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Abstract— Starting with a simple generative model and the
assumption of statistical independence of the underlying com-
ponents, independent component analysis (ICA) decomposes a
given set of observations by making use of the diversity in the
data, typically in terms of statistical properties of the signal.
Most of the ICA algorithms introduced to date have considered
one of the two types of diversity: non-Gaussianity—i.e., higher-
order-statistics—or, sample dependence. A recent generalization
of ICA, independent vector analysis (IVA), generalizes ICA to
multiple data sets and adds the use of one more diversity, de-
pendence across multiple data sets for achieving an independent
decomposition, jointly across multiple data sets. Finally, both ICA
and IVA, when implemented in the complex domain, enjoy the
addition of yet another type of diversity, noncircularity of the
sources—underlying components.

Mutual information rate provides a unifying framework such
that all these statistical properties—types of diversity—can be
jointly taken into account for achieving the independent decom-
position. Most of the ICA methods developed to date can be
cast as special cases under this umbrella, as well as the more
recently developed IVA methods. In addition, this formulation
allows us to make use of maximum likelihood theory to study
large sample properties of the estimator, derive the Cramér-
Rao lower bound (CRLB) and determine the conditions for the
identifiability of the ICA and IVA models. In this overview paper,
we first present ICA, and then its generalization to multiple data
sets, IVA, both using mutual information rate, present conditions
for the identifiability of the given linear mixing model and derive
the performance bounds. We address how various methods fall
under this umbrella and give examples of performance for a
few sample algorithms compared with the performance bound.
We then discuss the importance of approaching the performance
bound depending on the goal, and use medical image analysis as
the motivating example.

I. INTRODUCTION

Data-driven methods typically start with a simple latent
variable model—of which the linear mixing has been the
most common—and decompose a given set of V -dimensional
P observations, typically arranged as a P × V observation
matrix, into two matrices, a P ×M mixing matrix and an
M × V component/source matrix using a suitable cost. Since
in this very general form, this is not a well defined problem,
usually additional constraints are imposed on the mixing
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and/or component matrices such as sparsity and non-negativity.
ICA is based on the assumption of statistical independence
of the underlying components, and because this is a strong
assumption, it enables a solution subject to only scaling
and permutation ambiguities. Independence is also a natural
assumption in many problems and a set of features that are
statistically independent can be easily used for many tasks.
This is the reason for the popularity of ICA and its wide use
in areas as diverse as biomedicine, communications, finance,
geophysics, and remote sensing, see e.g., [1]–[3]. In this
overview paper, we use mutual information rate to provide a
common umbrella for ICA such that the two most commonly
used types of diversity to achieve ICA, dependence of samples
and higher-order-statistics are both taken into account.

There are numerous applications where not only one set
of observations but multiple data sets, which have some de-
pendence among them, need to be jointly analyzed. Examples
include analysis of medical data such as functional magnetic
resonance imaging (fMRI) and electroencephalography (EEG)
collected from multiple subjects, remote sensing data such
as hyperspectral images where each pixel provides spectral
information over multiple frequency bands, analysis of muti-
sensor or multi-modality data that provide complementary
information, and multi-subject biometric data, among many
others. In all of these cases, the underlying components within
the data sets, and hence the observations themselves, exhibit
statistical dependence, which is another form of diversity to
exploit. One approach to analyze these multiple data sets is
to perform an individual ICA on each data set separately.
Since most applications require matching of the corresponding
components from each data set, one should then use a per-
mutation algorithm to align the estimated components/sources
since the ordering of the sources cannot be determined by
ICA. Such an approach becomes computationally prohibitive
as the number of data sets and sources increases, but more
importantly, it fails to take advantage of the additional di-
versity, statistical dependence across multiple data sets while
performing the analysis. An approach for ICA of multiple data
sets, called Group ICA, which is introduced in the context of
fMRI analysis [4], temporally concatenates multiple data sets,
and after a dimension reduction step, performs ICA on this
concatenated data set and then reconstructs the estimates for
each data set separately. As we demonstrate in this paper, while
practical and useful, using a common subspace for performing
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ICA is likely to lead to information loss. Multi-set canonical
correlation analysis (MCCA) [5] alleviates the problem by
making full use of all the available data and has found wide
application, see e.g., [6], [7]. It can be also shown to achieve
joint blind source separation [8]. However, MCCA makes
use of only second-order-statistics (SOS) and constrains the
demixing matrix to be orthogonal, hence limiting the search
space for the optimal solution.

IVA generalizes the ICA problem to multiple data sets in
such a way that it allows making full use of the statistical de-
pendence across multiple data sets, and can take not only SOS
but higher-order-statistics into account as well, and includes
MCCA as a special case. Using the IVA framework, one can
exploit the statistical dependence of each source across multi-
ple data sets leading to performance beyond what is achievable
with single-set ICA algorithms applied separately to each data
set. Additionally, IVA automatically aligns dependent sources
across the data sets hence bypassing the need for the use
of a second permutation algorithm for the task. The original
formulation for IVA [9] assumes that sources across data sets
have no second-order dependence, and uses a multivariate
Laplacian model for the source component vector (SCV)—
which is defined in Figure 3(a). In this overview paper, we
present a more general formulation for IVA, show that just
like ICA, IVA can be cast using mutual information rate and
thus all three key statistical properties, sample dependence
within a source, source dependence within an SCV as well as
higher-order-statistics are taken into account [10]. We give the
identifiability conditions and present results on large sample
properties using maximum likelihood theory for both ICA
and IVA, and in the process, discuss the parallels between
the two approaches in terms of the role statistical dependence
plays. We emphasize the fact that it is the SOS that determine
identifiability for both ICA and IVA, and that the correlation
structure defines the diversity needed for establishing an
independent decomposition for both, and discuss the parallels
for the two. The results for identifiability and large sample
properties do consider another important diversity type, which
is nonstationarity of the sources. Finally, application of ICA
and IVA to medical image analysis is discussed highlighting
the importance of diversity in these studies.

II. INDEPENDENT COMPONENT ANALYSIS (ICA)

We consider the basic noiseless ICA problem based on
instantaneous mixing where there are as many sources as
mixtures—the most common case, the overdetermined one,
also the case in fMRI analysis, can be easily reduced to this
form using order selection as in [11], [12]. The linear mixing
model is then written as

x(v) = As(v), 1 ≤ v ≤ V, x(v), s(v) ∈ RN (1)

where v is the sample index such as voxel, pixel, or time.
The estimates are given by u(v) = Wx(v), which can be
also written in matrix form as U = WX, where u>n ∈ RV is
the nth row of U = WX, i.e., U = [u1, . . . ,uN ]>, and
X,U ∈ RN×V . Since we consider the more general case
that includes sample dependence in the ICA formulation and

would like to keep the notation as simple as possible, we
make the following definitions. We use x(v) ∈ RN to refer
to the random vector that contains the N mixtures xn(v),
1 ≤ n ≤ N , and xn ∈ RV to denote the transpose of the
nth row of the observation matrix X ∈ RN×V . When the
reference is to a random quantity rather than observation, it
will be clear from context.

In ICA, we assume that the sources sn(v) in s(v) =
[s1(v)s2(v) . . . sN (v)]> are statistically independent, and
make use of different properties of the signal, such as non-
Gaussianity, sample dependence, geometric properties, or non-
stationarity of the signal, i.e., diversity in some form [1,
Chapter 1]. Among those, the most commonly used type
of diversity has been non-Gaussianity—higher-order-statistics
(HOS)—of the sources. Most of the popular ICA algorithms
such as Infomax [13], FastICA [14], and joint approximate
diagonalization of eigenmatrices (JADE) [15] as well as many
of the variants of maximum likelihood (ML) techniques with
different approaches for approximating the source density,
such as [16], [17], all fall under this umbrella. Even very recent
surveys—such as [18]—primarily consider ICA algorithms
within this group. As a result, in the community, most often,
fundamental results such as those for identifiability always
consider this more limiting view of achieving ICA. It has been
hence commonly noted that ICA can identify only a single
Gaussian source. As we note next, this is true only when non-
Gaussianity is the only form of diversity that is considered.

