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Secure Watermarking for Multimedia Content

Protection
Tiziano Bianchi*, Member, IEEE, Alessandro Piva, Senior Member, IEEE,

Abstract

Distribution channels such as digital music downloads, video-on-demand, multimedia social

networks, pose new challenges to the design of content protection measures aimed at preventing

copyright violations. Digital watermarking has been proposed as a possible brick of such protection

systems, providing a means to embed a unique code, as a fingerprint, into each copy of the distributed

content. However, application of watermarking for multimedia content protection in realistic scenarios

poses several security issues.

Secure signal processing, by which name we indicate a set of techniques able to process sensitive

signals that have been obfuscated either by encryption or by other privacy-preserving primitives, may

offer valuable solutions to the aforementioned issues. More specifically, the adoption of efficient

methods for watermark embedding or detection on data that have been secured in some way, which

we name in short secure watermarking, provides an elegant way to solve the security concerns of

fingerprinting applications.

The aim of this contribution is to illustrate recent results regarding secure watermarking to the

signal processing community, highlighting both benefits and still open issues. Some of the most

interesting challenges in this area, as well as new research directions, will also be discussed.
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I. INTRODUCTION

A digital watermark provides a communication channel multiplexed into the original content

through which it is possible to transmit some application-dependent information; in forensic tracing,

a watermark can be used to embed a unique code, as a fingerprint, into each copy of the content to

be distributed, linking the copy either to a particular user or to a specific device. When unauthorized

published content is found, the fingerprint allows to trace the user who has redistributed the content

[4], [24].

The adoption of digital watermarking techniques for multimedia content protection in realistic

scenarios raises a set of important issues. One is represented by a possible malicious incrimination of a

honest buyer (known in the literature as customer’s rights problem): when the watermark is embedded

at the distribution server, a customer whose watermark has been found on unauthorized copies can

claim that he/she has been framed by a malicious seller who inserted his/her identity as watermark

in an arbitrary object. The mere existence of this problem may discredit the reliability of the forensic

tracing architecture. A possible solution to this problem is to construct fingerprinting asymmetric

schemes, where only the buyer has access to the fingerprinted content; however, if the merchant later

finds a copy of the content, he/she can still identify the buyer and prove to third parties that this

buyer bought this copy. While cryptographically secure asymmetric fingerprint protocols have been

proposed several years ago [29], the actual implementation of such protocols for realistic multimedia

contents have been investigated only recently [34]. Another problem is the system scalability: in

classical distribution models, the watermark embedding process is carried out by a trusted server

before releasing the content to the user. However, in large-scale systems, the server may become

overloaded, since the computational burden due to watermark embedding grows linearly with the

number of users. In addition, since the distribution of individually watermarked copies requires to

resort to point-to-point communication channels, bandwidth requests can become prohibitive. A third

question is the existence of untrusted verifiers: in the watermark detection process, a content owner

can be asked to prove to another party that a watermark is present in his/her copy. This process

usually requires to reveal secret information related to watermark embedding, such that a cheating

party could then exploit the knowledge of the secrets to remove the watermark from the content.

Within this challenging research area, previous questions have been answered by resorting to secure
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Fig. 1. A digital watermarking system.

signal processing techniques [21]. The first two problems have been addressed introducing secure

watermark embedding, that is mechanisms where the watermark embedding is carried out in a way

that the content owner does not have access to the final watermarked version, while not disclosing the

original content. Solutions exist to securely and efficiently embed a watermark both at the server’s side

and at the client’s side. Secure server-side embedding can be used as a building block in asymmetric

fingerprint protocols, providing a cryptographically secure solution to the customer’s rights problem,

while secure client-side embedding offers a very efficient solution to the system scalability problem.

The presence of untrusted verifiers can be solved by resorting to secure watermark detection, i.e., to

an interactive proof scheme where the content owner convinces another interested party that his/her

content contains a given watermark without disclosing sensitive information that could facilitate the

watermark removal, like the secret key of the watermarking algorithm or the actual watermark.

In the following sections, we will illustrate the aforementioned techniques, trying to provide the

reader with a clear understanding of their merits and their present limitations. The paper will end

with a discussion about possible new research directions, focusing on research challenges that may

be particularly interesting for the signal processing community.

