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S
ource separation, or demixing , is the process of 
extracting multiple components entangled within a 
signal. Contemporary signal processing presents a 
host of difficult source separation problems, from 
interference cancellation to background subtraction, 

blind deconvolution, and even dictionary learning. Despite the 
recent progress in each of these applications, advances in high-
throughput sensor technology place demixing algorithms 
under pressure to accommodate extremely high-dimensional 
signals, separate an ever larger number of sources, 
and cope with more sophisticated signal 
and mixing models. These difficulties 
are exacerbated by the need for 
real-time action in automated 
decision-making systems. 

Recent advances in con-
vex optimization provide a 
simple framework for effi-
ciently solving numerous 
difficult demixing prob-
lems. This article provides 
an overview of the emerging 
field, explains the theory that 
governs the underlying procedures, 
and surveys algorithms that solve them 
efficiently. We aim to equip practitioners with a 
toolkit for constructing their own demixing algorithms that 
work, as well as concrete intuition for why they work. 

Fundamentals of demixing
The most basic model for mixed signals is a superposition model, 
where we observe a mixed signal z Rd

0 !  of the form 

	 ,z x y0 0 0= + � (1)

and we wish to determine the component signals x0  and .y0  This 
simple model appears in many guises. Sometimes, superimposed 
signals come from basic laws of nature. The amplitudes of electro-
magnetic waves, for example, sum together at a receiver, making 
the superposition model (1) common in wireless communica-
tions. Similarly, the additivity of sound waves makes superposition 
models natural in speech and audio processing. 

Other times, a superposition provides a useful, if not literally 
true, model for more complicated nonlinear phenomena. Many 

images can be modeled as the sum of constituent fea-
tures—think of stars and galaxies that sum to 

create an image of a piece of the night 
sky [1]. In machine learning, 

superpositions can describe hid-
den structure [2], while in 

statistics, superpositions can 
model gross corruptions to 
data [3]. These models also 
appear in texture repair [4], 
graph clustering [5], and 

line-spectral estimation [6]. 
A conceptual understanding 

of demixing in all of these applica-
tions rests on two key ideas. Natural 

signals in high dimensions often cluster 
around low-dimensional structures with few 

degrees of freedom relative to the ambient dimension [7]. 
Examples include bandlimited signals, array observations from seis-
mic sources, and natural images. By identifying the convex functions 
that encourage these low-dimensional structures, we can derive con-
vex programs that disentangle structured components from a signal. 

Of course, effective demixing requires more than just struc-
ture. To distinguish multiple elements in a signal, the components 
must look different from one another. We capture this idea by say-
ing that two structured families of signal are incoherent if their 
constituents appear very different from each other. While demix-
ing is impossible without incoherence, sufficient incoherence 
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typically leads to provably correct demixing procedures. The two 
notions of structure and incoherence above also appear at the core 
of recent developments in information extraction from incomplete 
data in compressive sensing and other linear inverse problems [8], 
[9]. The theory of demixing extends these ideas to a richer class of 
signal models, and it leads to a more coherent theory of convex 
methods in signal processing. 

While this article primarily focuses on mixed signals drawn 
from the superposition model (1), recent extensions to nonlinear 
mixing models arise in blind deconvolution, source separation, 
and nonnegative matrix factorization [10]–[12]. We will see that 
the same techniques that let us demix superimposed signals reap-
pear in nonlinear demixing problems. 

The role of convexity
Convex optimization provides a unifying theme for all of the demix-
ing problems discussed above. This framework is based on the idea 
that many structured signals possess corresponding convex func-
tions that encourage this structure [9]. By combining these func-
tions in a sensible way, we can develop convex optimization 
procedures that demix a given observation. The geometry of these 
functions lets us understand when it is possible to demix a superim-
posed observation with incoherent components [13]. The resulting 
convex optimization procedures usually have both theoretical and 
practical guarantees of correctness and computational efficiency. 

To illustrate these ideas, we consider a classical but surpris-
ingly common demixing problem: separating impulsive signals 
from sinusoidal signals, called the spikes and sines model. This 
model appears in many applications, including star–galaxy separa-
tion in astronomy, interference cancellation in communications, 
inpainting and speech enhancement in signal processing [1], [14]. 

