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The Role of Signal Processing in meeting

Cyber-Security and Privacy Challenges

Lalitha Sankar, Wade Trappe, Kannan Ramachandran, H. Vincent Poor, and Mérouane Debbah

I. INTRODUCTION: INFORMATION LEAKAGE EVERYWHERE

We are in an era where computing and communication technologies are an integral part of our lives.

Our environment is becoming increasingly more cyberphysical, with sensors and actuators exchanging

information through a variety of networks. We access information from the cloud, share information

with each other on social networks, and synthesize new information all while we are on-the-go. Storage

technologies have also evolved significantly, with data density and access speeds projected to continue

to increase dramatically over the next decade. The confluence of these technologies is leading to huge

volumes of data flowing across our networks, to and from computers where they will be analyzed, and

deposited into vast databases for later retrieval. The huge quantities of data poses new societal risks

that are just now starting to manifest. Users post information on social networks unaware of the privacy

risks they face; companies submit information to the cloud for processing to reduce their own computing

costs yet unaware that potentially sensitive information might be leaked; sensor networks and global

positioning systems monitor the state of our roads and vehicles yet reveal where we are driving to/from

and even why.

Although some of these systems might be protected using conventional cryptographic protocols, many

of them cannot and many of the risks exist outside the realm of protection offered by a cipher suite.

For example, once information has been decrypted and placed into a database in plaintext it loses the

confidentiality provided by the secure socket that connected the originating client to the database. Now,

not only does the owner of that database know the exact value of that data, but it can examine the entirety

of data it holds in order to glean information beyond the scope of the information provided.

To protect data from unforeseen security and privacy breaches, we should revisit information security

and privacy from a fundamental point of view and search for techniques that complement traditional

cryptographic services. Although conventional cryptographic protocols and services can and must be a

part of the solution to ensuring data security and privacy, such techniques do not reflect the full spectrum

of techniques available to protecting information. In particular, information is associated with a particular
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Fig. 1. Illustration of several classes of cyber-security and privacy threats in networks and distributed data systems.

context and has value to its users, and these notions of context and utility serve as the basis for formulating

signal and information processing techniques that can enhance or complement traditional security/privacy

services.

Whether one considers traditional network and computer security mechanisms, or complementary

techniques for data protection that employ signal and information-theoretic mechanisms, there are several

common classes of security threats that one expects to encounter. For example, in network communications

an eavesdropper might listen on communications to gain access to restricted information, or the adversary

might manipulate specific data fields to falsify data or instructions. Similarly, in cloud storage applications

the adversary might be the storage service itself and attempt to glean unintended information from its

repositories that was meant to remain private, or a user might inject false information into the database

repository in hopes of harming the utility of the database to others as illustrated in Figure 1. At a high-

level there are several major goals that can help address in order to better protect information. Three of

these objectives, which correspond to the traditional “C-I-A” security framework, are described below,

where we have outlined how signal processing techniques can have a direct impact.

• Confidentiality: Confidentiality is a guarantee that only those entities intended to access information
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or data should be able to access that information. In communications, this might involve a guarantee

that the information exchanged in a protocol is only able decipherable by legitimate entities. In

database applications, where the data from many users might be stored together, confidentiality

involves encrypting the data and managing the keys needed to access and decrypt the data.

• Integrity: Integrity is a guarantee that a system or data is consistent with its purpose or how

it is expected to be shared. For example, in communications, integrity might involve algorithms

(e.g., cryptographic checksums) that ensure that data or messages have not been altered, or provide

assurance that the data came from its claimed origin. In network and computer systems, integrity

corresponds to ensuring that the system is operating correctly and that anomalous events can be

rapidly detected and defended against. Similarly, in database and data-driven applications, it is

desirable to ensure that stored or actuated upon data is correct and consistent with physical reality.

• Availability: The goal of availability is to ensure that system resources, such as stored data or

services, are accessible to entities when legitimate service requests are made. In the context of

communications and network services, this might correspond to ensuring protecting against denial

of service attacks, while in computer systems this involves guaranteeing that if an entity has privileges

for specific set of objects/services then that access should not be obstructed.

Confidentiality as a security goal is particularly tricky to categorize since it can involve issues such as

preventing an eavesdropper from learning specific information, ensuring that various contexts surrounding

data is preserved, and that the combination of several distinct pieces of data, when put together, do not

allow an adversary to infer other information that was not meant to be inferred. For the sake of clarity,

in this paper we shall specifically call out two different flavors of confidentiality: secrecy, which is

concerned with ensuring that specific information cannot be received/deciphered by well-defined and

untrusted adversaries external to the system (e.g. eavesdroppers), and privacy which involves ensuring

that unintended information is not revealed (via inference and correlations) when intended data is shared

with legitimate users.

