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Abstract

Using an in-vehicle interactive display, such as a touchscreen, typically entails undertaking a

free hand pointing gesture and dedicating a considerable amount of attention, that can be otherwise

available for driving, with potential safety implications. Due to road and driving conditions, the user

input can also be subject to high levels of perturbations resulting in erroneous selections. In this

article, we give an overview of the novel concept of an intelligent predictive display in vehicles. It

can infer, notably early in the pointing task and with high confidence, the item the user intends to

select on the display from the tracked free hand pointing gesture and possibly other available sensory

data. Accordingly, it simplifies and expedites the target acquisition (pointing and selection), thereby

substantially reducing the time and effort required to interact with an in-vehicle display. As well

as briefly addressing the various signal processing and human factor challenges posed by predictive

displays in the automotive environment, the fundamental problem of intent inference is discussed

and a Bayesian formulation is introduced. Empirical evidence from data collected in instrumented

cars is shown to demonstrate the usefulness and effectiveness of this solution.

I. I NTRODUCTION

The complexity of in-vehicle infotainment systems (IVIS) has been steadily increasing to ac-

commodate the growing additional services associated with the proliferation of smart technologies

in modern vehicles. They aim to improve the driving experience and safety, for example advanced

driver assistance, route guidance, driver inattention monitoring, and many others [1]. Consequently,

minimising the effort and distraction of interacting with or controlling the IVIS is a key challenge [2].

This article introduces and presents an overview of the predictive in-vehicle display system, which

utilises suitable statistical signal processing algorithms to enhance and simplify human machine

interaction (HMI) in automotive applications, including IVIS-related interactions.

Lately, there has been a strong move towards replacing traditional static mechanical controls in

vehicles, such as buttons, switches and gauges, with interactive displays, mainly touchscreens [2]. This

is motivated by the evolution of the increasingly ubiquitous touchscreen technology and the ability
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Figure 1:Block diagram of an in-vehicle predictive touchscreen system with a full 3D pointing finger-tip track,tk > t1.

An infotainment menu of a Range Rover interface is displayed; the vehicle interior is not shown.

of these displays to: 1) effectively handle a multitude of functions by incorporating large quantities

of information associated with in-vehicle infotainment systems, 2) promote intuitive interactions via

free hand pointing gestures, especially for novice users, 3) offer design flexibility through a combined

display-input–feedback module, 4) minimise clutter in the vehicle interior given their adaptability to

the context of use, unlike mechanical controls. For example, the Tesla Model S car features a17”

touchscreen controlling most of the car functions [3]. Additionally, other types of displays, such as

head-up displays (HUDs) and general 3D displays, have the potential of providing a more immersive

driving experience and are becoming increasingly commonplace in vehicles [4], [5], for instance, the

Jaguar Land Rover HUD windscreen incorporating laser holography [6]. However, such displays are

often passive and users lack the means to easily interact with them in an automotive setting.

Interacting with an in-vehicle touchscreen typically involves undertaking a free hand pointing

gesture to select an item on the display. This requires dedicating a considerable amount of visual,

cognitive and manual attention, that is otherwise available for driving. The user input can also be

subject to perturbations due to the road and driving conditions, resulting in incorrect on-screen

selections [7], [8]. For example, the rate of successfully selecting an icon on the in-car display can

be less than50% when driving over a badly maintained road [8]. Rectifying an erroneous selection or

adapting to the present noise will tie up more of the user’s attention. This can render using interactive

displays in vehicles effortful and distracting, with potential safety consequences [9]. Hence, there

is a need for a solution that simplifies interaction with in-vehicle displays via intuitive free hand

pointing gestures, or even enables it for emerging display technologies such as HUDs.

An intelligent in-vehicle predictive display1, whose top-level block diagram is depicted in Figure

1The two attached videos show an early prototype of the predictive display with mid-air selection and prediction results during a few
free hand pointing gestures; alternatively, follow the links:https://youtu.be/Yco4v3N2QJkandhttps://youtu.be/Xf3W6nWeL4Y.
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1, employs a gesture tracker (and possibly other sensory data when available) in conjunction with

a probabilistic prediction algorithm to determine the item the user intends to select on the display,

remarkably early in the free hand pointing gesture [10]. It subsequently facilitates and expedites the

target acquisition. Thus, the introduced intent-aware system can significantly improve the interactive

display usability in vehicles and reduce the effort (attention) they require. Assuming that the predic-

tion certainty meets a set criterion, the user need not touch the display surface to select the intended

on-screen item, allowing mid-air selection. Therefore, this solution can also enable interacting with

displays that do not have a physical surface, for example HUD and 3D displays or projections.

This article highlights and gives a unified treatment of the various signal processing (e.g.,

tracking-filtering, fusion, prediction, etc.) and human factors (e.g., feedback, prior experience, etc.)

challenges posed by the in-vehicle intent-aware display concept, some of which were individually

considered in previous publications (including those for non-automotive applications), such as [10]–

[19]. In particular, the fundamental problem of intent inference within a Bayesian framework is

addressed here, and suitable probabilistic prediction models are presented; they lead to a low-

complexity implementation of the inference routine. Within this formulation, the task of smoothing

perturbed pointing trajectories due to road and driving conditions via statistical filtering is discussed.

The sensory requirements of the predictive system in the vehicle environment are also briefly outlined.

Data collected in instrumented cars and results from a prototype predictive touchscreen system are

shown to demonstrate the capabilities of this intelligent HMI solution.

II. BACKGROUND

According to the renowned human movement model Fitts’ law [20], the index of difficulty (ID)

and total time (T ) of acquiring an interface icon (i.e., pointing and selection) are given by

ID = log2 (1 + `/W ) ,

T = a + b log2 (1 + `/W ) , (1)

whereW and` are the the width of the target item and its distance from the starting position of the

pointing object (mouse cursor or pointing finger), respectively [12];a andb are empirically estimated.