II. A FEW PRELIMINARIES

In this section, we briefly review some basic concepts useful to understand the described solutions:

digital watermarking model [4], homomorphic encryption [27], commitment schemes [12] zero-

knowledge protocols [2], asymmetric fingerprinting protocols [29].
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A. Watermarking Model

A common model [4] for a digital watermarking system is shown in Fig. 1. The inputs of the

system are a vector x = [x1, x2, . . . , xM ], representing either the original host signal samples or, more

generally, a set of features of the host signal computed by a suitable transform (common examples are

the discrete Fourier tranform (DFT) and the discrete cosine transform (DCT)), and some application

dependent to-be-hidden information, here represented as a binary vector b = [b1, b2, . . . , bL], with bi

taking values in {0, 1}. The embedder inserts the watermark code b into the host signal to produce

a watermarked signal xw, usually making use of a secret key sk to control some parameters of the

embedding process and allow the watermark recovery only to authorized users. The general form of

the embedding function can thus be written as

xw = E(x,b, sk). (1)

It is often useful to describe the embedding function by introducing a watermarking signal w, so

that the watermarked signal can be expressed as xw = x + w. When the watermarking signal w

depends only on b and sk, the scheme is usually referred to as blind embedding. More advanced

watermarking techniques, however, take into account also the host signal x according to the principle

of digital communications with side information at the encoder, which permits to achieve higher

embedding capacities [11]. Such schemes are referred to as informed embedding.

All manipulations (both intentional and non-intentional) the watermarked content may undergo

during distribution and use are modeled by the watermark channel, that modifies xw into the received

version x̂w. Based on x̂w, the hidden information can be retrieved either by a watermark detector,

which verifies the presence or the absence of a specific message given to it as input, that is

D(x̂w,b, sk) = yes/no, (2)

or by a watermark decoder, which reads the binary information conveyed by the watermarked signal,

that is

D(x̂w, sk) = b. (3)

When detectors and decoders do not depend from the original content x, as in the examples above,

they are referred to as blind or oblivious detector/decoder. In some cases, however, detectors and
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decoders may also use the original content x in order to retrieve the hidden information, in which

case they are referred to as non-blind detector/decoder.

B. Homomorphic Cryptosystems

A cryptosystem is said to be homomorphic with respect to an operation ? if there exists an operator

φ(·, ·) such that for any two plain messages m1 and m2, we have:

D[φ(E[m1], E[m2])] = m1 ? m2, (4)

where E[·] (D[·]) denotes the encryption (decryption) operator. It is evident that homomorphic

encryption provides an elegant way of performing a set of operations by working on encrypted data.

In particular, an additively homomorphic cryptosystem maps an addition in the plaintext domain to

an operation in the ciphertext domain, (usually a multiplication). Given two plaintexts m1 and m2,

the following equalities are then satisfied:

D[E[m1] · E[m2]] = m1 +m2, (5)

and, as a consequence,

D[E[m]a] = am, (6)

where a is a public integer. Additively homomorphic cryptosystems allow then to perform in the

encrypted domain additions, subtractions and multiplications with a known (non-encrypted) value

(but not division, since it could lead to non integer values), thus providing a way of applying any

linear operator in the encrypted domain.

Another desirable property of a homomorphic cryptosystem is that given two encrypted values

it should not be computationally feasible to decide whether they conceal the same value or not.

The above property guarantees the confidentiality of the cryptosystem when encrypting data with

a restricted set of possible values (for example bits), or when a set of data exhibiting a peculiar

correlation structure (for example consecutive signal samples) is encrypted as separate encryptions.

A scheme that satisfies the above property is referred to as semantically secure and is commonly

implemented by letting the encryption function E depend on a random parameter r. A well known

additively homomorphic and semantically secure scheme is the one presented by Paillier in [27].
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C. Commitment Schemes

A commitment scheme is a method that allows a party, let us say Alice, to commit to a value while

keeping it hidden from another party, let us say Bob, and while also preserving Alice’s ability to

reveal the committed value later to Bob. A useful way to visualize a commitment scheme is to think

of Alice as putting the value in a locked box, and giving the box to Bob. The value in the box is

hidden from Bob, who cannot open the lock without the help of Alice (hiding property), but since

Bob has the box, the value inside cannot be changed by Alice; hence, Alice is “committed” to this

value (binding property). At a later stage, Alice can “open” the box and reveal its content to Bob.

For use in signal processing applications, commitment schemes that are additively homomorphic

are of specific importance: here, knowledge of two commitments allows one to compute—without

opening—a commitment of the sum of the two committed values, i.e. C[m1] ·C[m2] = C[m1 +m2].