In this article, we shall examine signal and information processing techniques that can be used to

protect information. We begin in Section II by identifying several information-theoretic (IT) themes that

have emerged across many emerging cyber-security and privacy problems. After identifying these basic

themes, we then explore in detail how signal processing techniques that are motivated by IT principles

can be applied to address emerging privacy problems.
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II. AN INFORMATION-PROCESSING PERSPECTIVE OF SECURITY

Security and privacy, at a high-level, involves making certain that an adversary does not know the

correct value or meaning behind information being shared and that the adversary cannot alter or affect

the data or a system in a manner that is not allowed by legitimate parties.

Let us generically label an original piece of data as X, which may correspond to a communications

signal or to N different fields in a database or to an N -dimensional data vector measured by a cyber-

physical sensor system. The confidentiality objective, whether secrecy or privacy, involves applying a

transformation on X to create a new information Y vector from which it is difficult for an adversary

to answer questions about X or even infer X itself. For example, in conventional cryptography, Y

corresponds to ciphertext that is the result of an encryption algorithm being applied to X. In general, some

form of advantage should exist between the legitimate parties (Alice and Bob) over the adversary (Eve).

For conventional cryptography, this advantage takes the form of Alice and Bob sharing an encryption

key unknown to Eve. In many settings, it is possible to find other sources of advantage that Alice and

Bob share over Eve. For example, there has been recent work in the physical layer security community,

where the properties of the (wireless) communications is exploited for secrecy. This area of research is

well-grounded in IT principles [1], [2], and the body of work suggests an intuitive strategy for achieving

secret communications: one should develop methods that ensure that the Alice-Bob channel effectively

has higher quality than the Alice-Eve channel.

However, since many of these methods are analogous to mechanisms employed in privacy, we briefly

give our own interpretation of signal and information processing strategies that may be used to enhance

confidentiality. Later, in Section III, we commence with exploring such methods in more detail in terms

of privacy where the goal is to ensure that unintended information is not revealed to legitimate users.

• Perturbing Data: A natural approach to protecting the true data value is to introduce a perturbation

to the data by adding random noise. Such an approach has been applied, for example, in the database

privacy community [3], where one attempts to design a noise distribution so as to obscure the original

data distribution while preserving certain aggregate metrics (e.g. data average). Another area where

perturbation is applied is in secret communications, where legitimate parties design interference

signals so as to best disrupt an eavesdropper’s ability to listen on communications [4]. In both cases,

confidentiality becomes a problem in signal design and signal processing techniques can be applied.

• Altering Data Precision: Data has utility that is directly related to its precision. In many situations,

it is possible to exploit the different valuations that legitimate users have in the data. For example,
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a legitimate user might only need coarse-grained information, while an adversary might only derive

value and infer on fine-grained information. In such scenarios, it is possible to quantize the data to a

level coarser than originally measured [5]. Such techniques arise in problems like location privacy,

where coarse-grained position information is released to a location-service.

• Data Aggregation: Another approach is to amass a collection of information and, rather than report

all of the data, merely report an aggregation of that data. For example, a location-based service

might choose to reveal that a group of users is at a specific location (e.g. a specific office) or that an

individual is at a vague location (e.g. a shopping mall as opposed to a specific store), but would not

reveal that a specific individual is at a specific location [5]. Similar techniques have been employed

in Web services, such as in [6], where users are gathered into geographically diverse groups to make

it difficult to identify who is initiating a Web request. In all of these cases, techniques from signal

and information fusion can be used to formulate the tradeoff between privacy and data utility.

Moving beyond confidentiality, integrity also involves examining X to decide whether X corresponds to

a valid situation. For example, we might want to decide whether temperature data from a thermistor used

in a smart home is correct. It is clearly unreasonable to accept a temperature reading of 10000 Kelvin.

Similarly, in network anomaly detection, X might correspond to traffic statistics measured over a period

of time and we might wish to infer whether X corresponds to an acceptable operational condition for

the network, or whether X flags anomalous activities [7]. As a final example, we might have data being

inserted by a malicious entity into a database or into cloud storage that will be accessed by a wide array

of users. In such situations, it is often desirable for the database service to sanitize the database of false

or outlier data. In any of these cases, a general signal or information processing approach to assuring

the integrity of information or a system involves formulating the integrity problem using a statistical

hypothesis testing framework. Specifically, hypothesis checking involves determining whether X falls

inside or outside of a region of validity Ω. If the data falls in the valid region, the null hypothesis H0

is verified and thus the data/system integrity is validated. On the other hand, unreliable data is classified

as H1, and the system integrity is deemed suspect or compromised.