While individual applications feature additional structural 
assumptions on the signals, a simple low-dimensional signal 
model effectively captures the main idea present in all of these 
works: sparsity. A vector x Rd

0 !  is sparse if most of its entries 
are equal to zero. Similarly, a vector y Rd

0 !  is sparse-in-
frequency if its discrete cosine transform (DCT) Dy0  is sparse, 
where D Rd d! #  is the matrix that encodes the DCT. Sparse vec-
tors capture impulsive signals like pops in audio, while sparse-in-
frequency vectors explain smooth objects like natural images. 
Clearly, such signals look different from one another. In fact, an 
arbitrary collection of spikes and sines is linearly independent or 
incoherent provided that the collection is not too big [14]. 

Is it possible to demix a superimposition z x y0 0 0= +  of spikes 
and sines into its constituents? One approach is to search for the 
sparsest possible constituents that generate the observation z0

	 , : ,:x y x Dy z x y
,x y

0 0 0

Rd
arg min m= + = +

!

s s6 @ $ . � (2)

where the 0, -“norm” measures the sparsity of its input, and 
02m  is a regularization parameter that trades the relative spar-

sity of solutions. Unfortunately, solving (2) involves an intractable 
computational problem. However, if we replace the 0,  penalty 
with the convex 1, -norm, we arrive at a classical sparse approxi-
mation program [14] 

	 [ , ] : : .arg minx y x Dy z x y
,x y

1 1 0
Rd

m= + = +
!

t t $ . � (3)

This key change to the combinatorial proposal (2) offers numer-
ous benefits. First, the procedure (3) is a convex program, and a 
number of highly efficient algorithms are available for its solution. 
Second, this procedure admits provable guarantees of correctness 
and noise-stability under incoherence. Finally, the demixing pro-
cedure (3) often performs admirably in practice. 

Figure 1 illustrates the performance of (3) on both a synthetic 
signal drawn from the spikes-and-sines model above, as well as on 
a real astronomical image. The resulting performance for the basic 
model is quite appealing even for real data that mildly violates the 
modeling assumptions. Last but not least, this strong baseline per-
formance can be obtained in fractions of seconds with simple and 
efficient algorithms. The combination of efficient algorithms, rig-
orous theory, and impressive real-world performance are hall-
marks of convex demixing methods. 

Demixing made easy
This section provides a recipe to generate a convex program that 
accepts a mixed signal z x y0 0 0= +  and returns a set of demixed 
components. The approach requires two ingredients. First, we must 
identify convex functions that promote the structure we expect in 
x0  and .y0  Second, we combine these functions together into a 
convex objective. This simple and versatile approach easily extends 
to multiple signal components and undersampled observations. 

Structure-inducing convex functions
We say that a signal has structure when it has fewer degrees of free-
dom than the ambient space. Familiar examples of structured 
objects include sparse vectors, sign vectors, and low-rank matrices. 
It turns out that each of these structured families have an associ-
ated convex function, called an atomic gauge, adapted to their spe-
cific features [9]. 

The general principle is simple. Given a set of atoms ,RA d1  
we say that a signal x Rd!  is atomic if it is formed by a sum of a 
small number of scaled atoms. For example, sparse vectors are 
atomic relative to the set of standard basis vectors because every 
sparse vector is the sum of just a few standard basis vectors. For a 
more sophisticated example, recall that the singular value decom-
position implies that low-rank matrices are the sum of a few rank-
one matrices. Hence, low-rank matrices are atomic relative to the  
set of all rank-one matrices. 

We can define a function that measures the inherent complex-
ity of signals relative to a given set .A  One natural measure is the 
fewest number of scaled atoms required to write a signal using 
atoms from ,A  but unfortunately, computing this quantity can be 
computationally intractable. Instead, we define the atomic gauge 

x A  of a signal x Rd!  by 

	 ,:  : · ( )infx x0 conv AA 2 !m m= $ .

where ( )conv A  is the convex hull of .A  In other words, the 
level sets of the atomic gauge are the scaled versions of the con-
vex hull of all the atoms A  [Figure 2(a)]. 
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By construction, atomic gauges are “pointy” at atomic vec-
tors. This property means that most deviations away from the 
atoms result in a rapid increase in the value of the gauge, so 
that the function tends to penalize deviations away from simple 
signals [Figure 2(b)]. The pointy geometry plays an important 
role in the theoretical understanding of demixing, as we will see 
when we discuss the geometry of demixing below. 