Besides those making use of non-Gaussianity, another im-
portant group is algorithms that make use of linear dependence
among the samples, hence SOS. These include the algo-
rithm for multiple unknown signal extraction (AMUSE) [19],
second-order blind identification (SOBI) [20], and weights-
adjusted SOBI (WASOBI) [21] among others. In this case, we
use a random process rather than a random variable model for
the sources, and use sn(v) where v is an index such as time,
pixel, or voxel. In this paper, we use v for voxel, as medical
image analysis, i.e., volume data will be our main motivating
example.

Algorithms using only non-Gaussianity form a major por-
tion of the ICA algorithms developed to date, while those using
sample dependence come in second. An obvious question one
may ask is “Why not make use of both types of diversity,
non-Gaussianity and sample dependence together, at the same
time?”. As one would expect, this approach leads to algo-
rithms with better performance than those using only one type
of diversity as demonstrated in [22]–[26]. In addition, use of
these two types of diversity jointly allows for more relaxed
conditions for the identifiability of the ICA model in (1).

This is our main goal in this section, to show how mutual
information rate helps bring most of the ICA algorithms under
one umbrella and helps determine identification conditions
along with performance bounds so that the performance of
various algorithms can be compared against this benchmark.

A. Cost Function

Mutual information is a natural cost for ICA since the goal is
the maximization of independence among the source estimates
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u = Wx, and has been used commonly when providing a
general umbrella for approaches based on use of HOS. Here,
using the random process notation as in (1), we write the nth
source estimate as un(v) = w>n x(v), where w>n is the nth
row of the demixing matrix W. We can then write the mutual
information rate as

Ir(W) =

N∑

n=1

Hr(un)−Hr(u)

=

N∑

n=1

Hr(un)− log |detW| −Hr(x) (2)

and take into account both HOS and sample dependence to
achieve ICA. In (2), we used the Jacobian expression ps(u) =
ps(Wx) = pX(x) |detW|−1, and hence the last term Hr(x)
is a constant with respect to W, it can be replaced by C
resulting in

Ir(W) =

N∑

n=1

Hr(un)− log |detW| − C (3)

where Hr (un) is the entropy rate, which is Hr (un) =
limv→∞H [un(1), . . . , un(v)] /v and the entropy1 is written
as H(un) = −E

{
log psn(w

>
n x)

}
. When the process is

stationary, we have Hr (un) = limv→∞H(un(v)
∣∣un(v −

1), . . . , un(1)). Since entropy rate measures the per sample
density of the average uncertainty of a random process,
minimization of (3) makes use of both HOS—through the
minimization of missing information, entropy—and sample
dependence by making samples easier to predict by increasing
sample dependence, i.e., decreasing the entropy rate. The
term log |detW| acts as a regularization term preserving
the volume across the directions of source estimation. Since
entropy is not scale invariant, i.e., H(x) 6= H(αx) for α 6= 1,
without the regularization term, the cost function could be
minimized by simply scaling the source estimates. Mutual
information rate hence provides a broad umbrella under which
one can study the properties of ICA algorithms by taking into
account both HOS and sample dependence, the two types of
diversity most commonly used for ICA.

When we constrain the demixing matrix to be orthogonal,
i.e., let WW> = I, we have |det(W)| = 1, and the cost in
(3) reduces to

Jr(W) =

N∑

n=1

Hr (un)− C (4)

which maximizes the negentropy rate, the information-
theoretic distance of a random process from that of a Gaussian
for each source, under a variance constraint.

For a given set of observations, X ∈ RN×V , we can
maximize the likelihood given by

LICA(W) =

N∑

n=1

log psn(un) + V log |detW| (5)

where un ∈ RV is the transpose of the nth row of U = WX,

1In the rest of the paper, we refer to differential entropy simply as entropy
since discrete-valued random variables are not considered in this paper.

i.e., U = [u1, . . . ,uN ]>. By the general asymptotic equiparti-
tion property [27], as V →∞, the maximization of likelihood
function LICA(W) becomes equivalent to the minimization of
the mutual information rate cost in (2). This is true if the
probability density function (pdf) psn(un) used in the ML
formulation exactly matches the true pdf, which is implied
when using mutual information rate as the cost. When there
is a mismatch between the estimated pdf through likelihood
and the true one, there is a bias that can be represented by
the relative entropic—Kullback-Leibler—distance of the true
density to the estimated. Using a flexible density model such as
those employed by the two algorithms introduced in Section II-
C, autoregressive mixture of Gaussians (AR-MOG) [24], and
entropy rate bound minimization (ERBM) [25], decreases this
bias. At this point, and for the performance discussion in
the next section, we assume that the source pdf is known.
In Section II-C, we discuss different ways of estimating the
source pdf during adaptation, which lead to a number of
different ICA algorithms that can all be studied under the
mutual information rate minimization umbrella. In [17], a
distinction is made between a true ML scheme that estimates
the pdf and one that uses a fixed distribution where the latter
is called a quasi ML procedure.

In the rest of the development, to simplify the discussion, we
assume that all variables are zero mean so that the definitions
of correlation and covariance matrices coincide.

B. Identification Conditions and the Performance Bound
Given the log likelihood in (5), we can compute the Fisher

information matrix (FIM) using the expected value of its
Hessian, which tells us how informative the given set of
observations are for the estimation of the demixing matrix W.
The FIM also plays a key role in determining the identification
conditions of the ICA model as well as the lower bound on
the unbiased estimator, the Cramér-Rao lower bound (CRLB).
We consider the FIM locally around the optimal point, G =
AW = I, hence have un = sn. Due to the invariance of the
induced CRLB2 with respect to G, the CRLB only depends
on the statistics of the sources.

By making use of the independence of the sources, one
can show that the FIM has a block diagonal structure with N
scalars and N(N − 1)/2 matrices that are 2 × 2. The scalar
diagonal entries are all positive, and hence, the properties
of the FIM are determined by the 2 × 2 matrices—pairwise
interaction of sources—given by

JICA
m,n =

[
κm,n 1
1 κn,m

]
, 1 ≤ m < n ≤ N, (6)

where

κn,m = trace
(
E
{
ψ(sn)ψ

>(sn)
}

Rm

)
,

ψ(sn) = −
∂ log psn(sn)

∂sn
∈ RV , and Rn = E{sns>n } ∈ RV×V .

Hence, the FIM is a function of the key source statistics,
the two types of diversity the formulation in (5) takes into

2Since the quantity being estimated is W rather than G, the estimated
bound is actually the induced CRLB following [28].
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account, sample dependence and HOS. In addition, source
nonstationarity is another type of diversity and the form in (6)
considers the use of this third type of diversity as well since
here the definitions are with respect to the complete source
vector of dimensionality V , which matches the dimension
of the samples in the given observation. The quantity ψ(·)
is called the score function and is defined as the derivative
with respect to the source estimate un. This is a slightly
different definition than in traditional ML theory where the
score function is defined with respect to the parameter.

Since the blocks JICA
m,n, 1 ≤ m < n ≤ N are the diagonal

blocks of a covariance matrix, the FIM, they are positive semi-
definite, and since FIM is block diagonal, they determine
the condition for positive definiteness of the whole matrix.
Evaluating the condition for which JICA

m,n becomes singular
hence yields the non-identifiability condition for the ICA
model—subject to the scaling and permutation ambiguities.
It can be shown that JICA

m,n remains positive definite as long as
there are no two sources that are Gaussian with proportional
auto-covariance matrices, i.e., we do not have two Gaussians,
sm and sn in the mixture that satisfy Rm = δ2Rn [1,
Chapter 4]. Hence in the presence of this simple correlation
diversity, i.e., when Rm 6= δ2Rn, even Gaussian sources are
separable using ICA when sample dependence and HOS are
both considered. In addition, this result also includes use of
nonstationarity as diversity—to keep the notation simple we
have not included a time index in the definition of the auto-
covariance matrices.

For algorithms that only take sample dependence into
account however, for algorithms such as AMUSE, SOBI,
and WASOBI, any two sources—not only Gaussians—with
“similar” covariance matrices cannot be separated [19], [28].
Obviously, using these algorithms, i.i.d. sources cannot be sep-
arated either. When the sources are i.i.d., or when only HOS
are taken into account implicitly assuming i.i.d. samples—as
is the case in most of the ICA algorithms—then effectively, we
have Rl = σ2

l I for l = n,m. In this case, we can only identify
a single Gaussian source since the correlation diversity is no
longer available. This is the commonly known condition for
the identifiability of the ICA model since the majority of ICA
algorithms only exploit non-Gaussianity. However, as we note
here, it is important to remember that this condition is true only
for a specific case, and now there are effective algorithms that
can take into account multiple types of signal diversity.

