
SUBMITTED TO IEEE-SPM, APRIL 2017 1

Generative Adversarial Networks: An Overview
Antonia Creswell§, Tom White¶,

Vincent Dumoulin‡, Kai Arulkumaran§, Biswa Sengupta†§ and Anil A Bharath§, Member IEEE
§ BICV Group, Dept. of Bioengineering, Imperial College London

¶ School of Design, Victoria University of Wellington, New Zealand
‡ MILA, University of Montreal, Montreal H3T 1N8

† Cortexica Vision Systems Ltd., London, United Kingdom

Abstract—Generative adversarial networks (GANs) pro-
vide a way to learn deep representations without extensively
annotated training data. They achieve this through deriving
backpropagation signals through a competitive process in-
volving a pair of networks. The representations that can be
learned by GANs may be used in a variety of applications,
including image synthesis, semantic image editing, style
transfer, image super-resolution and classification. The aim
of this review paper is to provide an overview of GANs
for the signal processing community, drawing on familiar
analogies and concepts where possible. In addition to
identifying different methods for training and constructing
GANs, we also point to remaining challenges in their theory
and application.

Index Terms—neural networks, unsupervised learning,
semi-supervised learning.

I. INTRODUCTION

GENERATIVE adversarial networks (GANs) are an
emerging technique for both semi-supervised and

unsupervised learning. They achieve this through implicitly
modelling high-dimensional distributions of data. Proposed
in 2014 [1], they can be characterized by training a pair
of networks in competition with each other. A common
analogy, apt for visual data, is to think of one network
as an art forger, and the other as an art expert. The
forger, known in the GAN literature as the generator, G,
creates forgeries, with the aim of making realistic images.
The expert, known as the discriminator, D, receives both
forgeries and real (authentic) images, and aims to tell them
apart (see Fig. 1). Both are trained simultaneously, and in
competition with each other.

Crucially, the generator has no direct access to real
images - the only way it learns is through its interaction
with the discriminator. The discriminator has access to
both the synthetic samples and samples drawn from the
stack of real images. The error signal to the discriminator
is provided through the simple ground truth of knowing
whether the image came from the real stack or from the
generator. The same error signal, via the discriminator, can

be used to train the generator, leading it towards being
able to produce forgeries of better quality.

The networks that represent the generator and discrim-
inator are typically implemented by multi-layer networks
consisting of convolutional and/or fully-connected layers.
The generator and discriminator networks must be dif-
ferentiable, though it is not necessary for them to be
directly invertible. If one considers the generator network
as mapping from some representation space, called a
latent space, to the space of the data (we shall focus
on images), then we may express this more formally as
G : G(z) → R|x|, where z ∈ R|z| is a sample from the
latent space, x ∈ R|x| is an image and | · | denotes the
number of dimensions.

In a basic GAN, the discriminator network, D, may
be similarly characterized as a function that maps from
image data to a probability that the image is from the
real data distribution, rather than the generator distribution:
D : D(x) → (0, 1). For a fixed generator, G, the
discriminator, D, may be trained to classify images as
either being from the training data (real, close to 1) or from
a fixed generator (fake, close to 0). When the discriminator
is optimal, it may be frozen, and the generator, G, may
continue to be trained so as to lower the accuracy of the
discriminator. If the generator distribution is able to match
the real data distribution perfectly then the discriminator
will be maximally confused, predicting 0.5 for all inputs. In
practice, the discriminator might not be trained until it is
optimal; we explore the training process in more depth in
Section IV.

On top of the interesting academic problems related to
training and constructing GANs, the motivations behind
training GANs may not necessarily be the generator or
the discriminator per se: the representations embodied by
either of the pair of networks can be used in a variety of
subsequent tasks. We explore the applications of these
representations in Section VI.

ar
X

iv
:1

71
0.

07
03

5v
1

 [
cs

.C
V

]
 1

9
O

ct
 2

01
7

SUBMITTED TO IEEE-SPM, APRIL 2017 2

Fig. 1. In this figure, the two models which are learned during the training process for a GAN are the discriminator (D) and the generator (G).
These are typically implemented with neural networks, but they could be implemented by any form of differentiable system that maps data from
one space to another; see text for details.