As intuitively expected, the selection task can be simplified and expedited by applying apointing

facilitation scheme, such as increasing the item size (largerW ) or moving it closer to the cursor

(smaller `). Since a typical Graphical User Interface (GUI) contains several selectable items, any

assistive pointing strategy should be preceded by a predictor to identify the intended on-screen icon

[12]. Hence, the endpoint prediction problem has received notable attention in the Human Computer

Interaction (HCI) area, for example [11]–[14] (see [10] and [14] for a brief overview).

The majority of existing HCI studies focus on pointing in 2D via a mouse or mechanical device

on a computer screen to acquire GUI icons. They often use deterministic pointing kinematics models

for endpoint prediction assuming: 1) the pointing object (cursor) velocity has a consistent profile and
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(a) Angle to GUI iconθk , ∠ (Yk − Yk−1, dI). (b) Pointing finger-tip velocity‖Yk − Yk−1‖2.

Figure 2:Angle to on-display icon and velocity profile for 30 in-car pointing tasks; thick red line is the mean.

is zero at arrival at destination, and 2) the cursor heads at a nearly constant angle towards its endpoint.

Both premises make intuitive sense for mouse pointing in 2D, however, they do not necessarily hold

for free hand pointing gestures in 3D [10]. For example, Figure 2a shows that the pointing finger-tip

heading angle to an on-screen icon drastically changes throughout a sample of free hand pointing

gestures recorded in an instrumented car;dI is the location of the intended on-screen destination in

3D andYk is the 3D Cartesian coordinates of the pointing finger-tip at the time instanttk.

Data driven prediction techniques, such as in [13] and [19], can be applied to infer the intended

destination of a pointing task. They often utilise a pointing motion model learnt froma priori

recorded interactions, necessitating the availability of a complete data set of training examples of

pointing trajectories. This requirement is particularly stringent for free hand gestures approaching a

display in 3D to select icons on GUIs of various possible layouts, due to the very large number of

possible paths. More so in an automotive HMI context, where a user might be expected to undertake

a few pointing gestures, for instance, to set up the IVIS preferences, during his or her first system

use. On the other hand, the predictive display system discussed here employs known motion as well

as sensor models, and thus can use a state-space-modelling approach, albeit with a few unknown

parameters. It requires minimal training and is computationally efficient.

In the area of object tracking, for example in surveillance applications, knowing the destination

of a tracked object not only leads to more accurate tracking results, but also offers vital information

on intent, revealing potential conflict or threat [16], [21], [22]. Destination prediction can be viewed

as a means to assist planning and decision making at a system level higher than that of established

conventional sensor-level tracking algorithms, whose objective is to infer the current value of the

latentstateXt (e.g., the tracked object position, velocity, etc.) [22]. For example, destination-aware

trackers that include an additional mechanism to determine the object endpoint are proposed in [16].

These methods discretise the state space area into predefined regions and the object can only pass

through a finite number of these zones; such a discretisation can be a burdensome task for free hand

pointing gestures in 3D. On the contrary, the predictive display solution presented in this article uses

continuous state space motion models that do not impose any restrictions on the path the pointing

finger has to follow to reach its intended on-display endpoint and can easily handle noisy as well as
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asynchronous observations. Nevertheless, other conforming destination-aware tracking methods can

be applicable.

A related scenario in which there is a growing interest is the user input on a smartphone,

perturbed due to situational impairment, for example walking [17]. Typically in such cases, the GUI

is dynamically adapted to compensate for the measured noise. For an in-vehicle display, the pointing

time and distance is notably longer than that for a hand-held device and the correlation between the

pointing hand movements and the experienced in-car accelerations or vibrations can be ambiguous

[10]. This is attributed to the complexity of the human motor system and its response to noise as well

as the seat position, cushioning, reaching style or distance, etc. Thus, compensating for the measured

in-vehicle noise can have limited effects on improving the display usability. Here, perturbed user

input is tackled within the statistical inference framework of a predictive display.

III. A N IN-VEHICLE PREDICTIVE DISPLAY SYSTEM

Below, we describe the various modules that compliment the present in-vehicle interactive display,

e.g., a touchscreen, to realise the intelligent predictive display system in Figure 1.

A. Gesture Tracker

Motivated by extending HCI beyond traditional keyboard input and mouse pointing, new 3D

vision sensory devices have emerged that can track, at high rates, hand gestures, including pointing

finger(s)-tip(s), for example Microsoft Kinect, Leap Motion (LM) and SoftKinetic DepthSense.

However, operating in a mobile vehicle enviroment can be challenging to these trackers due to

dynamically changing light conditions, in-car vibrations-accelerations, occlusion with limited in-

car mounting positions, large coverage area (e.g., steering wheel or armrest to display and the

front passenger) and others. Fortunately, the current interest in gesture-based HCI in cars (e.g.,

current BMW 7 Series cars have a gesture control for some features) is driving the development of

automotive-grade gesture trackers [15]. In Figure 1, a tracker provides, in real-time, the pointing

hand/finger(s) locations,Y1:k , {Y1, Y2, ..., Yk}, at the discrete time instantst1, t2, ...., tk. For

instance,Yn = [x̂tn ŷtn ẑtn ]′ is the 3D Cartesian coordinates of the pointing finger-tip attn.

In general, the predictive display demands reliable pointing finger tracking at a rate exceeding30Hz,

as majority of in-vehicle pointing tasks can have durations in the range of0.2s 6 T 6 4s [8]. Figure

3 depicts three complete 3D pointing trajectories,Y1:T , collected in a car using a LM controller

under three conditions, which visibly affect the pointing gesture.

