
It All Depends
Editors: Mohamed Kaâniche, mohamed.kaaniche@laas.fr | Aad van Moorsel, aad.vanmoorsel@ncl.ac.uk

2	 May/June 2013	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/13/$31.00 © 2013 IEEE

Integrity in Embedded
Control Networks
Philip Koopman and Christopher Szilagyi | Carnegie Mellon University

M any embedded systems,
such as in cars, use a net-

work to coordinate control actions
in real time. Usually, the system
doesn’t employ an Ethernet net-
work but rather a specialized real-
time control protocol running on
severely resource-constrained com-
puting nodes (mostly 8-bit and
16-bit CPUs). This presents unique
challenges. Ensuring integrity in
such systems involves a combina-
tion of safety and security needs,
and the usual big-system security
approaches aren’t necessarily practi-
cal. Nonetheless, as threats of attacks
increase, integrity approaches in
networked embedded systems will
have to evolve to provide both the
security and safety aspects of integ-
rity in a unified way. And they’ll have
to do it on a shoestring, using only a
few bits per message.

For example, networks using the
Controller Area Network (CAN)1
protocol are ubiquitous in cars
(for instance, the diagnostic port
in recent cars runs CAN). Because
high automotive production vol-
ume drives down cost, CAN also
appears in all manner of embedded
systems, from telecommunication
backup power systems to robots.

Rather than being optimized for

data transfer, embedded networks
are optimized to carry short, peri-
odic, real-time control messages.
(It takes only a dozen or so bits to
report an engine speed, but that
speed changes quickly and must be
updated frequently.) CAN provides
prioritized message transmission to
permit real-time scheduling of net-
work messages, with a maximum
payload of only 8 bytes plus a mes-
sage header field. The maximum
network speed is only 1 Mbit per
second, with many systems running
at half that speed or less to keep
hardware costs low. A 15-bit cyclic
redundancy check (CRC) is the pri-
mary built-in integrity mechanism
and is designed to only detect hard-
ware bit corruptions.

Integrity is a key concern in
almost any embedded control sys-
tem because there’s some level of
concern over safety, or at least an
expectation that the network will
detect corrupted messages. Let’s
look at how integrity measures must
improve as fault models (analogous
to threat models for security con-
cerns) become more demanding.

The Threats
Consider a situation in which mul-
tiple computers in an embedded

system share a communication net-
work. The CAN CRC is designed
to detect some fraction of message
corruptions caused by random bit
errors and other sources of non-
malicious hardware network inter-
ference. But in some cases that
might not be enough, so the pay-
load might include an additional
CRC. For example, the ARINC-
825 aircraft data network standard
includes an optional 16-bit second-
ary CRC for high-integrity mes-
sages.2 However, using it requires
sacrificing 16 of the 64 payload bits.
Even this still deals just with hard-
ware bit corruption.

If you’re concerned with faults
beyond hardware bit corruption,
CAN and most other embedded-
network protocols offer no pro-
tection from spoofed messages.
(Spoofing attacks inject or mod-
ify a message while falsifying the
source.) This applies to both mali-
cious attackers and simple software
defects that accidentally send an
unsafe command.

Although it would be nice if you
could trust every piece of software
that can transmit a message on a
network, that’s not reality. Rather,
it’s common for some network
nodes to be trusted while others
aren’t. From a security viewpoint,
this might have to do with

■■ whether the software has
been analyzed for security
vulnerabilities,

■■ what protections have been
applied (for example, tamper
resistance or access control), and

■■ whether the software is subject to
attack from an external network
interface or other source.

There’s an analogous issue for
safety. In most systems, only some
software is trusted from a safety
viewpoint (it’s often called high
Safety Integrity Level, or high-SIL,
software). Other software is less
critical and must be considered
untrusted because the resources
necessary to create nearly perfect
software aren’t spent on noncritical
functions. In other words, low-SIL
software might have bugs that could
send an unsafe network message.
So, from either a security or safety
viewpoint, it’s important to ensure
that untrusted nodes can’t send
unsafe messages. (Multiple isolated
networks at different integrity levels
are usually infeasible owing to cost,
size, weight, and other constraints.)