A number of common structured families and their associ-
ated gauge functions appear in Table 1. More sophisticated 
examples include gauges for probability measures, cut matrices, 
and low-rank tensors. We caution, however, that not every 
atomic gauge is easy to compute, and so we must take care to 
develop tractable forms of atomic gauges [9], [16]. Surprisingly, 
it is sometimes easier to compute the value of atomic gauges 
than it is to compute the (possibly nonunique) decomposition 
of a vector into its atoms [12]. We will return to the discussion 
of tractable gauges when we discuss demixing algorithms below. 

The basic demixing program
Suppose that we know the signal components x0  and y0  are 
atomic with respect to the known atomic sets Ax  and .A y  In 
this section, we describe how to use the atomic gauge functions 

· Ax  and · Ay  defined above to help us demix the compo-
nents x0  and y0  from the observation .z0

Our intuition developed above indicates that the values 
x0 Ax  and y0 Ay  are relatively small because the vectors x0  

and y0  are atomic with respect to the atomic sets Ax  and .A y  
This suggests that we search for constituents that generate the 

Observation z0 Sparse Component x0 DCT-Sparse Component y0

(d) (e) (f)

(a) (b) (c)

[Fig1]  (a)–(c) We obtain perfect separation of spikes from sinusoids by solving (3). The original signal is perfectly separated into 
(b) its sparse component and (c) its DCT-sparse component. (d)–(f) We also achieve high-quality star-galaxy separation by solving 
(3) with an astronomical image. (d) The original is separated into (e) a starfield corresponding to a nearly sparse component and 
(f) a galaxy corresponding to a nearly two-dimensional DCT-sparse component. (Galaxy image courtesy of NASA/JPL-Caltech and 
used with permission.)

x = 1

x > 1

x < 1

(a) (b)

[Fig2]   (a) An atomic set ,A  consisting of five atoms (stars). The 
“unit ball” of the atomic gauge · A  is the closed convex hull of 
A  (heavy line). Other level sets (dashed lines) of the gauge are 
dilations of the unit ball. (b) At an atom (star), the unit ball of 

· A  tends to have sharp corners. Most perturbations away 
from this atom increase the value of ,· A  so the atomic gauge 
often penalizes complex signals that are comprised of a large 
number of atoms.



	 IEEE SIGNAL PROCESSING MAGAZINE  [90] ma y 2014

observation and have small atomic gauges. That is, we deter-
mine the demixed constituents ,x yt t  by solving 

	 [ , ]:  : .arg minx y x y x y z0A A
,x y

x y
Rd

m= + + =
!

t t $ . � (4)

The parameter 02m  negotiates a tradeoff between the relative 
importance of the atomic gauges, and the constraint x y z0+ =  
ensures that our estimates xt  and yt  satisfy the observation 
model (1). The hope, of course, is that x x0=t  and ,y y0=t  so 
that the demixing program (4) actually identifies the true com-
ponents in the observation .z0  

The demixing program (4) is closely related to linear inverse 
problems and compressive sampling (CS) [8], [9]. Indeed, the 
summation map ( , )x y x y7 +  is a linear operator, so demixing 
amounts to inverting an underdetermined linear system using 
structural assumptions. The main conceptual difference between 
demixing and standard CS is that demixing treats the components 
x0  and y0  as unrelated structures. Also, unlike conventional CS, 
demixing does not require exact knowledge of the atomic decom-
position, but only the value of the gauge. 

The only link between the structures that appears in our rec-
ipe comes through the choice of tuning parameter m  in (4), 
which makes these convex demixing procedures easily adaptable 
to new problems. In general, determining an optimal value of m  
may involve fine-tuning or cross-validation, which can be quite 
computationally demanding in practice. Some theoretical guid-
ance on explicit choices of the regularization parameter appears 
in [2], [3], and [17]. 

Extensions
There are many extensions of the linear superposition model (1). 
In some applications, we are confronted with a signal that is only 
partially observed—compressive demixing. In others, we might 
consider an observation with additive noise, for instance, or a sig-
nal with more than two components. The same ingredients that 

we introduced above can be used to demix signals from these 
more elaborate models. 

For example, if we only see z0 =  ( ),x y0 0U +  a linear map-
ping of the superposition, then we simply update the consistency 
constraint in the usual demixing program (4) and solve instead 

	 [ , ]: . : ( )arg minx y x y x y z
,x y

0
R

A A
d

x ym U= + + =
!

t t $ . � (5)

Some applications for this undersampled demixing model 
appear in image alignment [18], robust statistics [5], and graph 
clustering [19]. 