B. Bayesian Intent Inference

Let D = {Di : i = 1, 2, ..N} be the set ofN selectable items on the interactive display. Whilst

no assumptions are made about the layout of the icons inD, each item is modelled as a distribution

representing the extended regions in space of various shapes and sizes occupied by the corresponding
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Figure 3:Recorded 3D pointing finger-tip tracks to select icons (circles) on an in-car touchscreen (blue surface) under

various driving/road conditions [10];t1 < tk.

GUI elements. For simplicity and computational efficiency, Gaussian distributions can be considered

and theith item is modelled asN (μi, Ci). The meanμi and covariance matrixCi capture the 3D

location and the extent-orientation ofDi, respectively. At the time instanttk, the inference module

in Figure 1 calculates the posterior probabilities for theN destinations,

P(tk) = {p(DI = Di|Y1:k) : i = 1, 2, ..., N} , (2)

which represent the likelihood of each of the icons inD being theunknownintended on-display

endpointDI ∈ D. This uses the gesture-tracker measurementsY1:k (and possibly other sensory

data), i.e., the available partial pointing finger track attk whose extraction might require simple data

sorting and associating routines. Each observationYk is assumed to be derived from an underlying

pointing finger true (perturbation-free) latent stateXtk
, that can include its position, velocity, etc.

Within a Bayesian framework, we have

p(DI = Di|Y1:k) ∝ p(Y1:k|DI = Di)p(DI = Di), (3)

where the priorp(DI = Di) on the selectable items (independent ofY1:k or the current pointing task)

can be attained from relevant semantic and contextual information, such as selection frequency, GUI

design, user profile, etc. This makes the adopted formulation particularly appealing as additional

information, when available, can be easily incorporated. For example, the priors in (3) can be

gradually and dynamically learnt as the system is being used, starting from uninformative ones.

Therefore, it is an adaptable probabilistic (belief-based) approach.

A prediction is performed at the arrival of each (or a few) new sensor observations. The infer-

ence module can use a number of low complexity, computationally efficient, probabilistic endpoint

predictors that are amenable to real-time implementation, given the limited computing resources
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and training data available in vehicles. The linear models discussed in the next section lead to a

Kalman-filter-type implementation, combining endpoint prediction and filtering out of noise induced

by road/driving conditions. For severe perturbations, a separate statistical filter can be employed to

remove the highly nonlinear gesture motion arising from perturbations.

C. Facilitation Scheme and Decision

To assist the selection task, the displayed interface may be modified attk, for example icons

can be expanded/shrunk, colored/faded or other [11], [12], [14], as per their probabilitiesP(tk) in

(2). Such facilitation strategies can require major modifications to legacy in-vehicle GUI designs and

possibly the related software-hardware architectures. Their impact on the user experience in a split

attention scenario (driving and interacting) is non-trivial and can be advised by experimental studies.

For instance, unlike mouse pointing on a computer screen, constantly changing the in-car interface

can increase visual demand to monitor the ongoing changes. A promising pointing facilitation scheme

is mid-air selection, where the system auto-selects the predicted intended on-screen item on behalf

of the user, who does not need to physically touch the display surface. Whilst mid-air selection

can reduce the free hand pointing gesture duration and thus effort (visual, cognitive and manual),

its implementation entails only sending/reading a select signal to/by the existing interface software

module with minimal display overheads.

After inferring p(DI = Di | Y1:k) at time tk, the endpointD̂I(tk) ∈ D of a free hand pointing

gesture can be estimated (if needed) by minimising the expected value of a cost function over all of

the possible destinations inD. This can be expressed by

D̂I(tk) = arg min
D∗∈D

N∑

i=1

C(D∗,DI)p (DI = Di| Y1:k) , (4)

whereC(D∗,DI) is the cost of decidingD∗ as the destination given thatDI is the true intended

on-display icon. If the binary decision criterionC(D∗,DI) = 1 if D∗ 6= DI and C(D∗,DI) = 0

otherwise, is used, it can be easily seen that (4) leads to the Maximuma Posteriori(MAP) estimate;

it implies that the most probable endpoint is deemed to be the intended on-display selectable icon.

Within the Bayesian framework, more elaborate cost functions can be applied [23]; groupsD̂q ⊂ D

rather than an individual icons may also be considered for expansion or fading purposes.

Whilst the intuitive MAP estimate can be used to assess the suitability of the prediction model,

it can produce fast fluctuating decisions during the pointing task. This can be detrimental to mid-air

selection due to the resultant false positives. In such cases, a simple decision rule can stipulate that

the probability of an iconp (DI = Di| Y1:k), namely the one delivered by the MAP classifier, should

exceed a certain threshold for a given duration of time before triggering an auto-selection action.
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D. Adaptable GUI and Selection Confirmation

The displayed interface implements seamlessly, in real-time, the applied pointing facilitation

scheme. If an on-screen item is selected or auto-selected, the user can substantially benefit (i.e., in

terms of reducing the visual workload) from a feedback confirming the selection action, for example

an audible or haptic signal. For a predictive display with mid-air selection, the emerging ultrasonic

mid-air haptic technology [24] presents itself as a suitable equivalent to the conventional on-screen

haptic feedback, which is used in standard smartphone devices, with established benefits.