Again, the homomorphic property only supports additions. However, there are situations where it

is not possible to prove a relation by additive homomorphism as in proving that a committed value

is the square of the value of another commitment. In such cases, zero-knowledge proofs can be used.

D. Zero-Knowledge Proof Protocols

A Zero-knowledge protocol allows a party, called Prover of the statement, to prove a certain state-

ment or condition to another party, called Verifier of the statement, without revealing any knowledge

to the Verifier except the fact that the assertion is valid [15]. As a simple example, consider the

case where the Prover claims to have a way of factorizing large numbers. The Verifier will send the

Prover a large number and he/she will send back the factors. Successful factorization of several large

integers will decrease Verifier’s doubt in the truth of Prover’s claim. At the same time, the Verifier

will learn nothing about the actual factorization method.

Although simple, the example shows an important property of zero-knowledge protocol proofs,

namely that they are interactive in nature. The interaction should be such that with increasing

number of “rounds”, the probability of an adversary to successfully prove an invalid claim decreases

significantly.
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E. Asymmetric Fingerprinting

In the most common case, distribution tracing is made possible by letting the entity selling the

content, referred to simply as the Seller, insert a distinct watermark, called a fingerprint, identifying

the person purchasing the content, referred to as the Buyer, within any copy of data that is distributed.

Unfortunately, this scheme does not protect Buyer’s rights, since the watermark is inserted solely by

the Seller. A Buyer whose watermark is found in an unauthorized copy can claim that the unauthorized

copy was created and distributed by the Seller, or by a reselling agent. A possible solution consists

in resorting to a Trusted Third-Party (TTP), who takes care of watermark embedding and decoding.

However, TTPs are difficult to implement in real life scenarios and may easily become the bottleneck

of the whole system.

An elegant solution to the aforementioned problems is asymmetric fingerprinting [29], where the

Buyer first commits to a secret that only he/she knows (registration phase), then Buyer and Seller

follow a protocol (named Buyer-Seller watermarking protocol) after which only the Buyer receives a

copy of the watermarked work. However, if the copy is illegally distributed, the Seller can identify the

Buyer from whom the copy originated, and prove it to a Judge by using a proper dispute resolution

protocol. A fundamental building block of asymmetric fingerprinting is a functionality that allows

Seller and Buyer to jointly perform watermark embedding, in such a way that the original content

x (and the secret key sk) is a private input of the Seller, whereas the fingerprint data b is a private

input of the Buyer.

III. SECURE WATERMARK EMBEDDING

As discussed above, secure watermark embedding techniques can provide an elegant solution to

both the customer’s rights problem in copyright protection and the system scalability problem in

distribution models. In the first case, secure embedding usually occurs at the server’s side, as a

building block in an asymmetric fingerprinting protocol. In the second case, secure embedding is

performed by each client of the distribution system, after the original content has been encrypted and

distributed using a broadcast channel.
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Fig. 2. Server-side secure watermarking embedding.

A. Server-Side Watermark Embedding

Secure watermark embedding at the server’s side is a classical example of a problem that can

be efficiently solved by resorting to secure signal processing techniques based on homomorphic

encryption. Let us assume that the Buyer holds the public/private key pair (puk, prk) of an additively

homomorphic cryptosystem. By recalling the watermarking model in Sec. II-A, it is evident that if

Seller and Buyer can compute an encryption of the watermark signal w, then watermark embedding

can be performed by the Seller in the encrypted domain as follows

E[xw,i] = E[xi] · E[wi]. (7)

In the above equation, the Seller, knowing the plaintext values of xi, can compute the encryptions

E[xi] by relying on the Buyer’s public key puk. However, the computed value E[xw,i] is meaningless

for the Seller, since he/she does not know the private key for decrypting. Hence, only the Buyer can

have access to the watermarked content, as illustrated in Fig. 2.

Even if the above simple protocol satisfies the requirements of a secure embedding mechanism to

be used in asymmetric fingeprinting, in order to be applied with realistic watermarking algorithms

we have to ensure that also the embedding of the watermark signal can be computed in the encrypted

domain. In the early solution proposed by Pfitzmann and Schunter [29], both the original content and

the watermark signal were modeled as bit strings, with the latter being equal to the Buyer’s code.