Another straightforward extension involves demixing more 
than two signals. For example, if we observe ,z x y w0 0 0 0= + +  
the sum of three structured components, we can determine the 
components by solving 

	
[ , , ] :  

 : ,

arg minx y w x y w

x y w z

1 2

0

A A A
, ,x y w

x y w
Rd

m m= + +

+ + =

!

t t t $

.
�

(6)

where Aw  is an atomic set tuned to ,w0  and as before, the param-
eters 0i 2m  trade off the relative importance of the regularizers. 
This model appears, for example, in image processing applications 
where multiple basis representations, such as curvelets, ridgelets, 
and shearlets, explain different morphological components [1]. 
Further modifications along the lines above extend the demixing 
framework to a massive number of problems relevant to modern 
signal processing. 

Geometry of demixing
A critical question we can ask about a demixing program is “When 
does it work?” Answers to this question can be found by studying 
the underlying geometry of convex demixing programs. Surpris-
ingly, we can characterize the success and failure of convex demix-
ing precisely by leveraging a basic randomized model for 
incoherence. Indeed, the geometric viewpoint reveals a tight char-
acterization of the success and failure of demixing in terms of geo-
metric parameters that act as the “degrees of freedom” of the 
mixed signal. The consequences for demixing are intuitive: demix-
ing succeeds if and only if the dimensionality of the observation 
exceeds the total degrees of freedom in the signal. 

Descent cones and the statistical dimension
Our study of demixing begins with a basic object that encodes the 
local geometry of a convex function. The descent cone ( , )xD A  
at a point x  with respect to an atomic set RA d1  consists of the 
directions where the gauge function · A  does not increase near 

.x  Mathematically, the descent cone is given by 

	 ( , ) : : .x x h xh 0for someD A A A 2#x x= +$ .

The descent cone encodes detailed information about the local 
behavior of the atomic gauge · A  near .x  Since local optimality 
implies global optimality in convex optimization, we can charac-
terize when demixing succeeds in terms of a configuration of 
descent cones. See Figure 3 for a precise description of this opti-
mality condition. 

[Table 1] E xample signal structures and their atomic 
gauges [9], [15]. The top two rows correspond to 
vectors while the bottom three refer to matrices. 
The vector norms extend to matrix norms by 
treating m n#  matrices as length-mn  vectors. The 
expression x 2  denotes the Euclidean norm of the 
vector ,x  while ( )Xiv  returns the i th singular value 
of the matrix .X

Structure Atomic set Atomic gauge · A

Sparse  
vector

Signed basis  
vectors { }ei!

1,  norm
x xii1 =, /

Binary sign  
vector

Sign vectors { }1 d! ,3  norm
maxx xi i=,3

Low-rank  
matrix

Rank-1 matrices
{ : }uv uv 1t t

F =
Schatten 1-norm

( )X xS ii1 v=/
Orthogonal  
matrix

Orthogonal  
matrices { : }O OO it =

Schatten 3 -norm
( )x xS 1v=3

Row-sparse
matrix

Matrices with  
one nonzero  
row { : }e v v 1i

t
2 =

Row- 1,  norm
x /1 2, ,
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To understand when the geometric optimality condition is 
likely to hold, we need a measure for the “size” of cones. The most 
apparent measure of size is perhaps the solid angle, which quanti-
fies the amount of space occupied by a cone. The solid angle, how-
ever, proves inadequate for describing the intersection of cones 
even in the simple case of linear subspaces. Indeed, linear sub-
spaces are cones that take up no space at all, but when their 
dimensions are large enough, any two subspaces will always inter-
sect along a line. Imagine trying to arrange two flat sheets of paper 
so that they only touch at their centers: it’s impossible! 

We find a much more informative measure of size, called the 
statistical dimension, when we measure the proportion of space 
near a cone, rather than the proportion inside the cone. 

Definition 1 (Statistical dimension)
Let C Rd1  be a closed convex cone, and denote by 

( ) : arg minx x yyC CP = -!  the closest point in C  to .x  We 
define the statistical dimension ( )Cd  of a convex cone C Rd1  by 

	 ( ): ( ) ,gC E C 2
2d P= � (7)

where ~ ( , )g 0Normal I  is a standard Gaussian random variable 
and the letter E  denotes the expected value. 