III. PROTECTING PRIVATE INFORMATION

While security mechanisms address the problem of external hackers and eavesdroppers, guaranteeing

the privacy of individuals and organizations whose data is being transferred across networks and stored

in distributed repositories requires different tools to protect contextual information from being gleaned

by potential insider inference.
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There are many application scenarios where the issue of privacy arises and unfortunately the traditional

approach to developing privacy solutions for these applications involves application-specific solutions that

are often heuristic and generally disconnected from a formal theoretical foundation that quantifies the

privacy benefits. These different applications, whether they correspond to smart grids or medical records,

can all benefit from a unifying framework that allows a privacy engineer to build solutions where the

privacy benefits can be explored with well-understood utility tradeoffs, first introduced and developed in .

In this section, we begin by outlining a unified approach to understanding privacy and application utility.

This model is based on IT principles introduced and developed in [12]. Following the model presentation,

in Section IV we illustrate how this model can be used to motivate the application of signal processing

techniques to reliably support information privacy.

A. A Unifying Analytical Model

Our privacy model involves datasets (e.g. databases or communication packets/signals) with K attributes

per entry/occurrence. For the remainder of this discussion, we shall simplify our discussion to refer to

these datasets as databases. Our proposed model focuses on large databases with K attributes per entry.

Let Xk, for all k ∈ K = {1, 2, , . . . , K}, and Z be finite sets. Let Xk ∈ Xk be a random variable

denoting the kth attribute, k = 1, 2, . . . , K, and let XK ≡ (X1, X2, . . . , XK). A database d with n rows

is a sequence of n independent observations from a source having a probability distribution

pXK
(xK) = pX1X2...XK

(x1, x2, . . . , xK) (1)

which is assumed to be known to both the designers and users of the database. Our simplifying assumption

of row independence holds generally in large databases as correlation typically arises across attributes

and can be ignored across entries given the size of the database. We write Xn
K = (Xn

1 , Xn
2 , . . . , Xn

K) to

denote the n independent and identically distributed (i.i.d.) observations of XK.

The joint distribution in (1) models the fact that the attributes corresponding to an individual entry are

correlated in general and consequently can reveal information about one another.

Public and private attributes: We consider a general model in which some attributes need to be kept

private while the source can reveal a function of some or all of the attributes. We write Kr and Kh to

denote sets of private (subscript h for hidden) and public (subscript r for revealed) attributes, respectively,

such that Kr ∪ Kh = K ≡{1, 2, . . . , K}. We further denote the corresponding collections of public and

private attributes by XKr
≡ {Xk}k∈Kr

and XKh
≡ {Xk}k∈Kh

, respectively.

Our notation allows for an attribute to be both public and private; this is to account for the fact that

a database may need to reveal a function of an attribute while keeping the attribute itself private. In
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general, a database can choose to keep public (or private) one or more attributes (K > 1). Irrespective of

the number of private attributes, a non-zero utility results only when the database reveals an appropriate

function of some or all of its attributes.

Revealed attributes and side information: The public attributes XKr
are in general sanitized/distorted

prior to being revealed in order to reduce possible inferences about the private attributes. We denote the

resulting revealed attributes as X̂Kr
≡ {X̂k}k∈Kr

. In addition to the revealed information, a database

user can have access to correlated side information from other information sources. We model the side

information as an n-length sequence Zn = (Z1, Z2, . . . , Zn), Zi ∈ Z for all i, which is correlated with

the database entries via a joint distribution pXKZ (xK,z).

Reconstructed database: The final reconstructed database at the user will be either a database of

revealed public attributes (when no s.i. is available) or a database generated from a combination of the

revealed public attributes and the side information (when s.i. is available).

B. The Privacy and Utility Principle

Even though utility and privacy measures tend to be specific to the application, there is a fundamental

principle that unifies all these measures in the abstract domain. The aim of a privacy-preserving database

is to provide some measure of utility to the user while at the same time guaranteeing a measure of privacy

for the entries in the database.

A user perceives the utility of a perturbed database to be high as long as the response is similar to

the response of the unperturbed database; thus, the utility is highest of an unperturbed database and

goes to zero when the perturbed database is completely unrelated to the original database. Accordingly,

our utility metric is an appropriately chosen average ‘distance’ function between the original and the

perturbed databases. Privacy, on the other hand, is maximized when the perturbed response is completely

independent of the data. Our privacy metric measures the difficulty of extracting any private information

from the response, i.e., the amount of uncertainty or equivocation about the private attributes given the

response [14], [12]. This basic principle and the resulting mappings from the application to the analysis

(abstract) domain are summarized in Table I.

