt, 1997, vol. 1233, pp. 88–102.

[80] B. Pfitzmann and A.-R. Sadeghi, “Anonymous fingerprinting with direct
non-repudiation,” in Proc. Asiacrypt, 2000, vol. 1976, pp. 401–414.

[81] M. Kuribayashi and H. Tanaka, “Fingerprinting protocol for images based on
additive homomorphic property,” IEEE Trans. Image Processing, vol. 14, no. 12,
pp. 2129–2139, 2005.

[82] R. Anderson and S. Fuloria, “On the security economics of electricity
metering,” in Proc. 9th Workshop Econ. Inform. Security, 2010, pp. 1–18.

[83] M. Kohlweiss and G. Danezis, “Differentially private billing with rebates,” in
Proc. Inform. Hiding Conf., LNCS, 2011.

[84] K. Kursawe, G. Danezis, and M. Kohlweiss, “Privacy-friendly aggrega-
tion for the smart-grid,” in Proc. Symp. Privacy Enhanced Technol., 2011,
pp. 175–191.

[85] A. Rial and G. Danezis, “Privacy-preserving smart metering,” in Proc. 10th
Annu. ACM Workshop Privacy Electron. Soc., 2011, pp. 49–60.

[86] E. Shi, T.-H. Chan, E. G. Rieffel, R. Chow, and D. Song, “Privacy-preserving
aggregation of time-series data,” in Proc. 18th Annu. Netw. Distributed Syst.
Security Symp., 2011.

[87] Z. Erkin and G. Tsudik, “Private computation of spatial and temporal power
consumption with smart meters,” in Proc. Int. Conf. Applied Cryptography
Network Security, 2012, pp. 561–577.

[88] F. D. Garcia and B. Jacobs, “Privacy-friendly energy-metering via homomor-
phic encryption,” in Proc. 6th Workshop Security Trust Manage., 2010, LNCS
6710, pp. 226–238.

[89] G. Acs and C. Castelluccia, “I have a DREAM! (differentially private smart
metering),” in Proc. Inform. Hiding Conf., 2011, LNCS, pp. 1–10.

[90] M. J. van den Hoven, “Design for values and values for design,” Inform. Age,
vol. 7, no. 2, pp. 4–7, 2005.

[91] F. Armknecht and A.-R. Sadeghi, “A new approach for algebraically ho-
momorphic encryption,” Cryptology ePrint Archive Rep. 422, 2008 [Online].
Available: http://eprint.iacr.org/

[92] (2009). [Online]. Available: http://www.i-programmer.info/news/112-theory/
2330-darpa-spends-20-million-on-homomorphic-encryption.html

[93] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryp-
tion from (standard) LWE,” in Proc. IEEE Symp. Found. Comput. Sci. (FOCS),
2011, pp. 97–106.

[94] I. Damgård, M. Geisler, and M. Krøigård, “Homomorphic encryption and
secure comparison,” Int. J. Appl. Cryptography, vol. 1, no. 1, pp. 22–31, 2008.

[95] I. Damgård, M. Geisler, and M. Krøigård, “Efficient and secure compari-
son for on-line auctions,” in Proc. Australasian Conf. Inform. Security Privacy,
2007, LNCS 4586, pp. 416–430.

[96] I. Damgård, M. Geisler, and M. Krøigård, “A correction to ‘Efficient and
secure comparison for on-line auctions,’” Cryptology ePrint Archive Rep. 321,
2008 [Online]. Available: http://eprint.iacr.org/

[97] Y. Aumann and Y. Lindell, “Security against covert adversaries: Efficient
protocols for realistic adversaries,” J. Cryptology, vol. 23, no. 2, pp. 281–343, 2010.

[98] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography. Boca Raton, FL: CRC Press, 1996.

[99] Data Encryption Standard (DES), Number FIPS PUB 46-3, Federal Infor-
mation Processing Standards Publication, Nat. Inst. of Standards and Technol.,
Gaithersburg, MD, 1999.

[100] Advanced Encryption Standard (AES), Federal Information Processing
Standards Publication, National Institute of Standards and Technology,
Gaithersburg, MD, 2001.

[101] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining digi-
tal signature and public-key cryptosystems,” Commun. Assoc. Comput. Mach.,
vol. 21, no. 2, pp. 120–126, 1978.

[102] T. El Gamal, “A public key cryptosystem and a signature scheme based on dis-
crete logarithms,” IEEE Trans. Inform. Theory, vol. 31, no. 4, pp. 469–472, 1985.

[103] P. Paillier, “Public-key cryptosystems based on composite degree residuos-
ity classes,” in Proc. Advances Cryptology (EUROCRYPT), 1999, LNCS 1592,
pp. 223–238.

[104] S. Goldwasser and S. Micali, “Probabilistic encryption and how to play
mental poker keeping secret all partial information,” in Proc. ACM Symp. Theory
Comput., 1982, pp. 365–377.

[105] I. F. Blake and V. Kolesnikov, “Conditional encrypted mapping and compar-
ing encrypted numbers,” in Proc. Financial Cryptography Data Security, 2006,
LNCS 4107, pp. 206–220.

[106] J. A. Garay, B. Schoenmakers, and J. Villegas, “Practical and secure solu-
tions for integer comparison,” in Proc. Public Key Cryptography, 2007, LNCS
4450, pp. 330–342.

[107] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and mech-
anism design,” in Proc. ACM Conf. Electron. Commerce, 1999, pp. 129–139.

[108] P. Tuyls, A. H. M. Akkermans, T. A. M. Kevenaar, G. Jan Schrijen, A. M.
Bazen, and R. N. J. Veldhuis, “Practical biometric authentication with template
protection,” in Proc. Int. Conf. Audio-Video-Based Biometric Person Authenti-
cation, 2005, LNCS 3546, pp. 436–446.

[109] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, “Improved garbled circuit
building blocks and applications to auctions and computing minima,” in Proc.
8th Int. Conf. Cryptology Network Security, 2009, LNCS, pp. 1–20.

[110] C. Hazay and Y. Lindell, Efficient Secure Two-Party Protocols (Information
Security and Cryptography). New York: Springer, 2010.

� [SP]