II. PRELIMINARIES

A. Terminology

Generative models learn to capture the statistical distri-
bution of training data, allowing us to synthesize samples
from the learned distribution. On top of synthesizing novel
data samples, which may be used for downstream tasks
such as semantic image editing [2], data augmentation [3]
and style transfer [4], we are also interested in using the
representations that such models learn for tasks such as
classification [5] and image retrieval [6].

We occasionally refer to fully connected and convolu-
tional layers of deep networks; these are generalizations of
perceptrons or of spatial filter banks with non-linear post-
processing. In all cases, the network weights are learned
through backpropagation [7].

B. Notation

The GAN literature generally deals with multi-
dimensional vectors, and often represents vectors in a
probability space by italics (e.g. latent space is z). In
the field of signal processing, it is common to represent
vectors by bold lowercase symbols, and we adopt this
convention in order to emphasize the multi-dimensional
nature of variables. Accordingly, we will commonly refer to
pdata(x) as representing the probability density function
over a random vector x which lies in R|x|. We will use
pg(x) to denote the distribution of the vectors produced by
the generator network of the GAN. We use the calligraphic
symbols G and D to denote the generator and discrim-
inator networks, respectively. Both networks have sets
of parameters (weights), ΘD and ΘG, that are learned
through optimization, during training.

As with all deep learning systems, training requires
that we have some clear objective function. Following the
usual notation, we use JG(ΘG; ΘD) and JD(ΘD; ΘG)
to refer to the objective functions of the generator and
discriminator, respectively. The choice of notation reminds
us that the two objective functions are in a sense co-
dependent on the evolving parameter sets ΘG and ΘD

of the networks as they are iteratively updated. We shall
explore this further in Section IV. Finally, note that mul-
tidimensional gradients are used in the updates; we use
∇ΘG

to denote the gradient operator with respect to the
weights of the generator parameters, and ∇ΘD

to denote
the gradient operator with respect to the weights of the
discriminator. The expected gradients are indicated by the
notation E∇•.

C. Capturing Data Distributions

A central problem of signal processing and statistics
is that of density estimation: obtaining a representation –
implicit or explicit, parametric or non-parametric – of data
in the real world. This is the key motivation behind GANs.
In the GAN literature, the term data generating distribution
is often used to refer to the underlying probability density
or probability mass function of observation data. GANs
learn through implicitly computing some sort of similarity
between the distribution of a candidate model and the
distribution corresponding to real data.

Why bother with density estimation at all? The answer
lies at the heart of – arguably – many problems of visual
inference, including image categorization, visual object
detection and recognition, object tracking and object regis-
tration. In principle, through Bayes’ Theorem, all inference
problems of computer vision can be addressed through

SUBMITTED TO IEEE-SPM, APRIL 2017 3

estimating conditional density functions, possibly indirectly
in the form of a model which learns the joint distribution of
variables of interest and the observed data. The difficulty
we face is that likelihood functions for high-dimensional,
real-world image data are difficult to construct. Whilst
GANs don’t explicitly provide a way of evaluating density
functions, for a generator-discriminator pair of suitable
capacity, the generator implicitly captures the distribution
of the data.

D. Related Work

One may view the principles of generative models by
making comparisons with standard techniques in signal
processing and data analysis. For example, signal pro-
cessing makes wide use of the idea of representing a
signal as the weighted combination of basis functions.
Fixed basis functions underlie standard techniques such
as Fourier-based and wavelet representations. Data-driven
approaches to constructing basis functions can be traced
back to the Hotelling [8] transform, rooted in Pearson’s
observation that principal components minimize a recon-
struction error according to a minimum squared error crite-
rion. Despite its wide use, standard Principal Components
Analysis (PCA) does not have an overt statistical model
for the observed data, though it has been shown that the
bases of PCA may be derived as a maximum likelihood
parameter estimation problem.

Despite wide adoption, PCA itself is limited – the basis
functions emerge as the eigenvectors of the covariance
matrix over observations of the input data, and the map-
ping from the representation space back to signal or image
space is linear. So, we have both a shallow and a linear
mapping, limiting the complexity of the model, and hence
of the data, that can be represented.