C. A Privacy-Utility Tradeoff Model

Since database sanitization is traditionally the process of distorting the data to achieve some measure

of privacy, it is a problem of mapping a database to a different one subject to specific utility and privacy

requirements.
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Application Requirements Principle/Abstraction

Utility Distortion/Fidelity Functions

Privacy Equivocation

Perturbation Technique Information-theoretic Source Code

TABLE I

A PRINCIPLED MAPPING OF APPLICATION REQUIREMENTS TO AN ABSTRACT MODEL.

Mapping: Our notation below relies on this abstraction [12]. Let Xk, k ∈ K, and Z, be as above and

let X̂j be additional finite sets for all j ∈ Kr. Recall that a database d with n rows is an instantiation of

Xn
K. Thus, we will henceforth refer to a real database d as an input database and to the corresponding

sanitized database (SDB) ds as an output database. When the user has access to side information, the

reconstructed database d′ at the user will in general be different from the output database.

Our coding scheme consists of an encoder FE which is a mapping from the set of all input databases

(i.e., all databases d allowable by the underlying distribution) to a set of indices J ≡ {1, 2, . . . , M} and

an associated table of output databases (each of which is a ds and has a one-to-one mapping to J ) given

by

FE : (X n
1 × . . . ×X n

k )k∈Kenc
→ J ≡ {SDBk}

M
k=1 (2)

where Kr ⊆ Kenc ⊆ K and M is the number of output (sanitized) databases created from the set of all

input databases. To allow for the case where an attribute can be both public and private, we allow the

encoding FE in (2) to include both public and private attributes. A user with a view of the SDB (i.e.,

an index j ∈ J ) and with access to side information Zn, whose entries Zi, i = 1, 2, . . . , n, take values

in the alphabet Z , reconstructs the database d′ via the mapping

FD : J × Zn →
(

∏

k∈Kr
X̂ n

k

)

. (3)

The encoding and decoding are assumed known at both parties.

Utility: Relying on a distance based utility principle, we model the utility u via the requirement that

the average distortion of the public variables is upper bounded, for each ǫ > 0 and all sufficiently large

n, as

u ≡ E

[

1

n

∑n
i=1ρ

(

XKr,i, X̂Kr,i

)

]

≤ D + ǫ, (4)

where ρ (·, ·) denotes a distortion function, E is the expectation over the joint distribution of (XKr
, X̂Kr

),

and the subscript i denotes the ith entry of the database. Examples of distortion functions include the

January 15, 2013 DRAFT



9

Euclidean distance for Gaussian distributions, the Hamming distance for binary input and output databases,

and the Kullback-Leibler (K-L) divergence.

Privacy: We quantify the equivocation e of all the private variables using entropy as

e ≡
1

n
H

(

Xn
Kh

|J, Zn
)

≥ E − ǫ. (5)

Analogous to (5), for continuous sources, we can quantify the privacy leakage l using mutual information

as

l ≡
1

n
I

(

Xn
Kh

; J, Zn
)

≤ L + ǫ. (6)

The mappings in (2) and (3) ensure that d is mapped to d′ such that the constraints in (4) and (5) are

met. The formalism in (1)-(6) is analogous to lossy compression in that a source database is mapped to

one of M quantized databases that are designed a priori. For a chosen encoding, a database realization

is mapped to the appropriate quantized database. It suffices to communicate the index J of the resulting

quantized database as formalized in (2) to the user. This index, in conjunction with side information,

if any, enables a reconstruction at the user as in (3). Note that the mappings in (2) and (3), i.e., lossy

compression with privacy guarantees, ensure that for any D > 0, the user can only reconstruct the

database d
′

= X̂n
Kr
, formally a function f (J, Zn), and not d = Xn

K itself.

The utility and privacy metrics in (4) and (5) capture the statistical nature of the problem, i.e., the

fact that for large enough n the entries of the database statistically mirror the distribution (1). Thus, both

metrics represent averages across all database instantiations d, and hence, (assuming stationarity and large

n) over the sample space of XK thereby quantifying the average distortion (utility) and equivocation

(privacy) achievable per entry.

D. Equivalence of Utility-Privacy and Rate-Distortion-Equivocation

Mapping utility to distortion and privacy to information uncertainty via entropy (or leakage via mutual

information) leads to the following definition of the utility-privacy (U-P) tradeoff region.