Using the expression in (6), we can write the CRLB as

var(wm,n) ≥
1

V

(
κm,n − κ−1n,m

)−1
. (7)

Assuming that the mixtures are whitened such that
E{XX>} = I and σsn = 1, we can calculate the CRLB
using the normalized interference-to-signal-ratio

ISR =
1

N(N − 1)

N∑

m,n=1,m 6=n

E{g2m,n} (8)

where gm,n are the entries of G = AW, which we plot in Fig-
ure 1 along with performances of two algorithms introduced
in the next section against this bound.

C. Algorithms

Mutual information rate in (3) can be minimized using
relative/natural gradient updates [29], [30] as

W(l + 1) = W(l) + µ(I− E{Ψ(U)U>})W(l) (9)

where Ψ(U) = [ψ1(u1), . . . ,ψN (uN )]> ∈ RN×V , µ > 0 is
the step size, l is the iteration index, and the score function
ψn(·) is defined in (6). In the update in (9), we include the
complete source estimate matrix U = W(l)X as we consider
sample correlation, rather than the commonly used random
vector notation as in [29], [30]. The form of this update is
the same as the one proposed in [31] based on nonlinear
decorrelations, the original approach for achieving ICA [32].

The bound given in (7) assumes that the exact density of
each source is known. In order to approach this bound, a num-
ber of density matching methods are proposed, in particular
for the i.i.d. case, where the problem is simpler as we need to
estimate a univariate rather than the multivariate score ψn(·) in
(9). Solutions for the i.i.d. case include both parametric and
nonparametric approaches as in efficient variant of FastICA
(EFICA) [33] and non-parametric ICA (NP-ICA) [16], as
well as a semi-parametric approach, ICA by entropy bound
minimization (EBM) [34].

EBM uses an efficient entropy estimator where rather than
estimating the entropy directly, an upper bound is estimated
among a number of competing candidates determined by the
maximum entropy principle and by a finite number of pre-
specified measuring functions. Available prior information can
be used in the selection of measuring functions, and even a
simple selection of two odd and two even functions leads to a
flexible algorithm that provides robust performance in a num-
ber of scenarios [34]. In [25], the flexible EBM density estima-
tion strategy is combined with an invertible filter model such
that both non-Gaussianity and sample dependence are taken
into account to derive entropy rate bound minimization—
originally introduced as full blind source separation—and
hence to directly minimize (3). Other approaches that take
both types of diversity into account are Markovian ICA [22]
where the Markovian source model is adopted, autoregressive
mixture of Gaussians [24], entropy rate minimization using
an AR source model driven by GGD (ERM-ARG) [35],
and MULTICOMBI [23] where either non-Gaussianity or
sample dependence is taken into account by switching between
the EFICA and WASOBI algorithms. All of these solutions
assume stationarity of the sources.

The decoupling of the source estimates by assuming an
orthogonal W introduced in Section II-A leads to negentropy
rate as the cost, and greatly simplifies the score/density match-
ing problem as the estimation for a given source then does
not interact—and hence complicates—the estimation of others.
This is the approach used in the FastICA algorithm [14], which
is noted for its fast convergence. In [33], generalized Gaussian
distribution (GGD)

p(s) ∝ exp(−|s|2β) (10)

has been used as the source model to derive EFICA. Be-
sides helping with density estimation, the assumption of
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Fig. 1. Induced CRLB and performance of two algorithms as a
function of shape parameter β (non-Gaussianity) for three levels of
sample correlation, for AR coefficient a = 0, 0.4, and 0.7. Note the
improvement in performance as the role of HOS (β moves away from
1) and as sample correlation (value of a) increase.
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Fig. 2. Performance of nine algorithms using different types of
diversity—either HOS or sample dependence, or both—in separation
of a mixture of sources that come from a rich density. Note the best
performance by algorithms making use of both types of diversity.

orthogonality provides a number of other advantages such
as making second-order algorithms such as Newton-variants
become more practical and allowing for easier implementation
of constrained ICA [36]. However, this decoupling through
constraining W to be orthogonal also limits the search space
for the demixing matrices thus also limiting the achievable
performance [37]. The decoupling approach given in [38],
[39], transforms the matrix optimization problem to a series
of vector optimization problems without having to constrain
the matrix to be orthogonal. Here, it is also important to
remember that the commonly used whitening step for the
observations implies an orthogonal demixing matrix only when
the number of samples V →∞, and hence does not guarantee
an orthogonal demixing estimate unless it is embedded into
the update mechanism. This decoupling approach is used in
the EBM and ERBM algorithms that employ flexible density
models for each source estimate. Finally algorithms that only
make use of sample dependence, and hence SOS, such as
AMUSE, SOBI, and WASOBI jointly diagonalize multiple

covariance matrices in order to determine an estimate for W
rather than directly maximizing the likelihood (5). A second-
order ICA approach based on ML with a Gaussian density
model is given in [40], and it is shown that besides this
ML-based algorithm, WASOBI approaches the CRLB as well,
when the sources are stationary AR processes.

Example: Diversity, CRLB, and the Performance of two Algo-
rithms: To demonstrate the role of diversity in attaining opti-
mal performance while designing an algorithm, we consider a
simple example, separation of two linearly mixed sources, an
i.i.d. source drawn from a GGD (10) and a second source, a
first-order AR process generated by a Gaussian process ν(v)
such that s(v) = as(v− 1)+ ν(v). GGD assumes the form of
a Gaussian for β = 1, is super-Gaussian when 0 < β < 1 and
sub-Gaussian when β > 1. Hence as β moves away from 1,
the role of HOS increases, and similarly, the role of sample
dependence increases as |a| → 1. In Figure 1, we plot the
CRLB given by (7) using the ISR (8). First note that for
finite ISR, it suffices for one of the sources to have sample
correlation—nonzero a—when both are Gaussian. The widely
referenced and repeated condition for the real case that says
“with ICA, one can identify only a single Gaussian” hence is
true only when sample dependence is not taken into account—
or is absent in that the samples are i.i.d., which rarely is
the case in practice. In the same figure, we also show the
performance of two algorithms that make use of both sample
dependence and HOS: one that exactly matches the underlying
source models, entropy rate minimization using AR model
with a GGD driving process (ERM-ARG) [35] and the more
flexible ERBM algorithm [25]. The results are shown for 1000
samples and 500 independent runs. While we observe that the
exact match provides the best performance, the flexible ERBM
does a decent job in approaching the bound as well and does
not use prior information like the ERM-ARG.

Example: Performance Comparison in Separation of Natural
Sources: In Figure 2, we show ISR of nine different algorithms
in separation of ten artificially mixed images from [41] to
demonstrate the performance of different algorithms in sepa-
ration of sources that come from a rich class of distributions.
Since for small sample sizes, there were a number of unstable
runs, the results are plotted using median rather than the mean.
The algorithms used in the comparison are JADE, EFICA,
Robust Accurate Diirect ICA aLgorithm (RADICAL) and
ICA-EBM that exploit the HOS, WASOBI that uses sample
dependence, AR-MOG, ERM-ARG, and ERBM that use both,
and finally MULTICOMBI that uses both but one at a time.
The advantage of making use of both diversity jointly is clear
as well as the superior performance of two algorithms that use
flexible density models, AR-MOG and ERBM—though the
performance of AR-MOG deteriorates with decreasing sample
size due to its complexity.

III. INDEPENDENT VECTOR ANALYSIS (IVA)

In many applications, not only a single but multiple data
sets with dependence among them need to be jointly analyzed.
Examples include analysis of medical data such as fMRI and
EEG from multiple subjects or at different conditions, data



PUBLISHED: IEEE SIGNAL PROCESSING MAGAZINE, VOL. 31, NO. 3, PP. 18–33, MAY 2014 6

from multiple frequency bins when solving the convolutive
ICA problem in the frequency domain, and analysis of muti-
sensor or fusion of multi-modality data with complementary
information. IVA generalizes the ICA problem to multiple data
sets so that one can take advantage of this additional type of
diversity, the one across multiple data sets when achieving the
decomposition.