Independent Components Analysis (ICA) provides an-
other level up in sophistication, in which the signal com-
ponents no longer need to be orthogonal; the mixing
coefficients used to blend components together to con-
struct examples of data are merely considered to be
statistically independent. ICA has various formulations that
differ in their objective functions used during estimat-
ing signal components, or in the generative model that
expresses how signals or images are generated from
those components. A recent innovation explored through
ICA is noise contrastive estimation (NCE); this may be
seen as approaching the spirit of GANs [9]: the objective
function for learning independent components compares a
statistic applied to noise with that produced by a candidate
generative model [10]. The original NCE approach did not
include updates to the generator.

What other comparisons can be made between GANs
and the standard tools of signal processing? For PCA,

ICA, Fourier and wavelet representations, the latent space
of GANs is, by analogy, the coefficient space of what we
commonly refer to as transform space. What sets GANs
apart from these standard tools of signal processing is
the level of complexity of the models that map vectors
from latent space to image space. Because the generator
networks contain non-linearities, and can be of almost
arbitrary depth, this mapping – as with many other deep
learning approaches – can be extraordinarily complex.

With regard to deep image-based models, modern
approaches to generative image modelling can be grouped
into explicit density models and implicit density models.
Explicit density models are either tractable (change of
variables models, autoregressive models) or intractable
(directed models trained with variational inference, undi-
rected models trained using Markov chains). Implicit den-
sity models capture the statistical distribution of the data
through a generative process which makes use of either
ancestral sampling [11] or Markov chain-based sampling.
GANs fall into the directed implicit model category. A more
detailed overview and relevant papers can be found in Ian
Goodfellow’s NIPS 2016 tutorial [12].

III. GAN ARCHITECTURES

A. Fully Connected GANs

The first GAN architectures used fully connected neural
networks for both the generator and discriminator [1]. This
type of architecture was applied to relatively simple image
datasets, namely MNIST (hand written digits), CIFAR-10
(natural images) and the Toronto Face Dataset (TFD).

B. Convolutional GANs

Going from fully-connected to convolutional neural net-
works is a natural extension, given that CNNs are ex-
tremely well suited to image data. Early experiments con-
ducted on CIFAR-10 suggested that it was more difficult
to train generator and discriminator networks using CNNs
with the same level of capacity and representational power
as the ones used for supervised learning.

The Laplacian pyramid of adversarial networks (LAP-
GAN) [13] offered one solution to this problem, by de-
composing the generation process using multiple scales:
a ground truth image is itself decomposed into a Laplacian
pyramid, and a conditional, convolutional GAN is trained
to produce each layer given the one above.

Additionally, Radford et al. [5] proposed a family of net-
work architectures called DCGAN (for “deep convolutional
GAN”) which allows training a pair of deep convolutional
generator and discriminator networks. DCGANs make use
of strided and fractionally-strided convolutions which allow
the spatial down-sampling and up-sampling operators to

SUBMITTED TO IEEE-SPM, APRIL 2017 4

Fig. 2. During GAN training, the generator is encouraged to produce a distribution of samples, pg(x) to match that of real data, pdata(x). For
an appropriately parametrized and trained GAN, these distributions will be nearly identical. The representations embodied by GANs are captured
in the learned parameters (weights) of the generator and discriminator networks.

be learned during training. These operators handle the
change in sampling rates and locations, a key require-
ment in mapping from image space to possibly lower-
dimensional latent space, and from image space to a
discriminator. Further details of the DCGAN architecture
and training are presented in Section IV-B.

As an extension to synthesizing images in 2D, Wu et
al. [14] presented GANs that were able to synthesize 3D
data samples using volumetric convolutions. Wu et al. [14]
synthesized novel objects including chairs, table and cars;
in addition, they also presented a method to map from 2D
image images to 3D versions of objects portrayed in those
images.

C. Conditional GANs

Mirza et al. [15] extended the (2D) GAN framework to
the conditional setting by making both the generator and
the discriminator networks class-conditional (Fig. 3). Con-
ditional GANs have the advantage of being able to provide
better representations for multi-modal data generation. A
parallel can be drawn between conditional GANs and
InfoGAN [16], which decomposes the noise source into
an incompressible source and a “latent code”, attempting
to discover latent factors of variation by maximizing the
mutual information between the latent code and the gen-
erator’s output. This latent code can be used to discover
object classes in a purely unsupervised fashion, although
it is not strictly necessary that the latent code be cate-
gorical. The representations learned by InfoGAN appear
to be semantically meaningful, dealing with complex inter-
tangled factors in image appearance, including variations
in pose, lighting and emotional content of facial images
[16].