Definition 1: The U-P tradeoff region T is the set of all U-P tuples (D, E) for which there exists a

coding scheme (FE , FD) given by (2) and (3), respectively, with parameters (n, M, u, e) satisfying (4)

and (5).

While T in Definition 1 can be determined for specific database examples, one has to, in general,

resort to numerical techniques to solve the optimization problem. To obtain closed form solutions that

define the set of all tradeoff points and identify the optimal encoding schemes, we exploit the rich set of

techniques from rate distortion theory with and without equivocation constraints. To this end, we study a
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more general problem of rate-distortion-equivocation (RDE) by introducing an additional rate constraint

M ≤ 2n(R+ǫ) which bounds the number of quantized SDBs in (2). Besides enabling the use of known

rate-distortion techniques, the rate constraint also has an operational significance. For a desired level of

accuracy (utility) D, the rate R is the precision required on average (over XK) to achieve it. We now

define the achievable RDE region as follows.

Definition 2: The RDE region RRDE is the set of all tuples (R, D, E) for which there exists a coding

scheme given by (2) and (3) with parameters (n, M, u, e) satisfying the constraints in (4), (5), and on

the rate. In this region, RD−E , the set of all feasible distortion-equivocation tuples (D, E) is defined as

RD−E ≡ {(D, E) : (R, D, E) ∈ RRDE , R ≥ 0} . (7)

The RDE problem includes a constraint on the precision of the public variables in addition to the

equivocation constraint on the private data in the U-P problem. Thus, in the RDE problem, for a desired

utility D, one obtains the set of all rate-equivocation tradeoff points (R, E) , and therefore, over all

distortion choices, the resulting region contains the set of all (D, E) pairs. From Definitions 1 and 2, we

thus have the following Proposition.

Proposition 3 ([12]): T = RD−E .

Proposition 3 is captured pictorially in Fig. 2(b). The functions R (D, E) and Γ(D) in Fig. 2 capture

the rate and privacy boundaries of the region and are the minimal rate and maximal privacy achievable,

respectively, for a given distortion D. Furthermore, in Fig. 2(b) the U-P tradeoff region contrast existing

privacy-exclusive and utility-exclusive regimes (extreme points of the utility-privacy tradeoff curve) with

our general approach of determining the set of all feasible utility-privacy tradeoff points.

The aim of classical source coding is to determine the smallest number of bits per sample, i.e., the

rate-distortion function R(D), that when revealed to the user (decoder), ensures reconstruction within

a distortion D. When an additional privacy constraint in (5) is included, the problem becomes one of

determining the achievable RDE region. Thus, a RDE code is by definition a (lossy) source code (in

practice a compression algorithm) satisfying a distortion constraint that achieves a specific privacy level

for every choice of distortion. The power of Proposition 3 is that it allows us to study the larger problem

of database U-P tradeoffs in terms of a relatively familiar problem of source coding with additional

privacy constraints. This result shows the tradeoff between utility (distortion), privacy (equivocation),

and precision (rate) – fixing the value of any one determines the set of operating points for the other

two; for example, fixing the utility (distortion D) quantifies the set of all achievable privacy-precision

tuples (E, R).
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E. Understanding the Formalism

The formalism here aims to determine the optimal sanitization, i.e., a mapping which guarantees the

maximal privacy for the private (hidden) attributes and a desired level of utility for the public attributes,

among the set of all possible mappings that transform the public attributes of a database. We use the terms

encoding and decoding to denote this mapping at the data publisher end and the user end respectively.

A database instance is an n-realization of a random source (the source is a vector when the number

of attributes K > 1) and can be viewed as a point in an n-dimensional space (see Fig. 3). The set

of all possible databases (n-length source sequences) that can be generated using the source statistics

(probability distribution) lie in this space.
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Our choice of utility metric is a measure of average ‘closeness’ between the original and revealed

database public attributes via a distortion requirement D. Thus the output of sanitization will be another

database (another point in the same n-dimensional space) within a ball of ‘distance’ nD. We seek to

determine a set of M = 2nR output databases that ‘cover’ the space, i.e., given any input database instance

there exists at least one sanitized database within bounded ‘distance’ nD as shown in Fig. 3. Note that

the sanitized database may be in a subspace of the entire space because only the public attributes are

sanitized and the utility requirement is only in this subspace.