Hence, a simple privacy homomorphism allowing the Server to compute the exclusive or (XOR) of
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encrypted bits was sufficient. However, the above technique is not adequate in the case of realistic

multimedia contents, since it guarantees neither the robustness nor the perceptual fidelity required in

this kind of scenario. Let us describe how an embedding in the encrypted domain can be implemented

for the two main classes of watermarking techniques.

1) Secure Spread-Spectrum: One of the most known watermarking algorithms for multimedia

content is the spread-spectrum technique [4]. The watermark embedding rule is defined as follows:

xw,i = xi + γ(2b− 1)si, (8)

where b ∈ {0, 1} is the embedded bit, si is the i-th component of a spreading sequence and γ is a

scaling factor controlling the watermark strength. The above scheme can be used to encode a single

bit. Multiple bits can be encoded by partitioning the host features into several chunks and by using

the above technique to embed a bit in every chunk.

A secure version of spread-spectrum watermarking can be obtained in a very simple way by relying

on an additively homomorphic and semantically secure cryptosystem. If we assume that the Seller

receives the encrypted bit E[b] as the output of the registration phase of the fingeprinting protocol,

then the encrypted watermarked signal can be computed as

E[xw,i] = E[xi] · E[b]2γsi · E[γsi]
−1. (9)

The Seller can easily compute the above expression, since he/she knows the plaintext values of both

xi and si. Similar schemes based on Cox’s spread spectrum watermarking technique [4] are also

possible based either on multiplicatively [26] or additevely [19] homomorphic cryptosystems.

2) Secure Dither Modulation: Dither modulation techniques, belonging to the class of data hiding

schemes defined informed embedding, hide signal-dependent watermarks using as embedding rule

the quantization of some content features. The simplest example of such techniques is a binary dither

modulation (DM) with uniform scalar quantizers: in this realization, we assume that each bit of b,

say bi, determines which quantizer, chosen between two uniform scalar quantizers, is used to quantize

a single scalar host feature xi. Two codebooks U0 and U1 associated respectively to a bit value b = 0

and b = 1 are built as:

U∆
δ,0 = {u0,k} = {k∆ + δ, k ∈ Z} ,

U∆
δ,1 = {u1,k} = {k∆ + ∆/2 + δ, k ∈ Z} ,

(10)
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where ∆ is the quantization step and δ is the dithering value.

A watermark is embedded by applying to the feature x either the quantizer Q0 associated to U0,

or the quantizer Q1 associated to U1, depending on the to-be-hidden bit value b = {0, 1}:

Q∆
δ,b(x) = arg min

ub,k∈U∆
δ,b

|ub,k − x|, (11)

where ub,k are the elements of U∆
δ,b. By letting xw indicate the marked feature, we have xw = Q∆

δ,b(x).

Secure watermark embedding schemes based on dither modulation techniques can be efficiently

implemented by relying on homomorphic cryptosystems [20], [33]. Let us assume that a vector of

host features x has been extracted from the original content and denote a generic feature as xi. The

corresponding watermarked features using a scalar binary dither modulation can be expressed as

xw,i = f(x, i) + bi ·∆(x, i), (12)

where f(x, i) and ∆(x, i), denoting respectively a suitable function of the original features and a signal

dependent quantization step, depend on the chosen embedding technique. For example, quantization

index modulation (QIM) [9] can be obtained by choosing

f(x, i) = Q2∆
δi,0(xi)

∆(x, i) = ∆ · sgn(xi −Q2∆
δi,0(xi)),

whereas rational dither modulation (RDM) [28] can be obtained as

f(x, i) = Q2∆
δi,0

(
xi
µ(x)

)
µ(x, i)

∆(x, i) = ∆ · sgn

(
xi

µ(x, i)
−Q2∆

δi,0

(
xi

µ(x, i)

))
µ(x, i),

where sgn(x) = x/|x| and µ(x, i) is a suitable function of the features around xi [28], [33], [13].

By assuming an additively homomorphic cryptosystem, the equation (12) can be translated into

the encrypted domain as

E[xw,i] = E[f(x, i)] · E[bi]
∆(x,i). (13)

Note that the seller, being the content owner, knows the plaintext version of x and can compute

both f(x, i) and ∆(x, i) in the clear. Hence, equation (13) can be implemented by the seller relying

only on the homomorphic properties of the underlying cryptosystem.
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3) Composite Embedding: One of the main problems of the secure embedding approach presented

in equations (9) and (13) is that each sample of x must be encrypted separately.