E. Additional Sensory Data

The availability of additional vehicle sensory data, such as suspensions travel data via the

controller area network (CAN) bus or an on-board inertia measurement unit (IMU), can enable the

intelligent predictive display system to establish the operating conditions, for instance, allowing it to

determine whether the user input is perturbed, or even estimate the level of noise present. It can then

modify the applied statistical model, by adapting its parameters or performing pre-processing prior to

intent inference. Eye-gaze measurements can also offer valuable information on areas of interest on

the display and can be used as an input modality in HCI, e.g., in [25]. Eye-gaze trackers are primarily

utilised to examine the human performance behaviour in a controlled setting, such as simulators, and a

corpus of literature exists [26]. Obtaining accurate data from such a tracker, that is not head-mounted,

in a mobile vehicle can be challenging given the currently available commercial sensors. However,

the fusion or simultaneous use of eye-gaze and pointing gesture data for an in-vehicle predictive

display is a promising research area. In summary, if any additional information becomes available,

it can be easily incorporated into the Bayesian framework via the priorsp (DI = Di) ,Di ∈ D, or

alternatively treated as a part of the measurements vectorY1:k.

IV. BAYESIAN ENDPOINT PREDICTION

Given the available measurementsY1:k at tk, determining the probability of each of the endpoints

in D being the intended destination requires calculating the observation likelihoodp(Y1:k | DI = Di)

conditioned on each endpoint, as stated in (3). The priorp(DI = Di), which is independent of the

current pointing task, is presumed to be available; here, for simplicity, all icons are assumed to be

equally probable withPr(DI = Di) = 1/N, i = 1, 2, ..., N . The key problem in the intent prediction

procedure is therefore that of evaluating the observation likelihood, i.e., the probability of having

made a series of observations, under the assumption that the tracked object is ultimately heading to

a given destination. This can be tackled by adopting an underlying motion model of the pointing

finger, describing its trajectory on its journey towards the intended endpoint and including an element

of randomness in the followed track. This capitalises on the premise that the motion of the pointing

finger in 3D is dictated by the intended icon on the display. Since the true destinationDI is unknown

a priori, N such models for eachDi ∈ D are postulated, and the objective becomes calculating the
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likelihood of the observed partial pointing trajectory being drawn from a particular endpoint-driven

model. In other words, the destination that leads to a model that best explainsY1:k is assigned the

highest probability of beingDI , and vice versa.

According to the chain rule of probability,

p(Y1:k | DI = Di) = p(Yk | Y1:k−1,DI = Di)p(Y1:k−1 | DI = Di), (5)

where p(Y1:k−1 | DI = Di) is the likelihood estimated at the previous time instanttk−1. Thus,

the observation likelihood in (5) can be calculated sequentially, i.e., with the arrival of each new

sensor measurement of the pointing gesture, and determining the prediction error decomposition

(PED),p(Yk | Y1:k−1,DI = Di), at tk suffices. Below, we outline simple destination-driven models,

including the bridging distributions approach introduced in [27], [28], and show how sequential

calculation of the PED can be performed, permitting the posterior probability distribution over

intended endpoints in (2) to be calculated at each stage.

A. Modelling Pointing Movement

The pointing gesture movement towards an on-screen item is not deterministic. The person

making the pointing gesture is capable of autonomous action and is in control of a complex motor

system with numerous physical constraints, and is likely to also be subjected to external motion,

jolting, rolling, acceleration and braking in a moving vehicle. Hence, models of the pointing finger

movements, albeit driven by intent, are uncertain, and this can be captured by adopting stochastic

models. This implies that the predictions of the tracked object motion are not single deterministic

paths, but are rather probabilistic processes, with the pointing finger position at a future time expressed

as a probability distribution in space. By adequately incorporating this uncertainty, relatively simple

models of pointing finger motion can be used successfully to evaluate the corresponding observation

likelihoods and the probabilities ofP(tk) in (2). It is emphasised here that the in-vehicle predictive

display system objective is to infer the intent of the hand movement andnot to accurately model the

complex human motor system. Thus, an approximate motion model that enables reliably determining

the destination of a free hand pointing gesture is sufficient.

Calculating the transition density of a stochastic model, for example between two successive

observation timestk−1 and tk, is required to condition the tracked pointing finger stateXt (e.g.,

position, velocity, etc.) on a nominal endpointDi. Continuous-time motion models are a natural

choice, where the tracked object’s dynamics are represented by a continuous-time stochastic dif-

ferential equation (SDE). This SDE can be integrated to obtain a transition density over any time

interval. Although numerous models for object tracking exist, the class of Gaussian linear time

invariant (LTI) models for the evolution ofXt is utilised by the in-vehicle predictive display, as they

lead to a low-complexity inference procedure (unlike non-linear and/or non-Gaussian models). This

class includes many models used widely in tracking applications, for example the (near) constant
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Figure 4:The system graphical structure; endpointDi acts as a prior and affect the state transition.

velocity (CV) and linear destination reverting (LDR) models highlighted below, in addition to other

Gaussian LTI models that can describe higher order kinematics (acceleration, jerk, etc.) [22].

Whilst the system governing the pointing finger dynamics is assumed not to change over time, it

does depend here on the intended endpointDI ∈ D, which intrinsically drives the pointing motion.

Conditioned on knowing this endpoint, e.g., theith GUI icon Di, and integrating the Gaussian LTI

model, the relationship between the system state at timest and t + h can be written as

Xi,t+h = F (h,Di)Xi,t + M(h,Di) + εt, (6)

with εt ∼ N (0, Q(h,Di)) is the dynamic noise embodying the randomness in the motion model.

The matricesF andQ as well as the vectorM , which together define the state transition from one

time to another, are functions of the time steph and, notably, the destinationDi ∈ D. Thereby,N

such models are constructed to establish the endpoint of the pointing gesture.

Thekth observation, for example, the pointing finger position as provided by the gesture-tracking

device, is also modelled as a linear function of the timetk state perturbed by additive Gaussian noise,

Yk = GXi,tk
+ νk, (7)

whereG is a matrix mapping from the hidden state to the observed measurement andνn ∼ N (0, Vn).