Such a distortion-constrained encoding is referred to in the signal processing literature as vector

quantization because the compression is of an n-dimensional space and can be achieved in practice

using clustering algorithms. In addition to a distortion (utility) constraint, our privacy constraint also

requires that the “leakage” (i.e. the loss of uncertainty) about the private attributes via correlation from

the sanitized database is bounded. The set of M source-sanitized database pairs is chosen to satisfy both

distortion and leakage constraints.

IV. PRIVACY CASE STUDIES

We now turn our attention to exploring case studies where signal and information processing techniques,

motivated by the framework we outline in Section III, can be applied to improve privacy. Our exploration

of case studies will examine three broad categories of database privacy: (i) statistical data privacy which

involves guaranteeing privacy of any individual in a database that is used for statistical information

processing (utility); (ii) competitive privacy which involves information sharing for a common system

good (utility) between competing agents that are physically interconnected; and (iii) consumer privacy

related to guaranteeing privacy when monitoring users using smart devices (utility).

A. Statistical Data Privacy

The problem of privacy for databases was first exposed by census statisticians who were required to

publish statistics related to census functions but without revealing any particulars of individuals in the

census databases [9]. Several early attempts were made to publish census data using ad hoc techniques

such as sub-sampling. However, the first widely reported attempt at a formal definition of privacy was by

Sweeney [13]. The concept of k-anonymity proposed by Sweeney captures the intuitive notion of privacy

that every individual entry should be indistinguishable from (k − 1) other entries for some large value

of k.
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The approaches considered in the literature have centered on the correct application of sanitization that

ensure that a user interacts only with a modified database that is derived from the original (e.g.: [9], [13],

[3]). Most of the these sanitization approaches, with the exception of differential privacy-based ones, are

application-specific and often focus on additive noise approaches. More recently, privacy approaches for

statistical databases has been driven by the differential privacy definition [11] in which the authors take

the view that the privacy of an individual in a database is related to the ability of an adversary to detect

whether that individual’s data is in that database or not. In this special issue, the reader will find an

article ***To Be Filled in After Review Cycle Completes*** discussing signal processing techniques

for DP.

DP is a strictly stronger concept than the IT definition of privacy used here. However, the IT model

has a strong statistical basis and is suited to many application domains where strict anonymity is not

the requirement. For example, in many wellness databases the presence of the record of an individual is

not a secret but that individual’s disease status is. The vector quantization based sanitization approach

presented here applies to both numerical and categorical data whereas DP, while being a very popular

model for privacy, appears limited to numerical data.

More generally, a rigorous model for privacy-utility tradeoffs with a method to achieve all the optimal

points has remained open and is the subject of this survey. The use of information theoretic and signal

processing tools for privacy and related problems is relatively sparse and and is beginning to draw the

attention of signal processing researchers. [14] analyzed a simple two variable model using rate distortion

theory with equivocation constraints, which is the prime motivation for the general framework introduced

here.

We now illustrate how our framework can be applied to a simple numerical database example. Consider

a K = 2 database where both attributes X and Y are jointly Gaussian with zero means and variances

σ2
X and σ2

Y , respectively, and with correlation coefficient ρ = E [XY ] / (σXσY ). This model applies for

numeric data (e.g., clinical data), such as height and weight measures, which are roughly assumed to be

normally distributed. We assume that for every entry only one of the two attributes, say X , is revealed

while the other, say Y , is hidden such that Y −X − X̂ forms a Markov chain. The RDE region for this

case can be obtained directly from Yamamoto’s results [14] with appropriate substitution for a jointly

Gaussian source. Furthermore, due to the Markov relationship between of X, Y, and X̂ , the minimization

of I(X; X̂) is strictly over p(x̂|x), and thus, simplifies to the familiar rate-distortion problem for a

Gaussian source X which in turn is achieved by choosing the reverse channel from X̂ to X as an

additive white Gaussian noise channel with variance D (average distortion). The resulting minimal rate
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R(D) and leakage L(D) achieved (in bits per entry) are, for D ∈
[

0, σ2
X

]

, R(D) = 1
2 log

(

σ2
X/D

)

and

L(D) = 1
2 log(

[(

1 − ρ2
XY

)

+ ρ2
XY D

/

σ2
X

]−1
), respectively. As expected, L(D) is maximal for D = 0

(X revealed perfectly) in which case only the data independent of X in Y can be guaranteed perfect

privacy, and minimal for D = σ2
X when nothing is revealed (R = 0). The largest U-P tradeoff region is

thus the region enclosed by L(D).

It is worth noting that the reconstructed database is also Gaussian distributed. Thus, if one wishes to

preserve the most uncertainty about (some or all of) the original input database from the output, it suffices

to add Gaussian noise. The power of the framework are two-fold: (i) one can find the privacy-optimal

sanitization for the Gaussian case; and (ii) practical applications such as medical analytics that assume

Gaussian-distributed data can still work on sanitized data, albeit with modified parameter values.