Next, we show that IVA can be formulated using mutual
information rate minimization like ICA but now with the
addition of one more diversity, dependence among sources
across data sets. Also, as in the case of ICA, we consider the
general case that does not constrain the demixing matrices to
be orthogonal, and as such, IVA generalizes CCA and MCCA
[5] as well, both through incorporation of statistics higher than
two and also by allowing a general nonorthogonal demixing
matrix. Using this general formulation, we give the general
conditions for identifiability of the IVA model as well as the
performance bounds. The ICA result, as expected, becomes a
special case when the number of data sets is set to one. We
then present current algorithms for achieving IVA, and address
the challenges in the area.

A. Cost Function

The IVA problem is defined similar to ICA except that we
now have K data sets, each containing V samples, and formed
from linear mixtures of N independent sources,

x[k](v) = A[k]s[k] (v) , 1 ≤ k ≤ K, 1 ≤ v ≤ V (11)

where A[k] ∈ RN×N , k = 1, . . . ,K are invertible mixing
matrices. The problem is finding K demixing matrices W[k]

such that sources for each data set can be estimated through
u[k](v) = W[k]x[k](v) for k = 1, . . . ,K as shown in
Figure 3(a).

For K data sets X[k] ∈ RN×V , we can recover the source
estimates for each data set using U[k] = W[k]X[k], and by
defining augmented matrices X and S, write the problem as



X[1]

...
X[K]


 =




A[1] 0 0

0
. . . 0

0 0 A[K]







S[1]

...
S[K]


⇐⇒ X = AS

(12)
where

A = ⊕
K∑

k=1

A[k].

The estimates are given by U = WX and the demixing
matrix is also block diagonal, W = ⊕∑K

k=1 W[k]. The
decomposition is performed on this augmented matrix X so
that the dependence of components of the source matrices S[k]

across data sets can be taken into account. In this model, the
components within each S[k] are assumed to be independent
while we allow for dependence across corresponding compo-
nents of S[k] in multiple data sets. In fact, it is this additional
dependence that IVA takes advantage of, and the following
definition helps clarify the idea and is key for the whole
development to follow.

We define the source component vector (SCV) for the nth

SCV sn as

sn(v) =
[
s[1]n (v), s[2]n (v), . . . , s[K]

n (v)
]>
∈ RK

i.e., by concatenating the nth source from each of the K
data sets, or similarly, define the source component matrix
(SCM) Sn shown in Figure 3(a), through concatenation of
each row of S[k] as Sn = [s

[1]
n , s

[2]
n , . . . , s

[K]
n ]>. The SCV

takes into account sample dependence through the inclusion
of index v in its notation and we use both definitions, SCV
and SCM, in the discussion to follow. As an example, in
the fMRI analysis we introduce in Section IV, the nth SCM
contains the spatial activation maps of the nth source, such
as the motor component, for all K subjects in the study.
One would expect the activation maps of different subjects
to be statistically dependent, as for each subject, voxels at
corresponding locations would show comparable levels of
activation. This is the additional diversity that the general IVA
formulation makes use of when achieving the decomposition.
It is, however, important to note that while IVA makes use of
this additional diversity, it does not require that it exists, and
in its absence, reduces to individual ICAs on each data set.
This additional diversity is also what helps with the resolution
of permutation ambiguity among the sources estimated across
the data sets. The identification condition we introduce in the
next section specifies when all the sources in an IVA model
can be identified, and is a quite relaxed condition. However,
identification of sources does not imply that the sources will
be aligned as well, and sources across data sets—components
of each SCV—can be aligned only if the sources across the
data sets are statistically dependent [10].

At this point it is also useful to note that the IVA formulation
is a special case of the multidimensional ICA (MICA) problem
[42], also defined as an independent subspace problem [43].
Though MICA is not necessarily defined for multiple data sets
as IVA, we can use the augmented matrix definition in (12)
to understand how MICA considers a more general model.
For the MICA formulation, the mixing matrix is not assumed
to have a block diagonal form and the number of components
within each SCV can be different. Hence the problem is one of
finding independent subspaces where in each, there might be
different number of dependent components. There are many
challenges for solving the general MICA problem. A major
one among them is determining the number of subspaces and
components within each SCV. A recent overview of MICA
is given in [44] where an effective solution is offered for the
multivariate-Gaussian case. Assuming the correct number of
components within each SCV can be determined, MICA then
identifies the independent subspaces and does not identify the
individual components within each subspace, i.e., the com-
ponents within an SCV like IVA does. The IVA formulation
provides enough additional restrictions to the MICA formula-
tion so as to achieve identifiability of individual components
while still creating a more general framework than ICA.

Since W has far fewer non-zero parameters than its full
KN ×KN dimension implies, we define W ∈ RN×N×K , a
three-dimensional array, to denote the set of parameters to be
estimated.
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Given the definition of an SCV, we formulate the IVA
problem similar to that of ICA in (3) as

I IVA
r (W) =

N∑

n=1

Hr (un)−
K∑

k=1

log
∣∣∣det

(
W[k]

)∣∣∣− C (13)

where the main difference is that we are now seeking to
minimize the mutual information among SCVs rather than
individual sources. To provide a clear view of the role of this
additional diversity, we rewrite (13) as

I IVA
r (W) =

N∑

n=1

(
K∑

k=1

Hr(u
[k]
n )− Ir (un)

)
−

K∑

k=1

log
∣∣∣det

(
W[k]

)∣∣∣−C.

(14)
Without the second term

∑N
n=1 Ir(un), the expression in (14)

is exactly equivalent to the sum of the cost in (3) across K data
sets, hence performing independent ICAs on each data set. It
is this second term, sum of mutual information within each
SCV,

∑N
n=1 Ir(un) that takes the diversity across data sets

into account. The minimization of (14) hence increases mutual
information among components of an SCV, thus making use
of the natural dependence among data sets.

If we consider no sample dependence—hence the cost is
mutual information (I) rather than mutual information rate
(Ir)—and use the multivariate Gaussian model for the SCV,
we have H(un) = (1/2) log

[
(2πe)K

∏K
k=1 λ

[k]
n

]
where λ[k]n

is the kth eigenvalue of the covariance matrix of the nth SCV,
then (13) reduces to

I IVA-G(W) =
NK log(2πe)

2
+

1

2
log

(
N∏

n=1

K∏

k=1

λ[k]n

)

−
K∑

k=1

log
∣∣∣det

(
W[k]

)∣∣∣− C. (15)

This is exactly equivalent to the generalized variance method
(GENVAR) cost function proposed for achieving multiset
canonical correlation analysis [5] when we constrain the
demixing matrices to be orthogonal hence eliminating the term∑
k log

∣∣det
(
W[k]

)∣∣ but imposing a constraint on the sum of
estimates, hence the eigenvalues. In [5], five cost functions
are introduced for maximizing correlation among linearly
transformed multiple data sets, which in our IVA formulation
are the SCVs. The cost functions introduced in [5] all have
the common objective of estimating W[k] such that the SCV
covariance matrix becomes as ill conditioned as possible,
since this maximizes the correlation among the components
within an SCV. Obviously the term log

(∏N
n=1

∏K
k=1 λ

[k]
n

)

achieves this goal when we let the sum of the eigenvalues be
constant, i.e., constrain the demixing matrix. In (15), the term∑
k log

∣∣det
(
W[k]

)∣∣ achieves this purpose and is written using
the theoretically well justified cost of mutual information.

For given X[k], k = 1, . . . ,K, we can write the likelihood
as

LIVA(W) =

N∑

n=1

log (pn(Un)) + V

K∑

k=1

log
∣∣∣det

(
W[k]

)∣∣∣

where now the score function for the source component matrix
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Efficient modeling/estimation of psn(un)

In optimization, each row of the demixing matrixW[k], where the source

estimates are u[k] = W[k]x[k] corresponds to a different estimated source

U[k] W[k] Uk
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Efficient modeling/estimation of psn(un)

In optimization, each row of the demixing matrixW[k], where the source

estimates are u[k] = W[k]x[k] corresponds to a different estimated source
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(a) IVA of multiple data sets and the two key signal properties available in
addition to HOS: sample dependence and dependence among sources within a
source component matrix Sn
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Fig. 3. For the IVA problem given in (a), note the improvement in
performance shown in (b) as the values of σ (source dependence) and a
(sample dependence) increase and shape parameter moves away from 1, i.e.,
role of HOS increases.
Un is written as

ΨIVA
n (Un) = −

∂ log pn (Un)

∂Un
∈ RK×V . (16)

Now, we can proceed as in ICA to derive the performance
bound and determine the conditions for the identifiability of
the IVA model by working within ML theory.