The statistical dimension gets its name because it extends 
many properties of the usual dimension of linear subspaces to 
convex cones [20], and it is closely related to the Gaussian width 
used in [9]. Our interest here, however, comes from the interpre-
tation of the statistical dimension as a “size” of a cone. A large sta-
tistical dimension ( )C d.d  means that ( )gC 2

2P  is usually 
large, i.e., most points lie near or inside the cone. Conversely, a 
narrow cone C  possesses a small statistical dimension because the 
nearest point to C  is typically close to zero, which drives down the 
average norm. We will see below that the statistical dimension of 
descent cones provides the key parameter for understanding the 
success and failure of demixing procedures. 

Of course, a parameter is only useful if we can compute it. For-
tunately, the statistical dimension of descent cones is often easy to 
compute or approximate. Several ready-made statistical dimension 
formulas and a step-by-step recipe for accurately deriving new for-
mulas appear in [20]. Some useful approximate statistical dimen-
sion calculations can also be found in the works [9] and [17]. As an 
added bonus, recent work indicates that statistical dimension cal-
culations are closely related to the problem of finding optimal 
regularization parameters [17, Th. 2]. 

Phase transitions in convex demixing
The true power of the statistical dimension comes from its ability 
to predict phase transitions in demixing programs. By phase tran-
sition, we mean the peculiar behavior where demixing programs 
switch from near-certain failure to near-certain success within a 
narrow range of model parameters. While the optimality condition 
from Figure 3 characterizes the success and failure of demixing, it 
is often difficult to certify directly. To understand how demixing 
operates in typical situations, we need an incoherence model. One 
proposal to model incoherence assumes that the structured sig-
nals are oriented generically relative to one another. This is 

achieved, for example, by assuming that the structured compo-
nents are drawn structured relative to a rotated atomic set ,QA  
where Q Rd d! #  is a random orthogonal matrix [13]. Surpris-
ingly, this basic randomized model of incoherence leads to a rich 
theory with precise guarantees that complement other phase tran-
sition characterizations in linear inverse problems [21], [22]. Many 
works propose alternative incoherence models applicable to spe-
cific cases, including [3] and [9], but these specific choices do not 
possess known phase transitions. Under the random model of [13], 
however, a very general theory is available. The following result 
appears in [20, Th. III].

Theorem 1
Suppose that the atomic set of x0  is randomly rotated, i.e., that 

QA Ax x= u  for some random rotation Q  and some fixed atomic 
set .Axu  Fix a probability tolerance ( , ),0 1!h  and define the nor-
malized total statistical dimension 

		  : [ ( ( , )) ( ( , ))] .x y
d
1 D A D Ax y0 0d dD = +u

Then there is a scalar C 02  that depends only on h  such that 

/C d1 1demixing can succeed with probability&# $ hD - -

/ .C d1 1demixing always fails with probability&$ $ hD + -

In fact, we can take : ( / ) .logC 4 4 h=  By “demixing can suc-
ceed,” we mean that there exists a regularization parameter 

02m  so that ( , )x y0 0  is an optimal point of (4). “Demixing 
always fails” means that ( , )x y0 0  is not an optimal point of (4) for 
any parameter .02m

Theorem 1 indicates that demixing exhibits a phase transition 
as the normalized statistical dimension D  increases beyond the 
one. The first implication above tells us that if D  is just a little less 
than one, then we can be confident that demixing will succeed for 
some tuning parameter .02m  On the other hand, the second 
implication says that if D  is slightly larger than one, then demix-
ing is hopeless. See Figure 4 for an example of the accuracy of this 

x0 – ( y, y0)

x0

x0 + ( x, x0)

x0x <x x

z0 – x z0 – x0y y<

[Fig3]  The geometric characterization of demixing. When the 
descent cones ( , )xD Ax 0  and ( , )yD Ay 0  share a line, then  
there is an optimal point xt  (star) for the demixing program  
(4) not equal to .x0  Conversely, demixing can succeed for  
some value of 02m  if the two descent cones touch only at  
the origin. In other words, demixing can succeed if and only 
if ( , ) ( , ) { }x y 0D A D Ax y0 0+- =  [13].
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theory for the sparse approximation model (3) from the introduc-
tion when the DCT matrix D  is replaced with a random rotation 

.Q  The agreement between the empirical 50% success line and 
the curve where 1D =  is remarkable. 

This theory extends analogously to the compressive and mul-
tiple demixing models (5) and (6). Under a similar incoherence 
model as above, compressive and multiple demixing are likely to 
succeed if and only if the sum of the statistical dimensions is 
slightly less than the number of (possibly compressed) measure-
ments [23, Th. A]. This fact lets us interpret the statistical dimen-
sion ( ( , ))xD A 0d  as the degrees of freedom of a signal x0  with 
respect to the atomic set .A  The message is clear: Incoherent 
demixing can succeed if and only if the total dimension of the 
observation exceeds the total degrees of freedom of the constitu-
ent signals. 