For instance, if the gesture-tracker provides the pointing finger positions directly and the system state

includes only position, thenG is a 3 × 3 identity matrix. The noise covariance can be utilised to

set the level of noise in each of thex, y and z axes as per the gesture-tacker specifications, for

example a time-of-flight based tracker such as the SoftKinetic DepthSense camera exhibits higher

inaccuracies in observations along the depth axis. It is noted that no assumption is made about the

observation arrival timestk and irregularly spaced, asynchronous measurements can naturally be

addressed within this formulation. The system structure, for each nominal endpointDi, is depicted

graphically in Figure 4, where the destinationDi influences the endpoint-driven state at all times.

Amongst linear Gaussian models, linear destination reverting models, such as the Mean Reverting

Diffusion (MRD) and Equilibrium Reverting Velocity (ERV) models, make particularly suitable

candidates for the pointing finger motion in (6), as discussed in [10]. Their state evolution explicitly

incorporates the destination information. For example, the governing SDE for the mean reverting

diffusion model is given by:dXi,t = Λ(di − Xi,t) dt+σdwt. It indicates an attraction of the motion
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towards the location of destinationdi (e.g., the mean of the Gaussian distribution representingDi),

with Λ (a design parameter) capturing the strength of this reversion for each axis in 3D, andwt is

a Wiener process. Whilst the MRD is based on a multivariate Ornstein-Uhlenbeck process [29] and

the system state only includes the position information in 3D, the state of the ERV model proposed

in [10] additionally includes the velocity of the pointing-finger, in 3D, driven by the endpoint. This

facilitates modeling pointing velocity profiles like those shown in Figure 2b. Integrating the SDE of

the MRD and ERV results in (6), each with specificF , M andQ matrices.

During a pointing task, the path of the pointing finger, albeit random, must end at the intended

destination at timeT (i.e., the pointing finger reaches its endpoint on the display). This can be

modelled by anartificial prior probability distribution forXT corresponding to the geometry of the

destination; alternatively, it can be treated as apseudo-observationat T . In order to maintain the

linear Gaussian structure of the system in (6) and (7), this distribution is assumed to be Gaussian,

such thatp(XT | DI = Di) = N (XT ; ai, Σi); see [28] for a discussion on this construct. The

mean vectorai specifies the constrained system state at the destination, whereasΣi is a covariance

matrix of the appropriate dimension. For instance, for the MRD model, in which only pointing finger

position is considered,ai = μi = di representing the location-centre of the destination in 3D. In the

case of the ERV model, defining the final state distribution also involves specifying a distribution

of the pointing finger velocity at endpoint. A large-scale prior covariance can be used to model the

uncertainty in this, however certain properties might be assumed, e.g., relatively high velocity in the

direction towards the screen.

Exploiting the artificial prior on the distribution ofXT requires that the state of the motion

models in (6) to be conditioned not only onDi ∈ D, but also on the arrival timeT . Including this

permits the posterior of the system state at timetk to be expressed asp(Xtk
| Y1:k, T,DI = Di),

and the sought observation likelihood in (5) is subsequently given byp(Y1:k | T,DI = Di) after k

measurements. The inclusion of the prior onXT in the motion model changes the system dynamics

(even for MRD and ERV models), where the predictive distribution of the pointing finger state

changes from a fully random walk to a bridging distribution, terminating at the endpoint. This

encapsulates the long term dependencies in the pointing finger trajectory due to premeditated actions

guided by intent. Since the intended destination is not known,N such bridges are constructed, one per

nominal endpoint. Consequently, all Gaussian linear models, including the non-destination reverting

ones, whose dynamic models are not dependent onDi like Brownian motion (BM) and CV, can

be utilised for destination prediction within the presented Bayesian framework. This technique of

conditioning on the endpoint is dubbed bridging distributions (BD) based inference.

B. Intent Inference: Sequential Likelihood Evaluation

We recall that the primary objective of the intent inference routine is to determine the observation

likelihoods p(Y1:k | DI = Di),Di ∈ D, at tk, rather than the posterior distribution of the system
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Figure 5:Kalman filter for sequentially evaluating the PED for endpointDi at the arrival of observationYk; state prediction

at tk relies on the state estimation results, including covariance CXX
i,k−1|k−1, from the previous time step andh = tk − tk−1.

stateXtk
, as in traditional tracking applications [22]. Nonetheless, the latent state estimation, which

might be relevant in certain scenarios, is addressed below. Based on (6) and (7), a classical Kalman

filter can be employed to sequentially calculate the prediction error decomposition in (5) as depicted

in Figure 5 and, thereby the sought observation likelihood for the current set of measurementsY1:k

conditioned onDi. The computationally efficient Kalman filter is particularly desirable since running,

concurrently, multiple Kalman filters for allDi ∈ D is plausible in real-time, even in settings where

limited computing power is available. This solution is also amenable to parallelisation.

For the bridging approach, it is shown in [27] and [28] how the PED and observation likelihood

in (5) from each constructed bridge, i.e., conditioned onT andDi, can be estimated using a modified

Kalman filter. As the true arrival timeT is unknowna priori in practice, approximating

p(Y1:K | DI = Di) =
∫

T∈T
p(Y1:k | T,DI = Di)p(T | DI = Di)dT, (8)

is necessary, wherep(T | D) is the a prior distribution of arrival times at destinationDi and T

is the time interval of possible arrival timesT . In the simplest case, arrivals might be assumed at

some specific future time. This is a crude approximation, nevertheless is often quite effective [28].