B. Identification Conditions and the Performance Bound

We evaluate the FIM by the expected value of the Hessian of
LIVA at the optimal point G = ⊕Kk=1WkAk = ⊕Kk=1Gk = I,
which is now KN2 × KN2 in dimension, since W has a
total of KN2 parameters. Since, the IVA formulation replaces
the sources with SCMs that are mutually independent, and
each SCM includes K components, the FIM is again block
diagonal but now with N block matrices that are K ×K and
N(N − 1)/2 matrices of dimension 2K× 2K. The properties
are again determined by the latter blocks, those that describe
the interaction of now the SCMs, the 2K×2K block matrices

JIVA
m,n ,

[
Km,n IK
IK Kn,m

]
∈ R2K×2K

where {Km,n}k1,k2 = (1/V )E

{(
ψ

IVA,[k1]
m

)T
S
[k1]
n

(
S
[k2]
n

)T
ψ

IVA,[k2]
m

}

when m 6= n, ψIVA,[k]
n = (ΨIVA

n )>ek, where ΨIVA
n is given

in (16), the subscript for the identity matrix I denotes its
dimension, and ek is the kth basis vector. Again, the FIM
is a function of the key SCM statistics, and in this case, all
three types of diversity—sample dependence, dependence
within an SCM, and the HOS—that are considered in this
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IVA formulation. Since the SCM is written for V samples,
i.e., is K × V , nonstationarity is taken into account as well.

The FIM is a block diagonal matrix for this case as well
and the identification condition for the IVA model is obtained
by evaluating when JIVA

m,n remains positive definite. It is shown
that [10], [45] identification of the IVA model in (11) is pos-
sible as long as no two SCMs have α-Gaussian components
for which Rm,α = (IV ⊗D)Rn,α (IV ⊗D), for 1 ≤ m 6=
n ≤ N , where D ∈ RKα×Kα is any full rank diagonal matrix,
Kα the number of α-Gaussian components, Rn = E{SnS>n },
and ⊗ is the Kronecker product. An α-Gaussian component is
defined as the subset of rows of an SCM that are independent
from the others and have multivariate Gaussian distribution,
and α refers to the index of this subset within {1, . . . ,K}, and
Rn,α refers to the covariance matrix of the matrix formed from
the α-Gaussian rows of an SCM. Hence, it is again a second-
order condition that determines the identifiability of the model,
and the major role played by the source covariance matrix in
ICA is now replaced by the SCM covariance matrix. As in the
case of ICA, the result holds for the use of nonstationarity as
a diversity type.

A useful special case to consider is when the samples are
i.i.d., which is equivalent to considering V = 1 so that IV is a
scalar and unity and we now consider SCVs where each entry
is a random variable rather than SCMs or an SCV with entries
that are random processes. This is the basic assumption in most
ICA algorithms where only HOS are taken into account and
it leads to practical and effective solutions that work well for
most cases, including many where the samples are actually
dependent. However, for ICA, with the i.i.d. assumption, we
can only identify a single Gaussian source. For IVA, however,
the condition for this case is more general and now we can
identify the IVA model as long as there are no two α-Gaussian
SCVs for which Rm,α = DRn,αD ∈ RKα×Kα . Hence
the identification of multiple Gaussians is possible with IVA
provided that the covariance diversity is available, in the sense
that covariance matrices of sources that are Gaussian across
data sets are not essentially identical, i.e., satisfy Rm,α 6=
DRn,αD ∈ RKα×Kα .

Finally, for K = 1, the condition reduces to that for ICA and
we cannot identify any two Gaussians that have Rm = δ2Rn,
δ 6= 0 where now the covariance is defined for a single source
rather than an SCV. A comparison of these two conditions
reveal the dual nature of the role of diversity in these two
cases, diversity in the form of source dependence for IVA
versus sample dependence in ICA. The diagonal matrix D for
IVA and δ2 for ICA are present in the conditions simply due
to the inherent scaling ambiguity of the problem. The given
identification conditions for the i.i.d. case coincide with those
derived assuming a multivariate Gaussian model in [46], [47]
since they are determined by second-order statistics.

The CRLB for IVA is given by

var
(
w[k]
m,n

)
≥ 1

V
e>k
(
Km,n −K−1m,n

)−1
ek (17)

which has a similar form to (7), and again similarly, can
be computed using the sum of ISR values, now defined as
ISR[k]

m,n = E
{
(g

[k]
m,n)2

}
.
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(a) Shape parameter β is assumed to be known
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(b) Shape parameter is selected from β = {0.5, 2}

Fig. 4. Performance of two IVA algorithms that take source dependence and
HOS into account for separation of three GGD sources of dimension K = 5
with shape parameter β and a random covariance matrix compared to the
induced CRLB (normalized ISR) for different sample sizes.
Example: Role of Three Types of Diversity for IVA: The
simple example shown in Figure 3(b) plots the CRLB in
terms of ISR for two sources and two data sets, where the
first set of sources—common to both data sets—is drawn
from a multivariate GGD, which is Gaussian when the shape
parameter β = 1, and has super-Gaussian marginals for
0 < β < 1 and sub-Gaussian for β > 1. Second set of
sources are an i.i.d. Gaussian and a first-order AR process
s(v) = as(v − 1) + ν(v) where ν(v) is a white Gaussian
process. Hence, the AR parameter a characterizes influence
of sample correlation and the shape parameter β of non-
Gaussianity, i.e., HOS. Finally we introduce correlation for
the first group of sources through a correlation coefficient σ.
As observed in Figure 3(b), performance—as measured by the
ISR—improves as sample source correlation and dependence
across data sets—values of a and σ respectively—increase,
and as the sources become more non-Gaussian—i.e., as the
value of β moves away from 1. We also note the condition for
identifiability of the IVA model in that when the sources are
all Gaussian (β = 1) and i.i.d., a finite ISR is still possible as
long as there is correlation among the sources, in this example
introduced only to the first set of GGD sources through σ.

C. Algorithms

In algorithm development, while it is desirable to consider
together all types of diversity expressed in the cost (13),
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current solutions available for the problem only take HOS
and source dependence across data sets into account, primarily
due to computational and modeling challenges. Hence, they
minimize mutual information rather than mutual information
rate. A generalization of joint diagonalization proposed in
[48] is the only solution we know of that exploits sample
dependence for the joint source separation problem in addition
to the other two diversity, HOS and source dependence.

We write the relative/natural gradient updates for IVA to
minimize the mutual information—hence not accounting for
sample dependence—as

W[k](l + 1) = W[k](l) + µ(I− E{ψIVA,[k](u[k])>})W[k](l)
(18)

where now the score function has the simpler form ψIVA,[k] =

−
[
∂ log p1(u1)

∂u
[k]
1

, . . . , ∂ log pN (uN )

∂u
[k]
N

]>
. Again, a key problem is

the estimation of the score function, i.e., the source pdf, during
the adaptation. For IVA, as opposed to ICA, all solutions to
date have emphasized parametric methods as nonparametric
approaches can easily become prohibitive for the multidimen-
sional case.

IVA is originally formulated for solving the convolutive
ICA problem in the frequency domain [9], which is an
application where resolution of the permutation ambiguity
across frequency bins is critical to the success of the solution.
Hence, the main application domain that is considered has
been separation of acoustic sources resulting in an emphasis
on models attractive for this case starting with the multivariate
Laplace model [9], [49]. In [50], mixture of Gaussians is
proposed where the noisy IVA problem and an online solution
are considered as well. However these solutions fail to consider
all-order statistical dependence within an SCV and in certain
cases constrain the demixing matrix to be orthogonal/unitary
as in [50], [51]. As discussed earlier, constraining the demixing
matrix limits the performance and the decoupling trick intro-
duced in Section II-C allows for advantages of orthogonality
without having to constrain the matrix, and provides a number
of additional advantages such as easier density matching,
better convergence properties, and enabling easier derivation
of second-order iterative algorithms. In (18), a single step
size µ is used to update the entire demixing matrix while
each row corresponds to a different source as in the case
of ICA. In [47], a number of algorithms—including vector
gradient descent and vector Newton algorithms—are derived
using the decoupling trick so that the demixing matrices are
not constrained to be orthogonal. They are then implemented
using a multivariate Gaussian SCV model to derive a class of
algorithms called IVA-G, and later using a the Kotz family
[52] that includes the GGD, and hence Gaussian and Laplace
as special cases. All of these solutions account for all-order
statistical dependence for an SCV.