Practical demixing algorithms
In theory, many demixing problem instances of the form (4) admit 
efficient numerical solutions. Indeed, if we can transform these 
problems into standard linear, cone, or semidefinite formulations, 
we can apply black-box interior point methods to obtain high-accu-
racy solutions in polynomial time [24]. In practice, however, the 
computational burden of interior point methods makes these meth-
ods impracticable as the dimension d  of the problem grows. Fortu-
nately, a simple and effective iterative algorithm for computing 
approximate solutions to the demixing program (4) and its exten-
sions can be implemented with just a few lines of high-level code. 

Splitting the work
The simplest and most popular method for iteratively solving 
demixing programs goes by the name alternating direction 
method of multipliers (ADMM). The key object in this algorithm is 
the augmented Lagrangian function Lt  defined by 

	
( , , ) : ,

,

x y w x y w x y z

x y z

L

2
1

0

0
2

A Ax y G Hm

t

= + + + -

+ + -

t

where , ··G H  denotes the usual inner product between two vectors 
and 02t  is a parameter that can be tuned to the problem. Start-
ing with arbitrary points , , ,x y w Rd1 1 1 !  the ADMM method 
generates a sequence of points iteratively as 

	
( , , )
( , , )

( ) / .

arg min
arg min

x
y
w

x y w
x y w

w x y z

L
L

x

y

k

k

k

k k

k k

k k k

1

1

1

1

1 1
0

R

R

d

d

t

=

=

= + + -

!

!

t

t

+

+

+

+

+ +

* 	
(8)

In other words, the x- and y-updates iteratively minimize the 
Lagrangian over just one parameter, leaving all others fixed. The 
alternating minimization of Lt  gives the method its name. 
Despite the simple updates, the sequence ( , )x yk k  of iterates gen-
erated in this manner converges to the minimizers ( , )x yt t  of the 
demixing program (4) under fairly general conditions [25]. 

The key to the efficiency of ADMM comes from the fact that the 
updates are often easy to compute. By completing the square, the 
x- and y-updates above amount to evaluating proximal operators 
of the form 

	
,

arg min

arg min

x x u x

y y v y

2
1

2
1

andk k

k k

1 2

1 2

A

A

x

y

x

y

R

R

d

d

t

t
m

= + -

= + -

+

+

!

!

�
(9)

where :u z y wk k k
0 t= - -  and : .v z x wk k k

0
1 t= - -+  When 

solutions to the proximal minimizations (9) are simple to com-
pute, each iteration of ADMM is highly efficient. 

Fortunately, proximal operators are easy to compute for many 
atomic gauges. For example, when the atomic gauge is the 1,

-norm, the proximal operator corresponds to “soft thresholding”

( , )
,

,
,

,
| | ,

.
arg min x u x u

u

u

u
u
u

2
1 0soft

x

i

i

i

i

i

2

Rd
1

2

1
#

t
t

t

t

t

t

t

+ - = =

-

+
,

!

*

If we replace the 1, -norm above with the Schatten-1 norm, then 
the corresponding proximal operator amounts to soft threshold-
ing the singular values. Numerous other explicit examples of prox-
imal operations appear in [25, Sec. 2.6]. 

Not all atomic gauges, however, have efficient proximal opera-
tions. Even sets with finite number of atoms do not necessarily lead 
to more efficient proximal maps than sets with an infinite number 
of atoms. For instance, when the atomic set consists of rank-one 
matrices with unit Frobenius norm, we have an infinite set of 
atoms and yet the proximal map can be efficiently obtained via sin-
gular value thresholding. On the other hand, when the atomic set 
consists of rank-one matrices with binary 1!  entries, we have a 
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[Fig4]  Phase transitions in demixing. Phase transition diagram 
for demixing two sparse signals using 1,  minimization [20]. This 
experiment replaces the DCT matrix d  in (3) with a random 
rotation .Q  The color map shows the transition from pure 
success (white) to complete failure (black). The 95%, 50%, and 
5% empirical success contours (tortuous curves) appear above 
the theoretical phase transition curve (yellow), where .1D =  
See [13] for experimental details. (Figure used with permission 
from [20].)
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finite set of atoms and yet the best-known algorithm for computing 
the proximal map requires an intractable amount of computation. 