B. Competitive Privacy

The problem of sharing information across autonomous entities in such a way that no information

apart from the answer to the query is revealed was identified by Agrawal et al [16] (see also [17] where

the term competitive privacy is introduced). More recently, in [18], the notion of competitive privacy

was generalized to a variety of domains involving complex distributed networks (e.g., financial, water

distribution, transport and congestion control, etc.).

The evolution of distributed sensing, control, and actuation systems to monitor complex networks (e.g.,

the power grid) had led to the problem of interactive distributed processing, often between competing

entities, that manage subnetworks of a large connected network. The common benefit of network reliability

drives the need for interaction while economics, competition, and consumer policies lead to privacy

(confidentiality) constraints. In [18] the formalism presented here is applied to the problem of distributed

state estimation (estimation of complex voltages across the grid) enabled via data interactions amongst

many agents. The formalism captures the tradeoff at each agent between the rate (precision) of data

exchanges, the fidelity of its estimate (distortion), and the leakage of its private information (typically

state information, say X, in an agent’s subnetwork) when every agent shares a (compressed) function of

its measurements (say Y which is a function of some or all X) with others.

For a Gaussian measurement model (i.e., measurement Y at each agent is a noisy linear combination

of Gaussian states X at the different agents), [18] shows that while private information leakages are

inevitable in an interactive model, it is possible to share data minimally to achieve both the desired

global estimation reliability at each agent and minial information leakage. More broadly, the resulting

RDE tradeoff framework demonstrates that privacy- and confidentiality-aware interactions are possible
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in a number of distributed computing applications.

Privacy and confidentiality concerns are frequently driven by economics [20]; for the distributed state

estimation problem described above, [19] explores the cost of privacy using game-theoretic principles and

shows that strictly non-zero prices are required to incentive cooperation when agents choose to optimize

a linear combination of their leakage and distortion functions. For the same setup, [21] highlights the

power of a repeated games model to build trust and enable collaborate over multiple interactions. Signal

processing algorithms that allow interaction and games is the first step towards enabling secure distributed

platforms.

C. Consumer Privacy

We now examine consumer privacy, which deals with problems arising as organizations monitor their

clients or users. Within this broad class of client privacy, there exist different types of information that can

be collected. One such category consists of physical measurements; this includes quantities like water,

energy, or bandwidth usage. For instance, when people use electricity, power companies track clients’

usage patterns in order to determine pricing; on the other hand, detailed information about power usage

can reveal a lot about an individual’s daily habits. The client would ideally like to preserve some level

of privacy while still being able to benefit from the power company’s service. It thus makes sense to

ask how much information really needs to be leaked without affecting service quality. We illustrate this

category with an example of privacy for smart meters and highlight the signal processing challenges.

Another category consists of more categorical measurements, such as the types of products a person

buys, or the nature of Internet queries. In this context, we will discuss an example of how signal processing

techniques can be used to achieve privacy in an image classification application.

1) Smart Meter Privacy: While the fine-grained monitoring afforded by smart meters enable better

load balancing and reliability analysis in the electric grid, data from smart meters may be mined to

infer personal information in ways that are unknown to us presently. A number of solutions have been

proposed such as using batteries to mask usage patterns [22], [23], anonymizing user data, adding noise

and aggregating neighborhood data [24]. Focusing on the tradeoff problem, [25] proposes a rigorous

approach grounded in the framework presented in the earlier Section to quantify the tradeoff between

utility and privacy and reveal signal processing methods of achieving privacy.

The motivation is to decouple the revealed meter data as much as possible from the personal actions of

a consumer. This insight is based on the observation that irregular (intermittent) activity such as kettles or

lights turned on manually are much more revealing of personal actions than regular (continuous) activity
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such as refrigerators or lights on timers. In [25], the time-series data from the smart meters is modeled

as a noisy linear mixture of colored Gaussian processes1, each process generated by an underlying

appliance. Appliances are modeled as belonging to two broad classes, one which is continuously on

(e.g., air conditioners, heaters) in time (and thus, have narrow spectral signatures) and the other which

come on intermittently (e.g., toasters, kettles, washers, etc.) and are bursty in time (and thus, have broad

spectral signatures). The privacy-utility tradeoffs on the total load are shown to be achievable using an

interference-aware reverse waterfilling solution which: (i) exploits the presence of high-power but less

private appliance spectra as implicit distortion noise, and (ii) filters out frequency components with lower

power relative to a distortion threshold.