Iterative approaches to optimizing the IVA cost function are
subject to similar convergence issues as iterative algorithms
for ICA. It is shown that the Hessian matrix for the IVA cost
with the multivariate Gaussian model always remains positive
definite [47] and thus IVA-G has very desirable convergence
properties. Hence, it is a good candidate for initialization of
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in an alcohol-soaked cloth to help disguise the contents
(Hammersley et al, 1992). BACs were determined immedi-
ately before and after the scan session, using a hand-held
breath meter (Intoximeters Inc.), and subjects were blind to
BACs.
Participants began their test sessions 20min postbever-

age. Each was run in two separate sessions, on two separate
days, randomly, one at each alcohol blood level, always
preceded by a placebo run. Subjects self-rated level of
subjective intoxication on a verbal analog (0–5 point) scale.
A licensed physician oversaw dosing and administration.
Following completion of each scan session, participants
were compensated for their time plus an additional sum
based on their driving performance. This latter amount was
for obeying road rules (eg keeping to posted speed limits).
The Johns Hopkins Medicine Institutional Review Board
approved the protocol, and all participants provided written
informed consent.

Experimental Design

Methods are those described previously in Calhoun et al
(2002). We obtained fMRI scans of subjects as they twice
performed a 10-min task consisting of 1-min epochs of: (a)
an asterisk fixation task, (b) active simulated driving, and
(c) watching a simulated driving scene (while randomly
moving fingers over the controller). Epochs (b) and (c) were
switched in the second run and the order was counter-
balanced across subjects. During the driving epoch,
participants were performing simulated driving using a
modified game pad controller with buttons for left, right,
acceleration, and braking. The paradigm time line is
illustrated in Figure 2. Subjects were instructed to remain
within a predetermined speed range and were compensated
additionally if they successfully achieved this goal.

The simulator used was a commercially available driving
game, Need for Speed IIt (Electronic Arts, 1998). The
controller was shielded in copper foil and connected to a
computer outside the scanner room though a waveguide in
the wall. All ferromagnetic components were removed and
replaced by plastic. An LCD projector outside the scanner
room and behind the scanner projected through another
waveguide to a translucent screen, which the subjects saw
via a mirror, attached to the head coil of the fMRI scanner.
The screen subtended approximately 251 of visual field. The
watching epoch was the same for all subjects (a playback of
a previously recorded driving session). For the driving
epoch, subjects started at the same point on the track with
identical conditions (eg car type, track, traffic conditions).
They were instructed to stay in the right lane, except in
order to pass, to avoid collisions, to stay within a speed
range of 100–140 (the units were not specified), and to drive
normally.

Rating of Driving Performance

As NFS-II allows driving sessions to be played back, two
independent raters, blind to subject identity and experi-
mental condition, separately scored each driving session on
eight parameters. Inter- and intrarater reliability using
intraclass correlation coefficients for those ratings exceeded
0.85 on five randomly chosen subject sessions rated twice,
blind to subject identity. Parameters assessed included
indices of speeding, weaving, collisions, etc as shown in
Figure 3. Ratings of the two independently rated scores were
averaged for each run.

FMRI Data Acquisition

Data were acquired at the FM Kirby Research Center for
Functional Brain Imaging at Kennedy Krieger Institute
on a Philips NT 1.5 Tesla scanner. A sagittal localizer scan
was performed first, followed by a T1-weighted anatomic
scan (TR¼ 500ms, TE¼ 30ms, field of view¼ 24 cm,
matrix¼ 256" 256, slice thickness¼ 5mm, gap¼ 0.5mm)
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Figure 1 Study design. Outline of study design consisting of 2 days with
two scan sessions on each day. Boxes are not proportional to the amount
of time spent on each task.

Figure 2 fMRI-simulated driving paradigm. The paradigm consisted of
10, 1-minute epochs of (a) a fixation target, (b) driving the simulator, and
(c) watching a simulation while randomly moving fingers over the
controller. The paradigm was presented twice changing the order of the
(b) and (c) epochs and counterbalancing the first order across subjects.
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in an alcohol-soaked cloth to help disguise the contents
(Hammersley et al, 1992). BACs were determined immedi-
ately before and after the scan session, using a hand-held
breath meter (Intoximeters Inc.), and subjects were blind to
BACs.
Participants began their test sessions 20min postbever-

age. Each was run in two separate sessions, on two separate
days, randomly, one at each alcohol blood level, always
preceded by a placebo run. Subjects self-rated level of
subjective intoxication on a verbal analog (0–5 point) scale.
A licensed physician oversaw dosing and administration.
Following completion of each scan session, participants
were compensated for their time plus an additional sum
based on their driving performance. This latter amount was
for obeying road rules (eg keeping to posted speed limits).
The Johns Hopkins Medicine Institutional Review Board
approved the protocol, and all participants provided written
informed consent.

Experimental Design

Methods are those described previously in Calhoun et al
(2002). We obtained fMRI scans of subjects as they twice
performed a 10-min task consisting of 1-min epochs of: (a)
an asterisk fixation task, (b) active simulated driving, and
(c) watching a simulated driving scene (while randomly
moving fingers over the controller). Epochs (b) and (c) were
switched in the second run and the order was counter-
balanced across subjects. During the driving epoch,
participants were performing simulated driving using a
modified game pad controller with buttons for left, right,
acceleration, and braking. The paradigm time line is
illustrated in Figure 2. Subjects were instructed to remain
within a predetermined speed range and were compensated
additionally if they successfully achieved this goal.

The simulator used was a commercially available driving
game, Need for Speed IIt (Electronic Arts, 1998). The
controller was shielded in copper foil and connected to a
computer outside the scanner room though a waveguide in
the wall. All ferromagnetic components were removed and
replaced by plastic. An LCD projector outside the scanner
room and behind the scanner projected through another
waveguide to a translucent screen, which the subjects saw
via a mirror, attached to the head coil of the fMRI scanner.
The screen subtended approximately 251 of visual field. The
watching epoch was the same for all subjects (a playback of
a previously recorded driving session). For the driving
epoch, subjects started at the same point on the track with
identical conditions (eg car type, track, traffic conditions).
They were instructed to stay in the right lane, except in
order to pass, to avoid collisions, to stay within a speed
range of 100–140 (the units were not specified), and to drive
normally.

Rating of Driving Performance

As NFS-II allows driving sessions to be played back, two
independent raters, blind to subject identity and experi-
mental condition, separately scored each driving session on
eight parameters. Inter- and intrarater reliability using
intraclass correlation coefficients for those ratings exceeded
0.85 on five randomly chosen subject sessions rated twice,
blind to subject identity. Parameters assessed included
indices of speeding, weaving, collisions, etc as shown in
Figure 3. Ratings of the two independently rated scores were
averaged for each run.

FMRI Data Acquisition

Data were acquired at the FM Kirby Research Center for
Functional Brain Imaging at Kennedy Krieger Institute
on a Philips NT 1.5 Tesla scanner. A sagittal localizer scan
was performed first, followed by a T1-weighted anatomic
scan (TR¼ 500ms, TE¼ 30ms, field of view¼ 24 cm,
matrix¼ 256" 256, slice thickness¼ 5mm, gap¼ 0.5mm)
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of time spent on each task.

Figure 2 fMRI-simulated driving paradigm. The paradigm consisted of
10, 1-minute epochs of (a) a fixation target, (b) driving the simulator, and
(c) watching a simulation while randomly moving fingers over the
controller. The paradigm was presented twice changing the order of the
(b) and (c) epochs and counterbalancing the first order across subjects.

Alcohol and driving in fMRI
VD Calhoun et al

2099

Neuropsychopharmacology

0 50 100 150 200 250 300 350 400
!1

!0.5

0

0.5

1

0 100 200 300 400
!1

0

1

0 100 200 300 400
!1

0

1

0 100 200 300 400
!1

0

1

0 100 200 300 400
!1

0

1

0 100 200 300 400
!1

0

1

A
n
a
ly

si
s

Scan

G
ro

u
p
 

In
fe

re
n
ce

...

