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M any embedded systems, 
such as in cars, use a net-

work to coordinate control actions 
in real time. Usually, the system 
doesn’t employ an Ethernet net-
work but rather a specialized real-
time control protocol running on 
severely resource-constrained com-
puting nodes (mostly 8-bit and 
16-bit CPUs). This presents unique 
challenges. Ensuring integrity in 
such systems involves a combina-
tion of safety and security needs, 
and the usual big-system security 
approaches aren’t necessarily practi-
cal. Nonetheless, as threats of attacks 
increase, integrity approaches in 
networked embedded systems will 
have to evolve to provide both the 
security and safety aspects of integ-
rity in a unified way. And they’ll have 
to do it on a shoestring, using only a 
few bits per message.

For example, networks using the 
Controller Area Network (CAN)1 
protocol are ubiquitous in cars 
(for instance, the diagnostic port 
in recent cars runs CAN). Because 
high automotive production vol-
ume drives down cost, CAN also 
appears in all manner of embedded 
systems, from telecommunication 
backup power systems to robots.

Rather than being optimized for 

data transfer, embedded networks 
are optimized to carry short, peri-
odic, real-time control messages. 
(It takes only a dozen or so bits to 
report an engine speed, but that 
speed changes quickly and must be 
updated frequently.) CAN provides 
prioritized message transmission to 
permit real-time scheduling of net-
work messages, with a maximum 
payload of only 8 bytes plus a mes-
sage header field. The maximum 
network speed is only 1 Mbit per 
second, with many systems running 
at half that speed or less to keep 
hardware costs low. A 15-bit cyclic 
redundancy check (CRC) is the pri-
mary built-in integrity mechanism 
and is designed to only detect hard-
ware bit corruptions.

Integrity is a key concern in 
almost any embedded control sys-
tem because there’s some level of 
concern over safety, or at least an 
expectation that the network will 
detect corrupted messages. Let’s 
look at how integrity measures must 
improve as fault models (analogous 
to threat models for security con-
cerns) become more demanding.

The Threats
Consider a situation in which mul-
tiple computers in an embedded 

system share a communication net-
work. The CAN CRC is designed 
to detect some fraction of message 
corruptions caused by random bit 
errors and other sources of non-
malicious hardware network inter-
ference. But in some cases that 
might not be enough, so the pay-
load might include an additional 
CRC. For example, the ARINC-
825 aircraft data network standard 
includes an optional 16-bit second-
ary CRC for high-integrity mes-
sages.2 However, using it requires 
sacrificing 16 of the 64 payload bits. 
Even this still deals just with hard-
ware bit corruption.

If you’re concerned with faults 
beyond hardware bit corruption, 
CAN and most other embedded-
network protocols offer no pro-
tection from spoofed messages. 
(Spoofing attacks inject or mod-
ify a message while falsifying the 
source.) This applies to both mali-
cious attackers and simple software 
defects that accidentally send an 
unsafe command.

Although it would be nice if you 
could trust every piece of software 
that can transmit a message on a 
network, that’s not reality. Rather, 
it’s common for some network 
nodes to be trusted while others 
aren’t. From a security viewpoint, 
this might have to do with

■■ whether the software has 
been analyzed for security 
vulnerabilities,

■■ what protections have been 
applied (for example, tamper 
resistance or access control), and

■■ whether the software is subject to 
attack from an external network 
interface or other source.



There’s an analogous issue for 
safety. In most systems, only some 
software is trusted from a safety 
viewpoint (it’s often called high 
Safety Integrity Level, or high-SIL, 
software). Other software is less 
critical and must be considered 
untrusted because the resources 
necessary to create nearly perfect 
software aren’t spent on noncritical 
functions. In other words, low-SIL 
software might have bugs that could 
send an unsafe network message. 
So, from either a security or safety 
viewpoint, it’s important to ensure 
that untrusted nodes can’t send 
unsafe messages. (Multiple isolated 
networks at different integrity levels 
are usually infeasible owing to cost, 
size, weight, and other constraints.)

In current embedded systems, 
a successful spoofing attack typi-
cally lets attackers make a system 
unsafe in essentially limitless ways. 
For example, Karl Koscher and 
his colleagues demonstrated that 
an attacker who can connect to an 
automotive control network (for 
example, via a wireless connection 
through an attached laptop or via 
physical access through the CAN 
diagnostic port) can inject mes-
sages to control safety-critical actu-
ators.3 An attacker might engage a 
car’s emergency brake while it’s on 
a highway, unlock doors and start 
the engine, or shut off headlights 
while the car travels at night. More 
severe attacks are conceivable, such 
as reprogramming controllers via 
the network to perform arbitrarily 
unsafe functions.

Spoofing might originate from 
a malicious attacker or just a soft-
ware defect. For example, a low-
SIL network node might have a bug 
that accidentally sends a “full throt-
tle” message by putting the wrong 
message type in a CAN header 
field. Or, the node might receive a 
safety-critical message and resend 
it with altered contents. Whether 
the spoofing is accidental or mali-
cious doesn’t matter—integrity still 

must be preserved. To prevent such 
induced system failures, we need 
some mechanism to ensure both 
data integrity (the message con-
tent hasn’t been changed) and data 
origin authenticity (the message’s 
source is as claimed).

Ensuring Integrity 
and Authenticity
Encryption is a common first 
thought when it comes to embedded 
system security. If attackers can’t tell 
what a message’s contents are, how 
can they modify the contents? How-
ever, encryption aims to provide 
secrecy, not necessarily integrity.