D. GANs with Inference Models

In their original formulation, GANs lacked a way to map
a given observation, x, to a vector in latent space – in the
GAN literature, this is often referred to as an inference
mechanism. Several techniques have been proposed to
invert the generator of pre-trained GANs [17], [18]. The
independently proposed Adversarially Learned Inference
(ALI) [19] and Bidirectional GANs [20] provide simple but
effective extensions, introducing an inference network in
which the discriminators examine joint (data, latent) pairs.

In this formulation, the generator consists of two net-
works: the “encoder” (inference network) and the “de-
coder”. They are jointly trained to fool the discriminator.
The discriminator itself receives pairs of (x, z) vectors
(see Fig. 4), and has to determine which pair constitutes
a genuine tuple consisting of real image sample and its
encoding, or a fake image sample and the corresponding
latent-space input to the generator.

Ideally, in an encoding-decoding model the output,
referred to as a reconstruction, should be similar to the
input. Typically, the fidelity of reconstructed data samples
synthesised using an ALI/BiGAN are poor. The fidelity of
samples may be improved with an additional adversarial
cost on the distribution of data samples and their recon-
structions [21].

E. Adversarial Autoencoders (AAE)

Autoencoders are networks, composed of an “encoder”
and “decoder”, that learn to map data to an internal
latent representation and out again. That is, they learn a
deterministic mapping (via the encoder) from a data space
– e.g., images – into a latent or representation space, and
a mapping (via the decoder) from the latent space back
to data space. The composition of these two mappings
results in a “reconstruction”, and the two mappings are

SUBMITTED TO IEEE-SPM, APRIL 2017 5

Fig. 3. Left, the Conditional GAN, proposed by Mirza et al. [15] performs class-conditional image synthesis; the discriminator performs class-
conditional discrimination of real from fake images. The InfoGAN (right) [16], on the other hand, has a discriminator network that also estimates
the class label.

Fig. 4. The ALI/BiGAN structure [20], [19] consists of three networks. One of these serves as a discriminator, another maps the noise vectors
from latent space to image space (decoder, depicted as a generator G in the figure), with the final network (encoder, depicted as E) mapping
from image space to latent space.

trained such that a reconstructed image is as close as
possible to the original.

Autoencoders are reminiscent of the perfect-
reconstruction filter banks that are widely used in
image and signal processing. However, autoencoders
generally learn non-linear mappings in both directions.
Further, when implemented with deep networks, the
possible architectures that can be used to implement
autoencoders are remarkably flexible. Training can
be unsupervised, with backpropagation being applied
between the reconstructed image and the original in
order to learn the parameters of both the encoder and
the decoder.

As suggested earlier, one often wants the latent space
to have a useful organization. Additionally, one may want to

perform feedforward, ancestral sampling [11] from an au-
toencoder. Adversarial training provides a route to achieve
these two goals. Specifically, adversarial training may be
applied between the latent space and a desired prior
distribution on the latent space (latent-space GAN). This
results in a combined loss function [22] that reflects both
the reconstruction error and a measure of how different
the distribution of the prior is from that produced by a
candidate encoding network. This approach is akin to a
variational autoencoder (VAE) [23] for which the latent-
space GAN plays the role of the KL-divergence term of
the loss function.

Mescheder et al. [24] unified variational autoencoders
with adversarial training in the form of the Adversarial
Variational Bayes (AVB) framework. Similar ideas were

SUBMITTED TO IEEE-SPM, APRIL 2017 6

presented in Ian Goodfellow’s NIPS 2016 tutorial [12]. AVB
tries to optimise the same criterion as that of variational
autoencoders, but uses an adversarial training objective
rather than the Kullback-Leibler divergence.

IV. TRAINING GANS

A. Introduction

Training of GANs involves both finding the parameters
of a discriminator that maximize its classification accuracy,
and finding the parameters of a generator which maximally
confuse the discriminator. This training process is summa-
rized in Fig. 5.