To improve inference accuracy (and possibly also to learn about expected arrival time), arrivals can

be modelled as having a prior distribution, such as being expected uniformly within some time

period [ta, tb], giving p(T | D) = U(ta, tb). In this case, numerical quadrature, for example via

Simpson’s rule, can be applied. Although bridging-distribution based intent inference involves running

multiple Kalman filters, and hence is more computationally demanding, it can significantly improve

the endpoint inference capability of a predictive display and leads to a more robust performance.

In summary, the introduced modelling approach to infer the item the user intended to select on

the display as early as possible in the free hand pointing gesture is generic and offers considerable

flexibility in terms of catering for various sensing technology specifications (for example, observation

error) as well as adaptability in terms of adjusting the motion model parameters. It is simple and

relatively computationally efficient, which makes it suitable for the requirements of an automotive

environment. In the developed predictive display prototype (an optimised C# implementation of the

system in Figure 1 on a typical automotive computing platform), prediction with Kalman filtering
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was tested with up toN = 64 destinations and an observations data rate> 30Hz without any

noticeable delays in the system response in terms of the pointing facilitation routine.

C. Handling Perturbed Pointing Trajectories

When the user input is perturbed in a moving vehicle due to the road and driving conditions, the

predictive display system can handle noisy free hand pointing gestures by setting the noise covariance

in the motion model in (6) relative to the measured (experienced) in-vehicle vibrations-accelerations.

This conforms with the modelling assumptions and a higher covariance corresponds to having less

certainty in the inferred endpoint-driven latent stateXi,t, i.e., pointing finger position, velocity, etc.

This technique is suitable for low to medium perturbation levels that can be represented by Gaussian

noise, for instance, driving on smooth to moderately bumpy-paved roads. The output of the filters,

calculating the posterior of each nominal destinationsp(DI = Di|Y1:k) at tk, can be used to estimate

the posterior probability of the system latent stateXtk
, including the perturbation-free pointing finger

position. This is given by the the Gaussian mixture

p(Xtk
|Y1:k) =

N∑

i=1

p (Xi,tk
|Y1:k ) p (DI = Di |Y1:k ) , (9)

wherep (Xi,tk
|Y1:k ) pertains to theith destination and is also calculated by the Kalman filter.

The assumption of Gaussian noise in a motion model can be overly restrictive in a highly

perturbed environments, e.g., driving on rough terrain or a badly maintained road, since the pointing

hand/finger can move in a highly erratic manner. It can exhibit sudden unintentional noise-related

movements or jolts, as can be seen in Figure 3 for off-road driving. In such scenarios, the perturbations

present can be treated as an additional nonlinear random jump process, denoted byPt in the motion

model, causing sudden large changes in the pointing finger position and velocity. For example, this

can be modelled by the mean-reverting jump-diffusion velocity process whose SDE is given by

dṖt = σpdW2,t + σJdJt − λ1Ṗtdt, (10)

such thatdJt is the instantaneous change in the jump processJt =
∑τt

i=1 ρi, with ρi ∼ N (0, 1),

τt is the number of jumps in[0, t] governed by a Poisson distribution, and the next jump time

τ is set by an exponential distribution [18]. Likelihood estimation for such motion models relies

on sequential Monte Carlo (SMC), particle, filtering [30], which is computationally costly and

approximate compared to the original models in (6) with Kalman filtering, even in the efficient Rao-

Blackwellized form [22], [30]. A practical alternative to applying this expensive inference procedure

N times, one per destination, is to apply the SMC filtering once as a pre-processing stage prior

to the destination prediction routine. The pre-processing objective is to remove the most severe

effects of large jolts from the gesture-tracker observationsY1:k at tk and allow the utilisation of the

original linear motion models for intent inference [10], [28]. This approach represents a compromise
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between the better filtering results of the jump model in a high-perturbations environment, and the

computational efficiency of the original models.

Applying a pre-processing SMC filter or dynamically adjusting the motion model covariance

can be guided by additional sensory data, such as changes in the suspension height (by probing the

vehicle CAN bus), IMU accelerometer, front-facing cameras, etc. These can reliably measure the

level of accelerations and vibrations experienced in the vehicle. Additionally, the filtered free-hand

pointing gesture can be used not only for pointing, but also for general gesture-based interactions.

V. PERFORMANCEANALYSIS: EMPIRICAL RESULTS

The performance of the intelligent predictive display concept is assessed here using data collected

in two cars (Jaguar XK and Range Rover) instrumented with the system in Figure 1 under various road

and driving conditions, namely when the vehicle is: 1) stationary, 2) driven over a well maintained

road (i.e., motorway) at varying speeds, 30-70 mph, and 3) driven on a badly maintained roads with

rutted and potholed surfaces with random patches and manhole covers raised-sunken where mild to

severe in-car perturbations are experienced. A Leap Motion sensor is used to track, in real-time, the

free hand pointing gestures (namely pointing finger-tips) and an experimental GUI is displayed on

an 11.5” touchscreen mounted to the car dashboard; the attached videos show an early prototype of

a predictive touchscreen system. The interface hasN = 21 selectable circular icons, each of width

W 6 2cm that are approximately2 cm apart in a circular formation, identical to that in Figure 3;

the detailed set-up is described in [8]. Similar to the Fitts’ law task in HCI, one randomly chosen

GUI item is highlighted at a time and the user is expected to select it via a free hand pointing

gesture. To maintain an objective testing procedure, all possible endpoints inD are assumed to be

equally probable,Pr(DI = Di) = 1/N, i = 1, 2, ..., N . Maximisation of the likelihood function
∏J

j=1 p(Y j
1:n | DI = Di, Ω) for a sample ofJ typical full pointing finger trajectories is used to set

the motion model parametersΩ, and thus, constitutes training for the system. Next, the performance

results of several Bayesian predictors and an in-car prototype system are examined. It is emphasised

that predictors have no knowledge of the user intent in any of the experiments below.