...

M

1

Fig. 5. Spatial ICA of fMRI data. Note the presence of both sample
dependence and HOS as form of diversity.

other algorithms, and is used for initializing the solution of
IVA with multivariate Laplace implemented as in [9] for the
results we present in Section IV. For non-Gaussian sources, it
is known that local minima exist in the cost function. These
local minima correspond to demixing solutions which have
different permutations across data sets [10]. Thus, even if a
local minimum occurs, it is observed that the sources within
each data set have been separated but the dependent sources
across data sets are not aligned. This issue is addressed in [53]
for the special case of spherical and super-Gaussian sources.
Example: Performance of Two IVA Solutions: In Figure 4, we
show the CRLB for separation of sources that are drawn from
a multivariate GGD, and the performance of the IVA algorithm
of [52] for different sample sizes. We implement two versions
of the algorithm, one that estimates the covariance matrix but
assumes that the true shape parameter β is known, and a
second version that selects one of two β = {0.5, 2} during the
adaptation, which is a practical implementation. As expected,
in both cases, the performance improves approaching the
CRLB as the number of samples increase. In addition, while
the first “clairvoyant” version of the algorithm in Figure 4(a),
as expected, provides better performance, the second and
practical implementation shown in Figure 4(a) provides quite
satisfactory performance as well.

In terms of algorithms that only make use of linear de-
pendence across multiple data sets, MCCA is the oldest,
an extension of CCA [54] defined for two data sets. The
algorithms given in [5] assume orthogonal demixing and
are deflationary in nature such that each row of weights
are estimated sequentially. IVA using multivariate Gaussian
model also makes use of only linear dependence and can be
derived within a ML framework [47], [55]. Since CCA can
be achieved using generalized eigenvalue decomposition, it
can also be posed as a diagonalization problem, which can
be readily extended to achieve IVA using generalized joint
diagonalization [48]. A review of extensions of CCA to include
nonlinear dependences is given in [45].

IV. APPLICATION TO MEDICAL IMAGE ANALYSIS

FMRI has enabled us to directly study temporal and spatial
changes in both the healthy and the diseased brain as a
function of various stimuli, and has contributed greatly to
our understanding of the most complex organ of the human
body. Relatively low image contrast-to-noise ratio of the blood
oxygenation level dependent fMRI signal, head movement,
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Infomax EBM ERBM
Infomax EBM ERBM

Number of voxels
overlapping with the mask 2386 3291 3328
Sensitivity of t-map
with the DMN mask 0.73 0.82 0.82
Estimated t-values on
time regression coefficients −0.18 −1.10 −2.08

Fig. 6. Estimated t-maps for DMN using Infomax, EBM, and ERBM, and
quantitative measures of their performance.
and undesired physiological sources of variability (cardiac,
pulmonary) make detection of the activation-related signal
changes difficult. The standard approach for the analysis of
fMRI data has been correlating the time-series data with an
assumed reference signal, i.e., performing a simple linear
regression as implemented in the popular statistical parametric
mapping (SPM) software [56]. Even though it is robust, use of
such a reference time course requires prior information, which
most often is not reliable, and more importantly, in most cases
it simply is not available. This is the case for data are acquired
when subjects are at rest or performing naturalistic behavior
such as watching a movie. Hence, following its first application
to fMRI analysis [57], ICA has become an attractive solution,
and is now widely used for fMRI analysis—for a recent review
on ICA of fMRI, see [58].

Spatial ICA finds systematically non-overlapping, tempo-
rally coherent brain networks without constraining the tem-
poral domain, hence can effectively recover functional net-
works. Functional connectivity refers to temporal correlations
between spatially distinct regions of the brain, and ICA has
been very effective in the study of networks of such intrinsic
activity, since it naturally takes all the voxels into account
when achieving the decomposition and provides a summary
statistics for brain activity as well as its modulation across
time. Besides, the linear superposition assumption holds for
fMRI, see e.g., [59], and the data-driven nature of ICA helps
minimize unrealistic assumptions about the temporal domain
and brain hemodynamics.

Figure 5 shows the application of ICA to fMRI analysis
for finding spatially independent components, which has been
by far the most common use of ICA for the problem. The
observation matrix X ∈ RT×V is formed by flattening the
volume image data of V voxels at each time point. The time
dimension is typically reduced from T , typically in the 100s,
to N , a value around 30–60 to improve the estimation perfor-
mance. Information-theoretical criteria (ITC) using principal
component analysis (PCA) is most commonly employed for
this step [11], i.e., to determine the dimensionality of the signal
subspace, usually with a correction for dependence among the
samples (voxels) [12] so that a better estimate of ML can
be used for the ITC. The spatially independent components—
activation maps—form the sources, and the columns of the
mixing matrix correspond to the temporal modulation of
the corresponding source in the given time frame, [1, T ]. In
Figure 5, we show a sample time course after reconstruction to
its original dimension T , and its corresponding Z-thresholded
spatial activation map.
Example: Taking Sample Dependence and HOS in ICA of
fMRI Data: The activation maps, the underlying independent
sources, are typically super-Gaussian since they include heavy
tails due to active voxels, those with high intensity values, and
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(b) Multi-subject fMRI analysis with IVA

Fig. 7. Group ICA and IVA for multi-subject fMRI analysis. Note how IVA
avoids projecting multi-subject data to a common space after subject-level
PCA as well as the additional back-reconstruction step of Group ICA.

include sample dependence due to point spread function as
well as low pass filtering, a common preprocessing step used
for fMRI data. Hence, it would make sense to account for
both types of diversity, HOS and sample dependence, when
performing ICA of fMRI data. In Figure 6, we show the
performance of three ICA algorithms in estimating the default
mode network (DMN): (i) Infomax that uses a sigmoidal
nonlinearity, a good match to super-Gaussian sources; (ii)
EBM that uses a flexible density model, and (iii) ERBM
that combines the flexible density estimation of EBM with
a filtering approach to account for sample dependence. DMN
is part of intrinsic networks, and one that has received much
attention lately as it is regarded to be an important biomarker
for different disorders. It activates preferentially when indi-
viduals focus on internal tasks, when the mind is wandering,
and hence it is expected to be negatively correlated with the
task time-course, when data are collected during a task. In this
example, the data are collected from 20 subjects performing
the auditory oddball task [60]. As shown in the Figure, all three
algorithms have competitive performance, however both EBM
and ERBM estimate more voxels than Infomax that correlate
with the DMN mask. Also, when we perform a t-test on the
multiple regression coefficients of the estimated time courses
to determine their task-relatedness, ERBM yields the highest
negative value for DMN, hence highest negative correlation
with the task, indicating best performance using this metric
[60].

Since the need to jointly analyze data from multiple subjects
is inherent to most problems in medical data analysis, follow-
ing the introduction of ICA for fMRI analysis [57] and its
success, a simple but effective method, called Group ICA [4],
is introduced for multi-subject fMRI data analysis. Group ICA
performs a first-level dimension reduction at the individual
subject level, and then temporally concatenates dimension-
reduced subject data, to perform a second-level PCA to find
a common subspace for data from all subjects. Then a single
ICA is performed after which individual subject maps and
time-courses are reconstructed as shown in Figure 7(a). There
are a number of approaches for reconstructing the subject
maps, which are evaluated and discussed in detail in [61]
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Fig. 8. A group analysis study using fMRI-like data. IVA leads to better
performance especially with increasing group variability, hence role of source
dependence.

as well as a number of ways to perform concatenation of
data sets [62]. While robust and practical, the projection
to a common subspace of data from different subjects can
potentially cause loss of information in terms of subject
variability. In the application of IVA to fMRI analysis shown
in Figure 7(b), individual subject data are directly analyzed
following the subject-level dimension reduction. Hence, all
individual subject maps are estimated concurrently, and are
aligned across subjects when there is dependence among them.
This is typically the case for all components of interest,
i.e, components corresponding to meaningful functional areas
such as DMN and motor areas, since these naturally have
statistical dependences across subjects. Components related to
artifacts such as the motion artifact, however, might not be
aligned for all subjects as these are less likely to have a similar
dependence structure across subjects, and are more likely to
be subject-specific. Next we demonstrate the advantage of IVA
over the widely used Group ICA approach with two examples,
one with simulated fMRI-like and a second one using real
fMRI data.