The cost of training is evaluated using a value function,
V (G,D) that depends on both the generator and the
discriminator. The training involves solving:

max
D

min
G

V (G,D)

where

V (G,D) = Epdata(x) logD(x) + Epg(x) log(1−D(x))

During training, the parameters of one model are
updated, while the parameters of the other are fixed.
Goodfellow et al. [1] show that for a fixed generator there
is a unique optimal discriminator, D∗(x) = pdata(x)

pdata(x)+pg(x) .
They also show that the generator, G, is optimal when
pg(x) = pdata(x), which is equivalent to the optimal
discriminator predicting 0.5 for all samples drawn from x.
In other words, the generator is optimal when the discrim-
inator, D, is maximally confused and cannot distinguish
real samples from fake ones.

Ideally, the discriminator is trained until optimal with
respect to the current generator; then, the generator is
again updated. However in practice, the discriminator
might not be trained until optimal, but rather may only be
trained for a small number of iterations, and the generator
is updated simultaneously with the discriminator. Further,
an alternate, non-saturating training criterion is typically
used for the generator, using maxG logD(G(z)) rather
than minG log(1−D(G(z))).

Despite the theoretical existence of unique solutions,
GAN training is challenging and often unstable for sev-
eral reasons [5][25][26]. One approach to improving GAN
training is to asses the empirical “symptoms” that might
be experienced during training. These symptoms include:
• Difficulties in getting the pair of models to converge

[5];
• The generative model, “collapsing”, to generate very

similar samples for different inputs [25];
• The discriminator loss converging quickly to zero [26],

providing no reliable path for gradient updates to the
generator.

Several authors suggested heuristic approaches to ad-
dress these issues [1], [25]; these are discussed in Section
IV-B.

Early attempts to explain why GAN training is unstable
were proposed by Goodfellow and Salimans et al. [1],
[25] who observed that gradient descent methods typically
used for updating both the parameters of the generator
and discriminator are inappropriate when the solution to
the optimization problem posed by GAN training actually
constitutes a saddle point. Salimans et al. provided a
simple example which shows this [25]. However, stochastic
gradient descent is often used to update neural networks,
and there are well developed machine learning program-
ming environments that make it easy to construct and
update networks using stochastic gradient descent.

Although an early theoretical treatment [1] showed that
the generator is optimal when pg(x) = pdata(x), a
very neat result with a strong underlying intuition, the
real data samples reside on a manifold which sits in a
high-dimensional space of possible representations. For
instance, if colour image samples are of size N ×N × 3
with pixel values [0,R+]3, the space that may be rep-
resented – which we can call X – is of dimensionality
3N2, with each dimension taking values between 0 and
the maximum measurable pixel intensity. The data samples
in the support of pdata, however, constitute the manifold
of the real data associated with some particular problem,
typically occupying a very small part of the total space, X.
Similarly, the samples produced by the generator should
also occupy only a small portion of X.

Arjovsky et al. [26] showed that the support pg(x)
and pdata(x) lie in a lower dimensional space than that
corresponding to X. The consequence of this is that pg(x)
and pdata(x) may have no overlap, and so there exists a
nearly trivial discriminator that is capable of distinguishing
real samples, x ∼ pdata(x) from fake samples, x ∼ pg(x)
with 100% accuracy. In this case, the discriminator error
quickly converges to zero. Parameters of the generator
may only be updated via the discriminator, so when this
happens, the gradients used for updating parameters of
the generator also converge to zero and so may no longer
be useful for updates to the generator. Arjovsky et al.’s [26]
explanations account for several of the symptoms related
to GAN training.

Goodfellow et al. [1] also showed that when D is
optimal, training G is equivalent to minimizing the Jensen-
Shannon divergence between pg(x) and pdata(x). If D
is not optimal, the update may be less meaningful, or
inaccurate. This theoretical insight has motivated research
into cost functions based on alternative distances. Several
of these are explored in Section IV-C.

SUBMITTED TO IEEE-SPM, APRIL 2017 7

Fig. 5. The main loop of GAN training. Novel data samples, x′, may be drawn by passing random samples, z through the generator network.
The gradient of the discriminator may be updated k times before updating the generator.