A. Endpoint Prediction Performance

To examine the prediction accuracy throughout the pointing task, from its start att1 until touching

the display surface at timeT , 50 a priori recorded in-car full pointing gestures are used; no pointing

facilitation routine is applied. The inference performance is evaluated in terms of: 1) the ability to

determine the intended on-screen icon via a MAP estimateD̂(tk) = arg maxDi∈D p(DI = Di | Y1:k),

i.e., how early the predictor assigns the highest probability to true endpointD+ and 2) the aggregate

inference success, i.e., proportion of the total pointing gesture (in time) for which the predictor

correctly inferredD+. The success is defined byS(tn) = 1 if D̂(tn) = D+ andS(tn) = 0 otherwise,

for observations at timestn ∈ {t1, t2, ..., T }. Whilst J = 5 pointing trajectories are used for training,

the prior on the distribution of the durations of typical in-car pointing tasks,p(T | DI = Di), for
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(a) Mean successful destination inference. (b) Gesture portion (in time) with successful predictions.

Figure 6:Endpoint inference performance with a MAP estimate as a function of the percentage of pointing time [28].

the bridging-distribution predictors is obtained from the experimental study in [8]. It is noted that

utilising 10% of the available tracks to set the model parameters is aimed at demonstrating the low

training requirement of the applied state-space-modelling-based inference approach. This feature is

highly desired in an automotive context as discussed in Section II. However, as the driver/passenger

uses the predictive display, the system can refine the applied model parameters from the larger

available data set(s). This can result in a more accurate modelling and prediction procedure.

In Figure 6, the linear destination reverting, Brownian motion and constant velocity models with

the bridging prior, notated by MRD-BD, ERV-BD, BM-BD and CV-BD, are assessed. A mean revert-

ing diffusion model without bridging, MRD, is also examined. The figure also depicts the outcome

of the probabilistic Nearest Neighbour (NN), which assigns the highest probability to GUI item

closest to the current position of the pointing finger-tip as perp (Yn|DI = Di) = N (Yn; di, CNN),

and Bearing Angle (BA) wherep (Yn|Yn−1,DI = Di) = N
(
θi,n; 0, σ2

BA

)
[10]. The latter assumes

a minimal cumulative angle to the destination located in 3D atdi; CNN is the covariance of the

multivariate Gaussian distribution andθi,n , ∠ (Yn − Yn−1, di) is the angle toDi ∈ D.

Figure 6 illustrates that the bridging-distributions-based inference models CV-BD and ERV-

BD, achieve the earliest successful predictions, since they capture the importance of the velocity

component. This is particularly visible in the first 70% of the pointing task in Figure 6a, where

a pointing facilitation scheme can be most effective. Destination prediction towards the end of the

pointing gesture can have limited impact, since by that stage the user would have already dedicated

the necessary attention-effort to execute the selection task . The performance of all depicted predictors

generally improves as the pointing finger is closer to the display. This is particulary visible for the

NN model, which is built on the premise that the pointing finger is closest to the intended endpoint.

An exception is the BA model, since the reliability ofθn as a intent measure declines astn → T .

Overall, this figure shows that probabilistic predictors can successfully infer the intended destination

on the display remarkably early in the free pointing gesture. For example, in 60% of cases, the
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bridged ERV model, ERV-BD, can infer the true intent only 40% into the pointing gesture (with

overall correct decision exceeding 65%), thus, it can reduce pointing time-effort by over 60%.

The gains of combining the MRD motion model with the bridging method are noticeable in

Figure 6a. This is due to to the ability of bridging technique (the prior onXT ) to reduce the

sensitivity of LDR models to variability in the processed tracks; it tapers the system sensitivity to

parameter estimates and the parameter training requirements.

B. Real-time Results from a Prototype System

Here, results from a pilot user study with 20 participants are presented. Whilst none of the

participants have used an intent-aware display before, the study employs a prototype in-car intelligent

predictive touchscreen system that performs intent inference in real-time and seamlessly implements

the mid-air selectionfacilitation scheme as discussed in Section III-C; see the attached videos for a

demonstration. An audible cue, i.e., a short ping sound signal, is produced by the predictive display

to confirm to the user that an interface icon has been auto-selected. Thesubjectiveworkload of

interacting with an in-vehicle touchscreen with and without the predictive functionality is recorded

using the NASA TLX test [31], which is widely utilised in HMI-HCI studies. It requires the

participant to complete a questionnaire to rate and weight the mental, physical and temporal demand

as well as performance, effort and frustration experienced when carrying out the in-vehicle pointing

tasks. The durationsT of accomplishing selection tasks in the trials are also assessed. This can be

viewed as an objective measure of the effort involved.

When the predictor is off, the trial is a classical experiment of interacting with a conventional

touchscreen, where the user has to touch the display surface to select a GUI icon. Whereas, with

the prediction and mid-air selection functionality on, the intent-aware predictive touchscreen often

executes the selection action for the user. An auto-selection action is triggered at timetk 6 T once

the calculated probability for a given GUI icon, as per the estimatedp(DI = Di|Y1:k), exceeds a set

threshold for a predefined period of time (on average, thresholdγ = 0.55 and its durationTS = 65 ms

are set empirically). When this prediction certainty requirement is not met or the pointing finger is

not detected, the user can continue pointing until he/she touches (and selects) the intended interface

icon. Since the system is not aware of the user intent, any erroneous selection of the unintended GUI

icon will lead to a longer pointing time and higher subjective workload, e.g., a higher frustration

score.