The solution in [25] exploits the fact that the time-series measurements can be transformed to the

spectral domain in which minimizing the information leakage of the intermiittent appliances leads to the

problem of optimally allocating the distortion (mean-squared error between the actual and revealed meter

data) for each spectral frequency subject to a joint distortion constraint over all frequencies. This joint

distortion constraint in turn determines a threshold waterlevel (PSD) below which all spectral energy is

suppressed (and hence, the name reverse water-filling).

The power of the solution is illustrated in the following example. A continuous (denoted c) and an

intermittent appliance (denoted i) load measurements are modeled as (time-limited) Gauss-Markov pro-

cesses whose auto-correlation fucntions P(l)ρ
−|k|
(l) , l = i, c, are characterized by variance P(l), correlation

coefficient ρ(l), and memory m(l) for the lth appliance type. These parameters allow modeling the fact

that the continuously used appliances have a longer memory and a larger correlation coefficient relative

to the intermittently used appliances; furthermore, the bursty usage pattern of the intermittent appliances

is incorporated by choosing Pi > Pc.

For Pi = 12, Pc = 8, ρi = 0.4, ρc = 0.8, mi = 40, and mc = 120, in Fig. 4, the power spectral

densities (PSDs) for the intermittent, continuous (with noise), and both (with noise) for the parameters

is shown. Also shown is the waterlevel λ and the distortion spectrum ∆ (f). From both figures, we see

that the distortion spectrum is zero when the PSD of the noisy continuous process dominates either that

of the intermittent process or the waterlevel λ leading to zero and minimal leakage, respectively, for the

two cases. The waterlevel λ determines the distortion spectrum otherwise.

2) Image Classification Privacy: A commonly-cited application for client privacy is biometric iden-

tification [26]. The FBI recently unveiled plans to spend one billion dollars on a tracking system that

1Colored processes are those in which the signals generated at each time instance are correlated with those generated previously.
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Fig. 4. A graphical illustration of the spectral filtering approach to suppress those appliance signatures that if revealed can

lead to privacy violations.

relies on face recognition to scan surveillance video for wanted persons; meanwhile, civil rights groups

are raising objections about privacy violations [27]. To relieve this tension, privacy-preserving algorithms

could prevent normal citizens from being tracked by the government, while simultaneously allowing

police agencies to find criminals. This problem reduces to one of privacy-preserving image classification.

Many existing algorithms dealing with private media classification rely on cryptographic primitives that

permit basic computation in the encrypted domain (e.g., [28]). An example of a system that instead

uses signal processing techniques to reduce the necessary communication and computational load is the

private face recognition system in [29]. In this system, the client inputs a face image, and with the help

of a server storing a database of faces, the client learns the subject’s name. Meanwhile, the server learns

nothing about the client’s query.

The basic insight in [29] is that a practical privacy-preserving search algorithm should be designed with

privacy primitives in mind. Therefore, the system alters a Euclidean-distance nearest-neighbor search into

a Hamming distance comparison, which is more compatible with distortion-intolerant privacy primitives.

This problem redefinition occurs via a feature vector transformation that involves projection onto random

hyperplanes [30]. Yeo et al. showed that the Hamming distance between two transformed vectors is

directly related to the Euclidean distance between the original real-valued vectors. The new binary features

couple nicely with a primitive called private information retrieval to enable privacy-preserving searches

at communication and computation costs sublinear in database size.

This example is useful because it illustrates that signal processing techniques—in this case, the feature
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transformation—can significantly reduce the resource consumption of privacy-aware systems. However,

the face recognition system in [29] combines signal processing with privacy primitives to achieve IT

client privacy. An even more signal-processing-flavored option would be a system that eschews privacy

primitives altogether, and instead relies on the privacy properties of transformed feature vectors. Of

course, to make such a system useful, it is critical to understand the privacy properties of various feature

transformations at a theoretical level.

V. CONCLUDING REMARKS

We have explored a set of non-cryptographic mechanisms for security and privacy, and provided a

unifying framework for studying and formulating the tradeoff between privacy and data utility. We note

that traditional security mechanisms must play a role in securing our communications and information.

However, there are many situations on the horizon where a set of new tools can complement and

enhance traditional security mechanisms. Domain-specific approaches that are founded on well-developed

information-theoretical and signal processing principles represent an untapped resource for developing

such new security tools. We explored several case studies where the methods described in this survey

article can be used to drive the design of signal and information processing techniques that can thwart

threats that cannot be dealt with using only conventional cryptographic mechanisms.
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