B. Training Tricks

One of the first major improvements in the training of
GANs for generating images were the DCGAN architec-
tures proposed by Radford et al. [5]. This work was the
result of an extensive exploration of CNN architectures
previously used in computer vision, and resulted in a set of
guidelines for constructing and training both the generator
and discriminator. In Section III-B, we alluded to the impor-
tance of strided and fractionally-strided convolutions [27],
which are key components of the architectural design. This
allows both the generator and the discriminator to learn
good up-sampling and down-sampling operations, which
may contribute to improvements in the quality of image
synthesis. More specifically to training, batch normalization
[28] was recommended for use in both networks in order
to stabilize training in deeper models. Another suggestion
was to minimize the number of fully connected layers
used to increase the feasibility of training deeper models.
Finally, Radford et al. [5] showed that using leaky ReLU
activation functions between the intermediate layers of the
discriminator gave superior performance over using regular
ReLUs.

Later, Salimans et al. [25] proposed further heuristic
approaches for stabilizing the training of GANs. The first,
feature matching, changes the objective of the generator
slightly in order to increase the amount of information
available. Specifically, the discriminator is still trained to
distinguish between real and fake samples, but the gener-
ator is now trained to match the discriminator’s expected
intermediate activations (features) of its fake samples with
the expected intermediate activations of the real samples.
The second, mini-batch discrimination, adds an extra input
to the discriminator, which is a feature that encodes the
distance between a given sample in a mini-batch and the

other samples. This is intended to prevent mode collapse,
as the discriminator can easily tell if the generator is
producing the same outputs.

A third heuristic trick, heuristic averaging, penalizes
the network parameters if they deviate from a running
average of previous values, which can help convergence
to an equilibrium. The fourth, virtual batch normalization,
reduces the dependency of one sample on the other
samples in the mini-batch by calculating the batch statistics
for normalization with the sample placed within a reference
mini-batch that is fixed at the beginning of training.

Finally, one-sided label smoothing makes the target
for the discriminator 0.9 instead of 1, smoothing the
discriminator’s classification boundary, hence preventing
an overly confident discriminator that would provide weak
gradients for the generator. Sønderby et al. [29] advanced
the idea of challenging the discriminator by adding noise
to the samples before feeding them into the discriminator.
Sønderby et al. [29] argued that one-sided label smoothing
biases the optimal discriminator, whilst their technique,
instance noise, moves the manifolds of the real and fake
samples closer together, at the same time preventing
the discriminator easily finding a discrimination boundary
that completely separates the real and fake samples. In
practice, this can be implemented by adding Gaussian
noise to both the synthesized and real images, annealing
the standard deviation over time. The process of adding
noise to data samples to stabilize training was, later,
formally justified by Arjovsky et al. [26].

C. Alternative formulations

The first part of this section considers other information-
theoretic interpretations and generalizations of GANs. The

SUBMITTED TO IEEE-SPM, APRIL 2017 8

second part looks at alternative cost functions which aim
to directly address the problem of vanishing gradients.

1) Generalisations of the GAN cost function: Nowozin
et al. [30] showed that GAN training may be generalized
to minimize not only the Jensen-Shannon divergence,
but an estimate of f -divergences; these are referred
to as f -GANs. The f -divergences include well-known
divergence measures such as the Kullback-Leibler diver-
gence. Nowozin et al. showed that f -divergence may
be approximated by applying the Fenchel conjugates of
the desired f -divergence to samples drawn from the
distribution of generated samples, after passing those
samples through a discriminator [30]. They provide a list
of Fenchel conjugates for commonly used f -divergences,
as well as activation functions that may be used in the
final layer of the generator network, depending on the
choice of f -divergence. Having derived the generalized
cost functions for training the generator and discriminator
of an f -GAN, Nowozin et al. [30] observe that, in its
raw form, maximizing the generator objective is likely to
lead to weak gradients, especially at the start of training,
and proposed an alternative cost function for updating the
generator which is less likely to saturate at the beginning of
training. This means that when the discriminator is trained,
the derivative of the f -divergence on the ratio of the real
and fake data distributions is estimated, while when the
generator is trained only an estimate of the f -divergence
is minimized. Uehara et al. [31] extend the f -GAN further,
where in the discriminator step the ratio of the distributions
of real and fake data are predicted, and in the generator
step the f -divergence is directly minimized. Alternatives
to the JS-divergence are also covered by Goodfellow [12].