Figure 7 shows that the interactions subjective overall workload declines by over47% when

employing the predictive display system in Figure 1 with mid-air selection, which is a substantial

reduction. Figure 8 depicts the normalised histogram of pointing tasks durationT for over 8,000

selection tasks for all 20 participants. This figure illustrates thatT is reduced when the prediction-

autoselection functionality is on. In particular, the histogram in Figure 8b is visibly shifted to the

left with smaller durations being more frequent and high values (indicating lengthy effortful pointing
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Figure 7: Mean workload of using an in-car display with and without the predictive functionality for 20 participants.

(a) Predict-autoselect off;μ = 2.63s andσ = 1.34. (b) Predict-autoselect on;μ = 1.82 s andσ = 0.84.

Figure 8:Pointing time with and without prediction-autoselection functionality for 20 participants.

gestures) are less recurring. On average, the introduced predictive solution reduces the duration of

accomplishing an on-screen selection task via a free hand pointing gesture by approximately30.75%.

Higher reductions on the pointing time can be achieved, see Figure 6, by relaxing the requested

prediction certainty (threshold or its duration) at the expense of, possibly, increasing the number of

false auto-selections. This can have a negative impact on the user experience and system acceptance.

It is a trade-off that has to be taken into account and the decision criterion can be adaptively changed

based on the user requirements and the controlled IVIS functionality or the displayed GUI.

C. Remarks on Results

Since interactions with displays in modern vehicles are prevalent [2], small improvements in

the pointing task efficiency, even reducing its duration by a few milliseconds, can have significant

aggregate benefits on the user experience, notably for drivers. Therefore, the overviewed predictive

solution can substantially reduce the effort and distraction of using in-vehicle interactive displays.

However, further experimental evaluation is required for other pointing facilitation schemes,in lieu

of mid-air selection that involves taking an action on behalf of the user. Additionally, devising a

principled approach to setting the decision criterion for auto-selection according to the general cost

minimisation problem in (4) is an open research question.
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VI. CONCLUSIONS

Recent advances in sensing, data storage and communications technologies have led to the

introduction of new smart vehicle functionalities and services aimed at offering personalised, more

pleasant and safer driving experience. Nevertheless, little attention is often paid to the human machine

interface aspect of these functionalities, for instance, interacting, controlling and customising them.

Such interactions can be highly effortful and distracting, especially for drivers, with potential safety

consequences. The reviewed concept of intelligent predictive displays in this article presents itself as

a promising smart HMI technology. It can significantly reduce the effort and distractions associated

with using an in-vehicle interactive display, which typically serves as a gateway to the available

in-vehicle infotainment systems and services. This solution, whose cornerstone is suitable statistical

signal processing algorithms, can also enable interacting with displays that do not have a physical

surface, such as head-up displays for augmented reality and projections of 3D interfaces; such displays

are poised to proliferate rapidly in the automotive environment in the near future.

Within the introduced general Bayesian framework, additional sensory or semantic data, if

available, can be easily incorporated to enhance the prediction capabilities of the intelligent display

and its handling of perturbed free hand pointing gestures due to road and driving conditions.

The perturbations filtering aspect of this solution can be beneficial to general gesture-recognition-

based interfaces in vehicles, not only pointing. Moreover, the predictive system can offer additional

flexibilities in terms of the interface design and display placement in the vehicle interior as users

might only need to reach (not necessarily touch) the display, with the mid-air selection scheme.

This can be viewed in the context of inclusive design and ergonomics, where the display response

or operation mode can be tailored to the user profile and motor abilities. Predicting the intended

endpoint of a free hand gesture can extend, beyond the touchscreen, to various other items within

the vehicle, such as the various mechanical controls.

Although a number of predictors that are based on Gaussian motion models were discussed here,

several other probabilistic approaches can be employed within the presented Bayesian formulation,

such as interacting multiple models [22], stochastic context-free grammars [16], and other destination-

aware tracking algorithms. Whilst the presented empirical results testify to the efficacy of the

intelligent predictive display system, this solution can benefit from future advancements in in-vehicle

sensing technology, probabilistic intent inference algorithms, Bayesian decision strategies, fusion of

multiple sensory data (not only gesture) and others. This article serves as an impetus for further

research into using signal processing or machine learning techniques to alleviate the effort and

attention required to interact with smart infotainment, connectivity and safety services in vehicles.

ACKNOWLEDGMENT

The authors would like to thank Jaguar Land Rover for funding this work under the the CAPE

agreement and supporting the data collection on their test-track at the JLR Gaydon Centre, U.K.



IEEE SIGNAL PROCESSING MAGAZINE: SIGNAL PROCESSING FOR SMART VEHICLE TECHNOLOGIES 19

REFERENCES

[1] R. Bishop,Intelligent Vehicle Technology and Trends. Artech House, Inc., 2005.

[2] C. Harvey and N. A. Stanton,Usability Evaluation for In-vehicle Systems. CRC Press, 2013.

[3] Tesla Motors, An Evolution in Automobile Engineering (ModelS). Accessed on 18 /03/16: www.teslamotors.com/models.

[4] K. Bark, C. Tran, K. Fujimura, and V. Ng-Thow-Hing, “Personal Navi: Benefits of an augmented reality

navigational aid using a see-thru 3D volumetric HUD,” inProc. of the Int. Conf. on Automotive User

Interfaces and Interactive Vehicular Applications (AutomotiveUI). ACM, 2014, pp. 1–8.

[5] N. Broy, M. Guo, S. Schneegass, B. Pfleging, and F. Alt, “Introducing novel technologies in the car–

conducting a real-world study to test 3D dashboards,” inProc. of the 7th Int. Conference on Automotive

User Interfaces and Interactive Vehicular Applications (AutomotiveUI). ACM, 2015, pp. 179–186.

[6] Jaguar Land Rover, XE In-Car Technology. Accessed on 18/03/2016: http://www.jaguar.co.uk/jaguar-range/xe/features.
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