In traditional watermarking applications, the number of bits required to correctly represent each

feature is usually quite small, typically ranging from 8 to 16 bits. On the contrary, security of the

underlying cryptosystem requires the use of very large algebraic structures (e.g., a secure implemen-

tation of Paillier requires that each encrypted word is represented at least as a 2048 bit integer): the

combination of these conditions results in a high data expansion from the plaintext to the encrypted

representation of signals, so that the bandwidth requirements of such an application may soon become

very demanding. In addition, since the number of features can be very large when marking multimedia

contents, the computational cost of encrypting such data may become prohibitive for a practical

implementation of the above technique.

As a solution to the above problems, composite representation of signals [5] has been proposed.

This representation permits to group several signal samples into a single word and to perform basic

linear operations on them, then allowing to speed up linear operations on encrypted signals via parallel

processing and to reduce the size of the whole encrypted signal.

Let us consider a signal an. Given a pair of positive integers β,R, the composite representation of

an of order R and base β is defined as

aC,k =

R−1∑
i=0

ai,kβ
i, k = 0, 1, . . . ,M − 1, (14)

where ai,k, i = 0, 1, . . . , R − 1 indicate R disjoint subsequences of the signal an. Under suitable

hypotheses [5], the composite representation aC,k can be processed through modular arithmetic

without losing information, and several kinds of linear processing can be directly applied to the

composite representation of the signal, allowing for a parallel processing of the original signal samples.

As an example, a much more efficient secure embedding algorithm can be obtained [13]. Let us define

the signals x̃i = f(x, i) and w̃i = bi ·∆(x, i). By dividing the feature vector into blocks of M samples,

the composite representations of the above signals can be expressed as x̃C,k =
∑R−1

j=0 x̃jM+kβ
j and

w̃C,k =
∑R−1

j=0 w̃jM+kβ
j , and composite embedding can be defined as

xw,C,k = x̃C,k + w̃C,k =

R−1∑
j=0

{x̃jM+k + w̃jM+k}βj =

R−1∑
j=0

xw,jM+kβ
j . (15)

where the result is the composite representation of the watermarked features xw,i.
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4) Signal Representation: The watermarked features in the previous example are not suitable for

direct processing through a homomorphic cryptosystem, since they are represented as real values. An

integer valued watermarked feature is usually obtained as

zi = df(x, i) ·Qc+ bi · d∆(x, i) ·Qc

=fQ(x, i) + bi ·∆Q(x, i),

(16)

where d·c is the rounding function and Q is a scale factor that can be adjusted according to the

required precision. It is worth noting that computing with the above representation is somewhat

different than traditional fixed point arithmetic. Since secure division of encrypted values requires

an interactive protocol, in computations relying only on the privacy homomorphism the scale factor

Q accumulates after each multiplication, and in general particular care must be taken in choosing

the right number of bits of the scale factor. Nevertheless, in the case of the schemes presented in

Section III-A2 experimental results show that in most cases 11-15 bits are sufficient to obtain the

same watermarking performance as a floating point implementation [13].

An alternative approach is to use integer valued features that can be obtained by using integer

transforms [37]. In this case, however, the watermarking algorithm has to be modified such that it

satisfies the integer constraint.

B. Client-side Watermark Embedding

Client-side watermark embedding systems transmit the same encrypted version of the original

content to all the clients but a client-specific decryption key allows to decrypt the content and

at the same time implicitly embed a watermark. When the client uses his/her key to decrypt the

content, he/she obtains a uniquely watermarked version of the content. The security properties of the

embedding scheme usually guarantee that obtaining either the watermark or the original content in

the clear is of comparable hardness as removing the watermark from the personalized copy.

In the literature, several approaches for secure client-side embedding can be found. A particularly

interesting approach is represented by methods using a stream-cipher that allows the use of multiple

decryption keys, which decrypt the same cipher-text to slightly different plain-texts. The difference

between the original and the decrypted content represents the embedded watermark. The first scheme

following this approach was proposed by Anderson et al. [3] who designed a special stream cipher,

called Chameleon, which allows to decrypt Chameleon-encrypted content in slightly different ways.
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During encryption, a secure number generator, driven by a secret key, produces a sequence of indices,

used to select four entries from a look-up-table (LUT). These entries are XORed with the plaintext

to form a word of the ciphertext. The decryption process is identical to encryption except for the use

of a decryption LUT, obtained by properly inserting bit errors in some entries of the encryption LUT.