2) Alternative Cost functions to prevent vanishing gra-
dients: Arjovsky et al. [32] proposed the WGAN, a GAN
with an alternative cost function which is derived from an
approximation of the Wasserstein distance. Unlike the orig-
inal GAN cost function, the WGAN is more likely to provide
gradients that are useful for updating the generator. The
cost function derived for the WGAN relies on the discrimi-
nator, which they refer to as the “critic”, being a k-Lipschitz
continuous function; practically, this may be implemented
by simply clipping the parameters of the discriminator.
However, more recent research [33] suggested that weight
clipping adversely reduces the capacity of the discriminator
model, forcing it to learn simpler functions. Gulrajani et
al. [33] proposed an improved method for training the
discriminator for a WGAN, by penalizing the norm of
discriminator gradients with respect to data samples during
training, rather than performing parameter clipping.

D. A Brief Comparison of GAN Variants

GANs allow us to synthesize novel data samples from
random noise, but they are considered difficult to train
due partially to vanishing gradients. All GAN models that
we have discussed in this paper require careful hyperpa-
rameter tuning and model selection for training. However,
perhaps the easier models to train are the AAE and the
WGAN. The AAE is relatively easy to train because the
adversarial loss is applied to a fairly simple distribution
in lower dimensions (than the image data). The WGAN
[33], is designed to be easier to train, using a different
formulation of the training objective which does not suffer
from the vanishing gradient problem. The WGAN may also
be trained successfully even without batch normalisation;
it is also less sensitive to the choice of non-linearities used
between convolutional layers.

Samples synthesised using a GAN or WGAN may be-
long to any class present in the training data. Conditional
GANs provide an approach to synthesising samples with
user specified content.

It is evident from various visualisation techniques
(Fig. 6) that the organisation of the latent space harbours
some meaning, but vanilla GANs do not provide an
inference model to allow data samples to be mapped to
latent representations. Both BiGANs and ALI provide a
mechanism to map image data to a latent space (infer-
ence), however, reconstruction quality suggests that they
do not necessarily faithfully encode and decode samples.
A very recent development shows that ALI may recover
encoded data samples faithfully [21]. However, this model
shares a lot in common with the AVB and AAE. These are
autoencoders, similar to variational autoencoders (VAEs),
where the latent space is regularised using adversarial
training rather than a KL-divergence between encoded
samples and a prior.

V. THE STRUCTURE OF LATENT SPACE

GANs build their own representations of the data they
are trained on, and in doing so produce structured geo-
metric vector spaces for different domains. This is a quality
shared with other neural network models, including VAEs
[23], as well as linguistic models such as word2vec
[34]. In general, the domain of the data to be modelled
is mapped to a vector space which has fewer dimensions
than the data space, forcing the model to discover interest-
ing structure in the data and represent it efficiently. This
latent space is at the “originating” end of the generator
network, and the data at this level of representation (the
latent space) can be highly structured, and may support
high level semantic operations [5]. Examples include ro-
tation of faces from trajectories through latent space, as

SUBMITTED TO IEEE-SPM, APRIL 2017 9

well as image analogies which have the effect of adding
visual attributes such as eyeglasses on to a “bare” face.

All (vanilla) GAN models have a generator which maps
data from the latent space into the space to be mod-
elled, but many GAN models have an “encoder” which
additionally supports the inverse mapping [19], [20]. This
becomes a powerful method for exploring and using the
structured latent space of the GAN network. With an en-
coder, collections of labelled images can be mapped into
latent spaces and analysed to discover “concept vectors”
that represent high level attributes such as “smiling” or
“wearing a hat”. These vectors can be applied at scaled
offsets in latent space to influence the behaviour of the
generator (Fig. 6). Similar to using an encoding process
to model the distribution of latent samples, Gurumurthy et
al. [35] propose modelling the latent space as a mixture
of Gaussians and learning the mixture components that
maximize the likelihood of generated data samples under
the data generating distribution.

VI. APPLICATIONS OF GANS

Discovering new applications for adversarial training
of deep networks is an active area of research. We
examine a few computer vision applications that have
appeared in the literature and have been subsequently
refined. These applications were chosen to highlight some
different approaches to using GAN-based representations
for image-manipulation, analysis or characterization, and
do not fully reflect the potential breadth of application of
GANs.