In current embedded systems,
a successful spoofing attack typi-
cally lets attackers make a system
unsafe in essentially limitless ways.
For example, Karl Koscher and
his colleagues demonstrated that
an attacker who can connect to an
automotive control network (for
example, via a wireless connection
through an attached laptop or via
physical access through the CAN
diagnostic port) can inject mes-
sages to control safety-critical actu-
ators.3 An attacker might engage a
car’s emergency brake while it’s on
a highway, unlock doors and start
the engine, or shut off headlights
while the car travels at night. More
severe attacks are conceivable, such
as reprogramming controllers via
the network to perform arbitrarily
unsafe functions.

Spoofing might originate from
a malicious attacker or just a soft-
ware defect. For example, a low-
SIL network node might have a bug
that accidentally sends a “full throt-
tle” message by putting the wrong
message type in a CAN header
field. Or, the node might receive a
safety-critical message and resend
it with altered contents. Whether
the spoofing is accidental or mali-
cious doesn’t matter—integrity still

must be preserved. To prevent such
induced system failures, we need
some mechanism to ensure both
data integrity (the message con-
tent hasn’t been changed) and data
origin authenticity (the message’s
source is as claimed).

Ensuring Integrity
and Authenticity
Encryption is a common first
thought when it comes to embedded
system security. If attackers can’t tell
what a message’s contents are, how
can they modify the contents? How-
ever, encryption aims to provide
secrecy, not necessarily integrity.

Depending on the encryption
method, a message receiver might
happen to detect some accidental
modifications to the ciphertext but
likely can’t defend against all cases
of malicious tampering. An attacker
can flip any bits of a ciphertext he or
she wishes or just generate random
noise data as ciphertext. The result-
ing tampered ciphertext will often
decrypt to something that passes
error detection checks, even though
the attacker might not be able to
precisely control the result.

But precise control might not
be required. Random commands
to control systems might be enough
to violate some safety constraint.
Moreover, with only a few tries,
an attacker can set small actua-
tor command fields of a few bits to
any desired malicious value, just by
sending random data that gets past
integrity checks.

For a cryptologically unsophisti-
cated attacker model (for example, a
nonmalicious bug using the wrong
message identifier), error detection
codes can provide sufficient authen-
ticity. One way to do this is to use
a different starting seed value for
a message’s CRC for critical mes-
sages versus noncritical messages.4
In this scheme, an untrusted node
can’t spoof trusted nodes so long
as it doesn’t know the proper seed
to use for critical messages (that’s

the secret “key” in this scheme). In
effect, this becomes a non-crypto-
graphically-secure authenticator.

To handle spoofing attacks, we
need a function that provides mes-
sage integrity and authenticity, such
as a secure message authentication
code (MAC) or a digital signature.
These ensure an attacker (or a low-
SIL module software defect) can’t
manipulate message traffic to vio-
late a system’s safety constraints.

Suppose we use an MAC to
authenticate a message to a single
receiver. We run into a problem
for embedded networks because
they’re optimized for short mes-
sages. A 256-bit secure authentica-
tor won’t fit into a 64-bit payload.
It will swamp the network with
additional traffic even if it’s frag-
mented across multiple messages.
Techniques to authenticate batches
of messages usually won’t work
because of real-time latency con-
straints. At best, we might be will-
ing to pay 16 bits of a 64-bit payload
to detect malicious faults because
we were willing to pay that much to
detect nonmalicious faults.

Fortunately, whereas some char-
acteristics of embedded networks
act as constraints, other character-
istics can be exploited to create an
efficient authentication mechanism.
Two such characteristics are the
periodic sampling of messages and
the system’s inertia.

In many embedded control
network applications, nodes peri-
odically broadcast current val-
ues of state variables and sensor
inputs to the rest of the network.
Receivers then update outputs and
actuators on the basis of the cur-
rent system state. This informa-
tion is typically sampled much
faster than the time constraints
of control stability requirements5
(perhaps 10 times the control sys-
tem step response time). Choos-
ing such a sample rate reduces the
delay between a command and the
system response, smooths system

www.computer.org/security� 3

responses, and tolerates messages
lost via corruption.

Periodic oversampling designed
to provide robust system control
typically also grants resilience to
occasional transient faults—mali-
cious or otherwise. A spoofed mes-
sage might cause a slight “bump” in
control response. However, in most
cases it won’t cause a catastrophic
failure unless a sufficient number of
successfully spoofed messages arrive
in a short time period. So, it’s not nec-
essary to guarantee that a spoof can
never be successful. Rather, it’s suffi-
cient to ensure that it’s unlikely that
a large number of spoofing attempts
can succeed within a relatively
short time window. (How unlikely?
Unlikely enough that hardware faults
and other problems will dominate in
causing catastrophic system failures.)