Decryption superimposes these errors onto the content, thus leaving a unique watermark.

Celik et al. [7] have proposed a generalization of Chameleon that operates on lookup-tables

composed of real numbers and replace the XOR operation by an addition. The scheme is suitable

for embedding robust spread spectrum watermarks. In addition, perceptual requirements can be taken

into account, as demonstrated by a recent extension to audio watermarking [16], and the scheme can

be modified to handle joint decryption and watermarking on vector quantized data [23].

The secure LUT-based embedding solution works as follows. The distribution server generates a

long-term master encryption LUT E of size L, whose entries are properly generated random samples;

E will be used to encrypt the content to be distributed to all the clients. Next, for the k-th client, the

server generates a personalized watermark LUT Wk according to a desired probability distribution,

and builds a personalized decryption LUT Dk by combining the master LUT and the watermark LUT:

Dk[i] = −E[i] + Wk[i]. (17)

The personalized LUTs are then transmitted once to each client over a secure channel. Let us note

that the generation of the LUTs is carried out just once at the setup of the application. A content x is

encrypted by adding to it a pseudo-random sequence obtained by selecting some entries of the LUT

with a secure pseudo-random sequence generator driven by a session key sek. Each client receives the

encrypted content E[x] along with the session key sek and decrypts it using some entries of his/her

personalized decryption LUT Dk (again chosen according to sek), with the final effect that a spread-

spectrum watermark sequence is embedded into the decrypted content. This process is summarized

in Fig. 3.

In detail, driven by the session key sek, a set of indices tij is generated, where 0 ≤ i ≤ M − 1,

0 ≤ j ≤ S − 1, 0 ≤ tij ≤ L− 1. Each feature of the content xi is encrypted by adding S entries of

the encryption LUT, obtaining the encrypted feature E[xi] as follows:

E[xi] = xi +

S−1∑
j=0

E[tij ]. (18)
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Joint decryption and watermarking is accomplished by reconstructing with the session key sek the

same set of indices tij and by adding S entries of the decryption LUT to each encrypted feature

E[xi]:

xw,i = E[xi] +

S−1∑
j=0

D[tij ] = xi +

S−1∑
j=0

W[tij ] = xi + wi. (19)

1) Client-Side Dither Modulation: LUT-based client-side embedding can be also extended to

dither modulation techniques. The key observation is that these algorithms can be also viewed as

watermarking schemes using syndrome coding, i.e., in which the information is coded in the residual

error after quantization. Namely, the marked feature of a QIM watermarking system can be modeled

as:

xw = Q0(x) + θb, (20)

where θb = b∆/2 is a shift encoding the information bit b and can be considered as the error made

after quantizing xw with the quantizer Q0, i.e., the information is encoded in the syndrome obtained

after decoding xw as an element of the codebook U0.

The syndrome coding approach is useful for client-side embedding, since it permits to separate the

watermarked feature into a server dependent part Q0(x), which depends on the cover content, and a

client dependent part θb, which depends on the information to be embedded.

Syndrome coding can be also used to generalize conventional dither modulation by allowing

arbitrary syndrome codewords θb, so as to provide an additional degree of freedom in the generation

of the client dependent part. For example, if a generic syndrome codeword can be expressed as the
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sum of S entries from a LUT, a simple client-side QIM embedding can be obtained by encrypting

the original content as

E[xi] = Q0(xi) +

S−1∑
j=0

E[tij ], (21)

and the client can compute the watermarked features as

xw,i = E[xi] +

S−1∑
j=0

D[tij ] = Q0(xi) +

S−1∑
j=0

W[tij ] = Q0(xi) + θb,i. (22)

More sophisticated client-side embedding algorithms can be devised by applying the above principle

along random projections of the original content, so as to increase the security, like the spread-

transform dither modulation [30].

IV. SECURE WATERMARK DETECTION

To tackle the problem of watermark detection in the presence of an untrusted verifier (to whom

watermark secrets cannot be disclosed), a possible solution offered by secure signal processing is

represented by zero-knowledge watermark detection (ZKWD) that uses a cryptographic protocol to

wrap a standard watermark detection process.