Example: Capturing Subject Variability with IVA: To test the
ability of IVA in capturing subject variability, we use the fMRI
simulation toolbox, SimTB [63], and generate 10 components
shown in Figure 8(a) for two groups, with 12 subjects in each.
For each subject, components are randomly generated with
small variations in terms of translation, rotation, and spread.
For the first component, however, we introduce significant
difference in terms of spread between the two groups of
subjects, so as to simulate a typical difference in brain network
volume change between the healthy and patient groups found
in fMRI studies. The difference in spread is kept at two levels,
one indicating a smaller difference between the groups, and
a second one with greater difference in spread. Then, the
performance is tested between the two approaches: Group
ICA using Infomax with a nonlinearity matched to Laplacian
pdf and IVA using a multivariate Laplacian model following

IVA Group ICA

(a) Default Mode Network

IVA Group ICA

(b) Frontal

Fig. 9. Sample estimated spatial maps for IVA and Group ICA for two
components. Note the higher activation levels and spatial extent of the
estimated maps using IVA.

initialization with IVA-G, which we call IVA-GL [64]. In
Figure 8(b), we show the receiver operating characteristics
curves for the detection of the difference between the two
groups at two levels of spread. To obtain the reference map,
we perform a two-sample t-test between the two simulated
groups, which is thresholded at 0.05 significance. By changing
the threshold for t-values, we plot the receiver operating char-
acteristics by counting the number of voxels within (Ntrue) and
outside the reference map (Nfalse). The ratios of these values
to the total number of voxels within the map and outside,
respectively, yields the true positive—detection power—and
false alarm values. IVA performs better than the Group ICA
approach at both lower and higher group variability, and its
performance improves when there is higher group variability.
Because with higher group variability, diversity in terms of
source dependence has more statistical power, improving the
performance of the IVA approach.

Example: Performance of IVA and Group ICA with Real fMRI
Data: To test the performance of IVA for the analysis of real
fMRI data from subjects that exhibit significant variability, we
used data collected from patients who suffered a stroke that
primarily affected their motor areas. Data were collected while
subjects performed a motor task that had alternating cycles of
rest (30 sec) and task (24 sec), which was squeezing a ball.
After standard preprocessing using SPM [56] as in [62], data
from 10 subjects in two sessions, hence providing a total of
20 data sets, are analyzed using the two approaches for multi-
subject analysis, Group ICA and IVA with the same algorithms
as in the previous example, IVA-GL and Infomax with a
nonlinearity matched to a Laplace pdf implemented using
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Group ICA of fMRI Toolbox (GIFT) [65]. In Figure 9, we
show the t-maps thresholded at a significance level of 0.05. As
clearly observed from the figures, for both components, IVA
leads to better estimation of the functional areas as indicated
by more connected regions and better correlation with the
masks generated for these areas as discussed in [66].

V. DISCUSSION

In this paper, we provided an overview of ICA by emphasiz-
ing two types of diversity, HOS and sample dependence, which
have been the two most typically used for achieving ICA. By
using mutual information rate, we showed that a number of
ICA approaches can be brought under one umbrella. We then
introduced IVA that extends ICA to multiple data sets, and
presented a general formulation for IVA that adds a third type
of diversity, dependence of sources across data sets to these
two. We emphasized the parallels between ICA and IVA in the
way diversity plays a role for both and discussed how a number
of existing algorithms fit as special cases under this umbrella.
Even though this is a rather broad umbrella, this has been a
partial survey given the vast activity in the area. For example,
algorithms that explicitly compute HOS such as JADE as well
as those that make use of other types of diversity such as
nonstationarity, noncircularity, and geometrical properties are
not considered. Nonstationarity, however, is taken into account
in our discussion on identifiability and it has been used with
other types of diversity in algorithm development for example
along with HOS in [67], and HOS, and sample dependence in
[68].

Another important diversity type—which we could not
discuss here due to space constraints—is non-circularity of
the signals when ICA or IVA is implemented in the complex
domain, which can be also studied under the mutual informa-
tion rate umbrella [69]. Since it is the second-order-statistics
that determine identifiability for ICA and IVA, again in this
case, it is the impropriety, second-order noncircularity, that
plays a key role. A random vector x is called second-order
circular—or, proper—if its complementary covariance matrix
E{xx>} vanishes. For improper signals, identification of i.i.d.
Gaussians is possible if all circularity coefficients are distinct
using strongly uncorrelating transform [70], and in addition, if
we make use of HOS and sample dependence, it can be shown
that the identification conditions we have given here become
more relaxed. Then the ICA problem becomes non-identifiable
only when there are Gaussian sources with both the covariance
and complementary covariance matrices that are proportional,
and proportional through a complex constant for the latter, as
implied by the analyses in [71], [72]. A conjecture for IVA
would be that the condition given here will also include the
complementary covariances of SCVs. As one would expect,
with the addition of each new type of diversity, identification
becomes easier, a broader class of signals can be separated
using ICA or IVA. A recent review of complex-valued ICA
can be found in [69], and a comprehensive review of the field
of blind source separation in the book [1].

ICA has found a fruitful application in fMRI analysis and
IVA promises to be another attractive solution. ICA has been

widely applied to fMRI and EEG analyses, two domains
where the linear superposition assumption of ICA holds. A
recent review [58] underlined the now wide use of ICA
for fMRI analysis by showing the exponential growth in
publications on the topic following its first application in 1998
[57]. An interesting recent claim was that ICA for fMRI has
been successful because the widely used algorithms Infomax
and FastICA—with kurtosis nonlinearity—select for super-
Gaussian sources, hence it is sparsity that determines the final
decomposition, and not independence [73]. A response to the
article [74] showed that the examples in [73] were flawed and
with the correct interpretation of underlying models in ICA, it
is indeed independence that achieves a useful decomposition
of the fMRI data. Still, it is worth noting that Infomax has
been the most widely used algorithm for fMRI analysis, first,
due to historical reasons—it was the first algorithm used—and
then because its simple fixed score function is a good match
for the fMRI sources and provides robustness. However, as
the examples we give in this paper demonstrate, maximizing
independence by using an algorithm with a flexible density
matching mechanism can lead to improved performance. In
addition, the fact that there is good support for the inherent
linear superposition assumption of the basic ICA model of
(1) suggests that the spatial maps can be regarded as hidden
variables in the model, just like audio sources in a cocktail
party problem. In these cases, maximizing the independence
though flexible density matching, and making use of multiple
types of diversity to approach the performance bound is
meaningful. In applications such as data fusion, however, the
approach is mostly exploratory in that the sources do not
necessarily have physical meaning, they primarily help explain
the data, relationships among modalities. Then, in this case,
using a robust algorithm such as Infomax might be sufficient,
as discussed in detail in a review on data-driven fusion [75].

The formulation of IVA we present here provides an
attractive framework for joint blind source separation with
numerous potential applications. These include those where
MCCA has been applied such as medical data analysis and
fusion, hyperspectral data analysis, blind equalization, and of
course the first motivation for the IVA formulation, solution
of the convolutive ICA problem. Among many others, multi-
modality data fusion is an important application area for IVA
as it would extend the successful application of MCCA [76]
to include HOS without constraining the demixing matrix.
IVA also presents number of challenges and interesting venues
for future research. The well defined structure of IVA might
allow a more flexible solution to the multidimensional ICA—
also called subspace ICA—problem where components within
each independent subspace are allowed to have dependences.
Estimation of the density during adaptation—to truly approach
the CRLB and improve performance—is a more difficult task
than for ICA. The multivariate nature of the pdf makes the
problem more challenging especially when the goal is not only
modeling flexible marginals but also taking dependence among
the components of an SCV into account. Hence, if successfully
extended to the multivariate case, a flexible density model like
EBM can achieve this desired balance, and potentially allow
one to also account for sample dependence in the model and
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estimate an SCM. This is not to say there are not challenges
for ICA either. The performance of most ICA algorithms
deteriorate when the number of sources increases as well as
the noise level. The noisy and the undetermined cases still
deserve much attention, and also the problem of nonlinear
ICA. Hence, even though the field of blind source separation
has now reached a maturity, there are still a good number of
important challenges and problems that require our attention.
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