
108 November/December 2014 Copublished by the IEEE Computer and Reliability Societies 1540-7993/14/$31.00 © 2014 IEEE

Steven M. Bellovin
Columbia University

LAST WORD

© Columbia Engineering; Eileen Barroso

What Should Crypto Look Like?

I f there’s one thing we know about cryptog-
raphy, it’s that it’s hard. In fact, it’s hard at all

levels: the primitive encryption mechanisms,
the protocols, the implementation, the rules for
using it—it’s all very, very hard, and mistakes
are gifts to the attackers. Many of these prob-
lems have drawn considerable attention from
the technical community. Submissions to the
National Institute of Standards and Technol-
ogy contests for encryption or hash functions
must include a security analysis, including
demonstrable resistance to known classes of
attack such as differential cryptanalysis.

The risks inherent in poorly designed
protocols have been suspected since Need-
ham and Schroeder’s 1978 paper, the first on
the subject in the open literature. Similarly,
the literature is rife with solutions for timing
attacks, cache line attacks, and more. Most of
these attacks are minor, though; they tend to
require large amounts of intercepted data—
itself a significant hurdle for many attack-
ers—and a sophisticated attacker. One class
of problem, though—user mistakes—has
drawn very little attention outside the usabil-
ity community. This is a serious omission;
user errors were and are a serious threat, since
they can and do result in messages being sent
in plaintext despite the users’ intentions.

It’s not as if there was no warning. Codes
have long been cracked because the clerks
composing messages didn’t insert enough
nulls or make proper use of ciphertext homo-
phones. German errors in using the World
War II–era Enigma machine, and poor choice
of what today we would call a session key,
helped British cryptanalysts. In more recent
years, Whitten and Tygar’s classic “Why
Johnny Can’t Encrypt” sounded a clear warn-
ing, but follow-ons like Garfinkel and Miller’s
“Johnny 2: A User Test of Key Continuity
Management with S/MIME and Outlook
Express” have either been presented to the
usable security community—the choir to
such a sermon—or concentrated at least as
much on the protocol issues as the usability
issues. This is wrong; usability failures are the
leading technical cause of phishing attacks

and unintended plaintext emails, and share
much of the blame for the problems with the
Web’s public-key infrastructure.

Let’s take a closer look at cryptographi-
cally protected email: what should it look like?
Should senders have to request encryption?
What if a user sometimes receives messages on
a device that doesn’t have his or her key? If the
crypto is on by default, should senders be able
to disable it? What if some recipients of a mes-
sage are known to be able to handle encryp-
tion while others are either known not to be
or are of unknown capabilities? How should
this be shown? We know that users don’t
notice subtle indicators, such as a lock icon;
we also know that vendors are fond of drastic
UI changes—compare iOS 6 with iOS 7—for
reasons of their own, so that won’t work.

Recipients have similar problems. How
should they be told—in clear, unambiguous
terms—that a given message was received
encrypted? How should the absence or pres-
ence of a digital signature be shown? How
should the cryptographically verified sender, as
opposed to the “From:” line, be shown? What if
they disagree, or perhaps disagree in obviously
trivial ways? These questions may have compar-
atively simple answers if we could flash-cut every
mailer in the world—but of course we can’t.

Key handling presents its own challenges.
How do I securely determine someone else’s
public key? How can this be done so that I don’t
have to worry or even know about it? How do
they get my key, when they may not even under-
stand crucial concepts like certificates and PKI?
How do I protect my private key, given the
insecurity of today’s operating systems? What
about exceptions, such as key revocation?

None of these questions have simple
answers. It isn’t clear that some of them can
even have answers. But we won’t know unless
and until the security community as a whole
starts paying attention to this seemingly sim-
ple question: what should crypto look like?

Steven M. Bellovin is a professor of computer
science at Columbia University. Contact
him via www.cs.columbia.edu/~smb.

j6lst.indd 108 11/13/14 2:57 PM