In general, a ZKWD algorithm is an interactive proof system where a prover tries to convince a

verifier that a digital content x is watermarked with a given watermark b without disclosing b. In

contrast to the standard watermark detector, in ZKWD the Verifier is given only properly encoded (or

encrypted) versions of security-critical watermark parameters. Depending on the particular protocol,

the watermark code, the watermarked object, a watermark key or even the original unmarked object is

available in an encrypted form to the verifier. The Prover runs the zero-knowledge watermark detector

to demonstrate to the Verifier that the encoded watermark is present in the object in question, without

removing the encoding. A protocol run will not leak any information except for the unencoded inputs

and the watermark presence detection result.

A flexible solution for zero-knowledge watermark detection is to compute the watermark detection

statistic in the encrypted domain (e.g., by using additive homomorphic public-key encryption schemes

or commitments) and then use zero-knowledge proofs to convince the Verifier that the detection

statistic exceeds a fixed threshold. This approach was first proposed by Adelsbach and Sadeghi [2],

who use a homomorphic commitment scheme to compute the detection statistic; their approach, later
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refined in [1], adopts a zero-knowledge protocol based on the Cox’s spread spectrum watermarking

scheme.

In Cox’s scheme [4], a set x of DCT coefficients is selected from the original image and a

multiplicative watermark embedding rule is defined as follows:

xw,i = xi + γwixi = xi(1 + γwi). (23)

To determine if a given content contains the watermark w, in case of blind detection the decoder

extracts the set xw of DCT coefficients, and then computes the correlation ρ between the features

xw and the watermark w we are looking for. If the correlation is larger than a threshold T , then the

watermark is considered present in the content. In [2], it is assumed that the watermark and DCT-

coefficients are integers and not real numbers (this can be achieved by appropriate quantization).

Moreover, for efficiency reasons the correlation-based detection criterion is expressed as

ρ = (wTxw)2 − xw
Txw · T 2

= (A)2 −B ≥ 0; (24)

the above detection criterion is equivalent to a classical correlation detector with threshold T , provided

that the factor A is positive.

The following zero-knowledge detection protocol has been designed to allow the Prover to prove

to a Verifier that the watermark committed to in C[w] is present in the watermarked content xw,

without revealing any information about w. In the protocol, an additively homomorphic commitment

scheme (such as the one proposed by Damgård and Fujisaki [12]) is used. Let xw, C[w], T be the

common inputs of Prover and Verifier and let us assume that the commitment can be opened by the

Prover. First, both Prover and Verifier select the watermarked features xw and compute the value

B of equation (24); the Prover sends a commitment C[B] to the verifier and opens it immediately,

allowing him to verify that the opened commitment contains the same value B he computed himself.

Now both compute the commitment

C[A] =

M∏
i=1

C[wi]
xw,i , (25)

by taking advantage of the homomorphic property of the commitment scheme. Subsequently the

Prover proves in zero-knowledge that A ≥ 0. Next, the Prover computes the value A2, sends a

commitment C[A2] to the Verifier and gives him a zero-knowledge proof that it really contains the
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square of the value contained in C[A]. Being convinced that C[A2] really contains the correctly

computed value A2, the two parties compute the commitment C[ρ] = C[A2] · C[B]−1 on the value

ρ. Finally the prover proves to the verifier, with a proper zero-knowledge protocol, that C[ρ] ≥ 0. If

this proof is accepted then the detection algorithm ends with true, otherwise with false.

While early protocols addressed only correlation-based watermark detectors, the approach has been

also extended to Gaussian maximum likelihood detectors [36] and dither modulation watermarks [31],

[25].

V. CHALLENGES & NEW DIRECTIONS

In the previous sections we have illustrated some well established approaches, combining secure

signal processing and watermarking, that can be used for multimedia content protection. Although

every approach provides a valuable tool for solving a specific problem, there are still some issues to be

dealt with in order to make the above solutions appealing in real life applications. In the following,

we will present the main challenges in this area and we will discuss possible solutions and new

research directions.

Server Side Embedding: Current solutions based on homomorphic encryption offer provable security

at the price of a very high complexity [34]. Here, the bottleneck is the secure embedding module,

since all watermarked features have to be encrypted using a costly homomorphic cryptosystem. As

an example, in [13] it is reported that on a 1024 × 1024 image secure embedding takes about two

minutes using a standard personal computer.