Given this insight, we can
exploit the temporal redundancy of
messages and system inertia to scale
down an MAC tag’s size. Instead of
making the MAC 256 bits to make
spoofing any single message essen-
tially impossible, we need only a few
bits (sometimes only one) per mes-
sage to make spoofing many mes-
sages in a short time period unlikely
(see Figure 1).

This idea extends to multicast
authentication, which is important
because many embedded control
networks use broadcast transmis-
sions. A significant advantage of
this authentication approach is that
the system designer can perform a
tradeoff among

■■ authentication bits per packet,
■■ application level latency for state

changes and physical actuations,
and

■■ the acceptable probability of
induced system failure for each
message type.

For example, assume that we
need a 10–9-per-hour probability
of undetected spoofing attempts
and that we must verify within no
more than four message samples.
We would need 16 MAC bits per
sample under a reasonable set of
network operating assumptions.
On the other hand, if we have room
for just two MAC bits per packet,
we can instead verify over 26 sam-
ples. (A detailed description of this
approach appears elsewhere.6)

Implementing such an approach
in a real system might also entail the
following actions. The system might
synchronize nodes to establish a time
base for message freshness (that is, to
prevent replay attacks). It might enter
a degraded mode when it detects too
many invalid messages in a short time
period. It will need to distribute keys
during commissioning. Finally, it
must update the keys after nodes are
replaced during maintenance.

A lthough safety and security
might seem very different

design goals, in embedded systems
their respective integrity concerns
can end up in the same place. His-
torically, embedded safety has con-
sidered faults to be just short of
malicious. But in the Internet-con-
nected future, safety designers will
have to assume malicious faults and
adopt appropriate countermeasures.
To do this, they’ll have to adapt
existing security approaches to meet
embedded control systems’ unique
constraints and opportunities.
Important techniques to enable this
will likely include ultralightweight
secure MAC algorithms that can
run on small, slow microcontrollers;
mitigation strategies for attacks that
manipulate message arrival times to

destabilize control loops; and novel
approaches to dealing with the con-
trol-centric nature of many embed-
ded systems.

References
1.	 CAN Specification, ver. 2, R. Bosch

GmbH, Sept. 1991.
2.	 ARINC Specification 825-2, General

Standardization of CAN (Controller
Area Network) Bus Protocol for Air-
borne Use, ARINC, July 2011.

3.	 K. Koscher et al., “Experimen-
tal Security Analysis of a Modern
Automobile,” Proc. 2010 IEEE
Symp. Security and Privacy, IEEE,
2010, pp. 447–462.

4.	 J. Morris and P. Koopman, “Criti-
cal Message Integrity over a Shared
Network,” Proc. 5th IFAC Int’l Conf.
Fieldbus Systems and Their Applica-
tions (FeT 03), Elsevier IFAC Pub-
lications, 2003, pp. 139–145; www.
ece.cmu.edu/~koopman/roses/
fet03/fet03_crit ical_message
_integrity.pdf.

5.	 H. Kopetz, Real-Time Systems:
Design Principles for Distributed
Embedded Applications, Kluwer
Academic Publishers, 1997.

6.	 C. Szilagyi, “Low Cost Multi-
cast Network Authentication for
Embedded Control Systems,”
PhD dissertation, Dept. of Electri-
cal and Computer Eng., Carnegie
Mellon Univ., 2012; www.ece.cmu.
edu/~koopman/thesis/szilagyi.pdf.

Philip Koopman is an associate pro-
fessor in Carnegie Mellon Uni-
versity’s Department of Electrical
and Computer Engineering. Con-
tact him at koopman@cmu.edu.

Christopher Szilagyi is a recent grad-
uate of Carnegie Mellon Univer-
sity’s Department of Electrical
and Computer Engineering. Con-
tact him at christopher.szilagyi@
gmail.com.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

Figure 1. A rolling authentication window verifies messages
across multiple truncated authenticators. Each packet
contains a truncated authenticator (in red).

mi

Time

. . . mi + 1 . . . mi + 2 . . . mi + 3mi + 4

4	 IEEE Security & Privacy� May/June 2013

It All Depends