Depending on the encryption 
method, a message receiver might 
happen to detect some accidental 
modifications to the ciphertext but 
likely can’t defend against all cases 
of malicious tampering. An attacker 
can flip any bits of a ciphertext he or 
she wishes or just generate random 
noise data as ciphertext. The result-
ing tampered ciphertext will often 
decrypt to something that passes 
error detection checks, even though 
the attacker might not be able to 
precisely control the result.

But precise control might not 
be required. Random commands 
to control systems might be enough 
to violate some safety constraint. 
Moreover, with only a few tries, 
an attacker can set small actua-
tor command fields of a few bits to 
any desired malicious value, just by 
sending random data that gets past 
integrity checks.

For a cryptologically unsophisti-
cated attacker model (for example, a 
nonmalicious bug using the wrong 
message identifier), error detection 
codes can provide sufficient authen-
ticity. One way to do this is to use 
a different starting seed value for 
a message’s CRC for critical mes-
sages versus noncritical messages.4 
In this scheme, an untrusted node 
can’t spoof trusted nodes so long 
as it doesn’t know the proper seed 
to use for critical messages (that’s 

the secret “key” in this scheme). In 
effect, this becomes a non-crypto-
graphically-secure authenticator.

To handle spoofing attacks, we 
need a function that provides mes-
sage integrity and authenticity, such 
as a secure message authentication 
code (MAC) or a digital signature. 
These ensure an attacker (or a low-
SIL module software defect) can’t 
manipulate message traffic to vio-
late a system’s safety constraints.

Suppose we use an MAC to 
authenticate a message to a single 
receiver. We run into a problem 
for embedded networks because 
they’re optimized for short mes-
sages. A 256-bit secure authentica-
tor won’t fit into a 64-bit payload. 
It will swamp the network with 
additional traffic even if it’s frag-
mented across multiple messages. 
Techniques to authenticate batches 
of messages usually won’t work 
because of real-time latency con-
straints. At best, we might be will-
ing to pay 16 bits of a 64-bit payload 
to detect malicious faults because 
we were willing to pay that much to 
detect nonmalicious faults.

Fortunately, whereas some char-
acteristics of embedded networks 
act as constraints, other character-
istics can be exploited to create an 
efficient authentication mechanism. 
Two such characteristics are the 
periodic sampling of messages and 
the system’s inertia.

In many embedded control 
network applications, nodes peri-
odically broadcast current val-
ues of state variables and sensor 
inputs to the rest of the network. 
Receivers then update outputs and 
actuators on the basis of the cur-
rent system state. This informa-
tion is typically sampled much 
faster than the time constraints 
of control stability requirements5 
(perhaps 10 times the control sys-
tem step response time). Choos-
ing such a sample rate reduces the 
delay between a command and the 
system response, smooths system 
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responses, and tolerates messages 
lost via corruption.

Periodic oversampling designed 
to provide robust system control 
typically also grants resilience to 
occasional transient faults—mali-
cious or otherwise. A spoofed mes-
sage might cause a slight “bump” in 
control response. However, in most 
cases it won’t cause a catastrophic 
failure unless a sufficient number of 
successfully spoofed messages arrive 
in a short time period. So, it’s not nec-
essary to guarantee that a spoof can 
never be successful. Rather, it’s suffi-
cient to ensure that it’s unlikely that 
a large number of spoofing attempts 
can succeed within a relatively 
short time window. (How unlikely? 
Unlikely enough that hardware faults 
and other problems will dominate in 
causing catastrophic system failures.)

Given this insight, we can 
exploit the temporal redundancy of 
messages and system inertia to scale 
down an MAC tag’s size. Instead of 
making the MAC 256 bits to make 
spoofing any single message essen-
tially impossible, we need only a few 
bits (sometimes only one) per mes-
sage to make spoofing many mes-
sages in a short time period unlikely 
(see Figure 1).

This idea extends to multicast 
authentication, which is important 
because many embedded control 
networks use broadcast transmis-
sions. A significant advantage of 
this authentication approach is that 
the system designer can perform a 
tradeoff among

■■ authentication bits per packet,
■■ application level latency for state 

changes and physical actuations, 
and

■■ the acceptable probability of 
induced system failure for each 
message type.

For example, assume that we 
need a 10–9-per-hour probability 
of undetected spoofing attempts 
and that we must verify within no 
more than four message samples. 
We would need 16 MAC bits per 
sample under a reasonable set of 
network operating assumptions. 
On the other hand, if we have room 
for just two MAC bits per packet, 
we can instead verify over 26 sam-
ples. (A detailed description of this 
approach appears elsewhere.6)

Implementing such an approach 
in a real system might also entail the 
following actions. The system might 
synchronize nodes to establish a time 
base for message freshness (that is, to 
prevent replay attacks). It might enter 
a degraded mode when it detects too 
many invalid messages in a short time 
period. It will need to distribute keys 
during commissioning. Finally, it 
must update the keys after nodes are 
replaced during maintenance.

A lthough safety and security 
might seem very different 

design goals, in embedded systems 
their respective integrity concerns 
can end up in the same place. His-
torically, embedded safety has con-
sidered faults to be just short of 
malicious. But in the Internet-con-
nected future, safety designers will 
have to assume malicious faults and 
adopt appropriate countermeasures. 
To do this, they’ll have to adapt 
existing security approaches to meet 
embedded control systems’ unique 
constraints and opportunities. 
Important techniques to enable this 
will likely include ultralightweight 
secure MAC algorithms that can 
run on small, slow microcontrollers; 
mitigation strategies for attacks that 
manipulate message arrival times to 

destabilize control loops; and novel 
approaches to dealing with the con-
trol-centric nature of many embed-
ded systems. 
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Figure 1. A rolling authentication window verifies messages 
across multiple truncated authenticators. Each packet 
contains a truncated authenticator (in red).
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