There is some hope, however, even for difficult gauges. Recent 
algebraic techniques for approximating atomic gauges provide 
computable proximal operators in a relatively efficient manner, 
which opens the door to additional demixing algorithms for richer 
signal structures [9], [16]. 

Extensions
While the ADMM method is the prime candidate for solving prob-
lem (4), it is not usually the best method for the extensions (5) or 
(6). In the first case, if U  is a general linear operator, it creates a 
major computational bottleneck since we need an additional loop 
to solve the subproblems within the ADMM algorithm. In the lat-
ter case, ADMM even loses convergence guarantees [26]. 

One possible way to handle both (5) and (6) is to use decompo-
sition methods. Roughly speaking, these methods decompose (5) 
or (6) into smaller components and then solve the convex sub-
problem corresponding to each term simultaneously. For exam-
ple, we can use the decomposition method from [27] 

( ( ) )

,

( ( ) ) .

,arg min

arg min

v

x

y

w

w x y z

y v y y y

w x y z

x v x x x

2
1

2
1

x

y

k

k

k

k

k k k

k k

k k

k k k

1

1

1

0

2
2

1 1
0

2
2

R

R A

A
d

x

d
y G H

G H

t

t

t

t

U

U

U

U

m

= + + -

=

= + + -

= + + -

+ + -!

!

+

+

+ + +

Z

[

\

]
]
]

]
]]

�

(10)

When the parameter t  is chosen appropriately, the generated 
sequence {( , )}x yk k  in (10) converges to the solution of (5). Since 
the second and the third lines of (10) are independent, it is even 
possible to solve them in parallel. This scheme easily extends to 
demixing three or more signals (6). 

Another practical method appears in [28]. In essence, this 
approach combines a dual formulation, Nesterov’s smoothing 
technique, and the fast gradient method [24]. This technique 
works both for (5) and (6), and it possesses a rigorous ( / )k1O  
convergence rate. 

Examples
The ideas above apply to a large number of examples. Here, we 
highlight some recent applications of convex demixing in signal 
processing. The first example, texture inpainting, uses a low-rank 
and sparse decomposition to discover and repair axis-aligned tex-
ture in images. The second example uses the low-rank and diago-
nal demixing of a sensor array correlation matrix to improve 
beamforming. 

Texture inpainting
Many natural and man-made images include highly regular tex-
tures. These repeated patterns, when aligned with the image 
frame, tend to have very low rank. Of course, rarely does a natural 
image consist solely of a texture. Often, though, a background tex-
ture is sparsely occluded by a untextured component. By model-
ing the occlusion as an additive error, we can use convex demixing 
to solve for the underlying texture and extract the occlusion [4]. 

In this model, we treat the observed digital image Z Rm n
0 ! #  

as a matrix formed by the sum ,Z X Y0 0 0= +  where the textured 
component X0  has low rank and Y0  is a sparse corruption or 
occlusion. The natural demixing program in this setting is the 
rank-sparsity decomposition [2], [3]  

[ , ]  ,arg minX Y X Y X Y Zsubject toS 1 0
,X Y

1
Rm n

m= + + =
! #

t t � (11)

This unsupervised texture-repair method exhibits a state-of-the-
art performance, exceeding even the quality of a supervised pro-
cedure built in to Adobe Photoshop on some images [4]. When 
applied, e.g., to an image of a chessboard, the method flawlessly 
recovers the checkerboard from the pieces (Figure 5). 

beamforming
We describe a convex demixing program for signal estimation via 
beamforming. Beamforming uses an array of n sensors to acquire 
a source signal from a given direction while suppressing the 
sources interfering from distinct directions. Denoting the signal of 
a sensor array with ( )S Cn 1d #  where  is the number of snapshots, 
the desired signal is estimated with ),( Swt  where )( Cw n 1d #  is 
known as the beamforming weights. Assuming that the signal 
impinges on the array from the direction ( ),d  the optimal weights 
for signal prediction are obtained as ( )Z d0

1n -  where 
( [ ])S SZ E t

0 =  is the correlation matrix and ( )n  stands for a cor-
rection factor to cancel the distortions [29]. When the sources are 
independent, the joint expected correlation matrix Z0  of the sen-
sor array signals takes the form ,Z A A Yt

0 0 0 0= +  where the col-
umn space of the n r#  matrix A0  encodes the bearing 
information from r  sources, and Y0  is the covariance matrix of 
the noise at the sensors. 