Apart from the foreseeable evolution of the hardware equipment or advancements in homomorphic

encryption, an appealing solution from a signal processing point of view could be combining these

schemes with partial encryption techniques, which are often employed in video encryption [35]. In

closely related fields, partial encryption has been employed in secure client-side watermarking [22]

and as a means for implementing commutative watermarking and encryption [6]. The rationale behind

such an approach is that signals are fuzzy entities, which do not require complete protection, so that

we can trade off security for a better efficiency.

Client-Side Asymmetric Fingerprinting: Although client-side embedding provides an elegant so-

lution to the system scalability problem, the incorporation of the aforementioned technique in an

asymmetric fingerprinting protocol does not appear an easy task. Here, the main problem is that the
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watermarking LUT should not be revealed to the Server. At the same time, neither the Client should

have access to the watermarking LUT, since the knowledge of both decryption and watermarking

LUTs will immediately disclose the encryption LUT as E[i] = Wk[i]− Dk[i].

Current solutions propose to use a TTP to manage both encryption and watermarking LUTs [17],

[32], however such a TTP can become quickly overloaded in a realistic system. Bulding a TTP-free

asymmetric fingerprinting protocol based on client side embedding is currently an open issue, that

deserves more research. From a signal processing point of view, an interesting question is whether

the LUT framework can be exploited to reliably convey a binary vector b, since this will enable the

use of existing asymmetric fingerprint protocols.

Collusion Resistance: A common problem of fingerprinting is that several clients may collude and

try to remove the fingerprint by comparing the respective watermarked copies. Collusion resistance

can be achieved by using specific anticollusion codes in the design of the fingerprint. However,

merging collusion resistant techniques and secure embedding is in general a difficult task.

As to client-side embedding, a natural solution is to design the watermarking LUTs so that they

produce a specific anticollusion code for each client [18]. Nevertheless, the above strategy still suffers

from the fact that watermarking LUTs should be managed by a trusted third party.

In secure server-side embedding, the fingerprint depends on private inputs from the Buyer, so that

it is not easy to enforce the use of specific anticollusion codes. A recently proposed solution consists

in letting the Buyer pick up fingerprint elements from a list controlled by the Seller, in such a way

that the Seller does not know the chosen elements [8]. In our opinion, this is a promising research

direction, where the interaction between cryptographic tools and specific anticollusion code designs

appears fundamental.

Zero-Knowledge Watermark Detection: One of the main concerns is that zero-knowledge proofs

does not provide protection against blind sensitivity attacks [10], but they can only slow the efficiency

of this kind of attacks. Moreover, current solutions are still very complex for real life deployment

and often made scarcely appealing by the fact that detectors can be implemented within secure

environments. It is also worth noting that research on this particular subject has stalled in the

last five years, probably due to the difficulty of bringing together the required expertise in both

signal processing and cryptography. Because of the above limits, this is the research area on secure
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watermarking where further advancements appear more difficult.

Apart from the above cited specific challenges, secure watermarking techniques may also benefit

from specific cryptographic advancements, like the design of cryptographic tools offering both additive

and multiplicative homomorphism [14]: with such schemes from the encrypted content E[x] it would

be possible to compute the ciphertext of any polynomial function of x, solving any secure computation

problem. Fully homomorphic encryption schemes are still computationally very expensive, but in the

future their use in practical applications could become feasible.

VI. CONCLUSIONS

Digital watermarking has been proposed as a possible brick of multimedia content protection

systems, but its application in realistic scenarios has raised several issues. Secure watermarking has

then been designed to solve some of these issues. In this article, we reviewed three classes of secure

watermarking that have received particular attention in the literature: secure server-side embedding,

introduced to solve the customer’s rights problem, secure client-side embedding, proposed to work

out the system scalability problem, and secure watermark detection, suggested to take into account

the presence of untrusted watermark verifiers.

Even if this is a field that has reached a certain degree of maturity, so that some areas, like

secure watermark detection, witness little activity in recent years, we showed that there are still some

interesting challenges to be dealt with. An important observation is that currently available tools do

not provide yet a complete solution, simultaneously solving all of the above problems. Since secure

signal processing is a highly interdisciplinary area of research, needing contributions from both the

signal processing and the cryptographic communities, it is hard to imagine that a workable solution

might be provided by the signal processing community alone. Nevertheless, we believe that some

challenges may be very interesting for signal processing people, like merging selective encryption

and secure watermarking and developing collusion resistant solutions for secure watermarking. As a

final comment, we deem that there is still an open space for research in this interdisciplinary and

interesting research area.
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