When the number of sources r  is much smaller than the num-
ber of sensors ,n  the matrix :X A At

0 0 0=  is positive semidefinite 
and has low rank. Moreover, when the sensor noise is uncorre-
lated, the matrix Y0  is diagonal. Using the atomic gauge recipe 
from above, we can demix X0  and Y0  from the empirical covari-
ance matrix Z0

t  by setting 

	
[ , , ]

 ,

arg minX Y E X Y E

X Y E Zsubject to
,X Y

S
2

0

diag Fro
Rn n 1

m= + +

+ + =

! #

+t t t

t
�

(12)

where E  absorbs the deviations in the expectation model due to 
the finite sample size. Here, · S1

+  is the atomic gauge generated 
by positive semidefinite rank-one matrices, which is equal to the 
trace for positive semidefinite matrices, but returns 3+  when its 
argument has a negative eigenvalue. Similarly, the gauge · diag  
is the atomic gauge generated by the set of all diagonal matrices, 
and so it is equal to zero on diagonal matrices but 3+  otherwise. 
The norm · Fro  is the usual Frobenius norm on a matrix. The 
results of [11] relate the success of a similar problem to the geo-
metric problem of ellipsoid fitting, and show that, under some 
incoherence assumptions, the method (12) succeeds. 

In beamforming, the array correlation matrix plays a key 
role in estimating the optimal weights. For instance, minimum 
variance distortionless response (MVDR) beamforming exploits 
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the correlation matrix to estimate the source signals at a given 
direction. The presence of noise corrupts the empirical correla-
tion matrix estimate, which deteriorates the beamforming per-
formance by MVDR. 

The approach in [31] assumes a low-rank correlation matrix 
and discusses source estimation using atomic regularization. 
Hence, the demixing results perfectly dovetail with this beam-
forming approach. To see synergy, we simulate a scenario where 
three sources impinge on a uniform linear array of ten sensors 
from far-field in free space. The input source-to-interference 
ratio (SIR) is –5 dB. In addition, we add isotropic noise to the 
sensor measurements at –10 dB source-to-noise ratio (SNR). 

The results are quite encouraging. The average output SIR 
of the standard MVDR beamformer using the empirical correla-
tion Z0

t  turns out to be 5 dB. The beamforming approach [31] 
with the empirical correlation estimate yields 6.3 dB SIR, while 
using the demixed estimate Xt  of (12) results in an impressive 
9.4 dB SIR—with an approximate improvement of 3 dB in inter-
ference suppression for source detection.

Horizons: Nonlinear separation
We conclude our demixing tutorial with some promising direc-
tions for the future. In many applications, the constituent signals 
are tangled together in a nonlinear fashion [10], [12]. While this 
situation would seem to rule out the linear superposition model 
considered above, we can leverage the same convex optimization 
tools to obtain demixing guarantees and often return to a linear 
model using a technique called semidefinite relaxation. 

We describe the basic idea behind this maneuver with a con-
crete application: blind deconvolution. Convolved signals appear 
frequently in communications due, e.g., to multipath channel 
effects. When the channel is known, removing the channel effects 
is a difficult but well-understood linear inverse problem. With 
blind deconvolution, however, we see only the convolved signal 
z x y0 0 0)=  from which we must determine both the channel 
x Rm

0 !  and the source .y Rd
0 !  

While the convolution x y0 0)  involves nonlinear interactions 
between x0  and ,y0  the convolution is in fact linear in the matrix 
formed by the outer product .x yt

0 0  In other words, there is a lin-
ear operator :R RC m d m d"# +  such that 

	 ( ) : .z X X x ywhereC t
0 0 0 0 0= =

The matrix X0  has rank one by definition, so it is natural use 
the Schatten 1-norm to search for low-rank matrices that gen-
erate the observed signal  

	 ( ) .arg minX X z Xsubject to C
X

S 0
Rm d

1= =
! #

t

This is the basic idea behind the convex approach to blind 
deconvolution of [10]. 

The implications of the nonlinear demixing example above 
are far-reaching. There are large classes of signal and mixing 
models that support efficient, provable, and stable demixing. 
Viewing different demixing problems within a common frame-
work of convex optimization, we can leverage decades of research 
in various diverse disciplines from applied mathematics to signal 
processing, and from theoretical computer science to statistics. 
We expect that the diversity of convex demixing models and geo-
metric tools will also inspire the development of new kinds of scal-
able optimization algorithms that handle nonconventional cost 
functions [30].
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