Using GANs for image classification places them within
the broader context of machine learning and provides a
useful quantitative assessment of the features extracted
in unsupervised learning. Image synthesis remains a
core GAN capability, and is especially useful when the
generated image can be subject to pre-existing constraints.
Super-resolution [36], [37], [38] offers an example of
how an existing approach can be supplemented with
an adversarial loss component to achieve higher quality
results. Finally, image-to-image translation demonstrates
how GANs offer a general purpose solution to a family
of tasks which require automatically converting an input
image into an output image.

A. Classification and Regression

After GAN training is complete, the neural network
can be reused for other downstream tasks. For example,
outputs of the convolutional layers of the discriminator
can be used as a feature extractor, with simple linear
models fitted on top of these features using a modest
quantity of (image, label) pairs [5], [25]. The quality of

the unsupervised representations within a DCGAN net-
work have been assessed by applying a regularized L2-
SVM classifier to a feature vector extracted from the
(trained) discriminator [5]. Good classification scores were
achieved using this approach on both supervised and
semi-supervised datasets, even those that were disjoint
from the original training data.

The quality of the data representation may be im-
proved when adversarial training includes jointly learning
an inference mechanism such as with an ALI [19]. A
representation vector was built using last three hidden
layers of the ALI encoder, a similar L2-SVM classifier, yet
achieved a misclassification rate significantly lower than
the DCGAN [19]. Additionally, ALI has achieved state-
of-the art classification results when label information is
incorporated into the training routine.

When labelled training data is in limited supply, ad-
versarial training may also be used to synthesize more
training samples. Shrivastava et al. [39] use GANs to
refine synthetic images, while maintaining their annota-
tion information. By training models only on GAN-refined
synthetic images (i.e. no real training data) Shrivastava
et al. [39] achieved state-of-the-art performance on pose
and gaze estimation tasks. Similarly, good results were
obtained for gaze estimation and prediction using a spatio-
temporal GAN architecture [40]. In some cases, models
trained on synthetic data do not generalize well when
applied to real data [3]. Bousmalis et al. [3] propose
to address this problem by adapting synthetic samples
from a source domain to match a target domain using
adversarial training. Additionally, Liu et al. [41] propose
using multiple GANs – one per domain – with tied weights
to synthesize pairs of corresponding images samples from
different domains.

Because the quality of generated samples is hard to
quantitatively judge across models, classification tasks
are likely to remain an important quantitative tool for
performance assessment of GANs, even as new and
diverse applications in computer vision are explored.

B. Image Synthesis

Much of the recent GAN research focuses on improving
the quality and utility of the image generation capabilities.
The LAPGAN model introduced a cascade of convolutional
networks within a Laplacian pyramid framework to gen-
erate images in a coarse-to-fine fashion [13]. A similar
approach is used by Huang et al. [42] with GANs op-
erating on intermediate representations rather than lower
resolution images.

LAPGAN also extended the conditional version of the
GAN model where both G and D networks receive addi-
tional label information as input; this technique has proved

SUBMITTED TO IEEE-SPM, APRIL 2017 10

Fig. 6. Example of applying a “smile vector” with an ALI model [19]. On the left hand side is an example of a woman without a smile and on
the right a woman with a smile. A z value for the image of the woman on the left is inferred, z1 and for the right, z2. Interpolating along a
vector that connects z1 and z2, gives z values that may be passed through a generator to synthesize novel samples. Note the implication: a
displacement vector in latent space traverses smile “intensity” in image space.

useful and is now a common practice to improve image
quality. This idea of GAN conditioning was later extended
to incorporate natural language. For example, Reed et al.
[43] used a GAN architecture to synthesize images from
text descriptions, which one might describe as reverse
captioning. For example, given a text caption of a bird
such as “white with some black on its head and wings
and a long orange beak”, the trained GAN can generate
several plausible images that match the description.

In addition to conditioning on text descriptions, the
Generative Adversarial What-Where Network (GAWWN)
conditions on image location [44]. The GAWWN system
supported an interactive interface in which large images
could be built up incrementally with textual descriptions of
parts and user-supplied bounding boxes (Fig. 7).

Conditional GANs not only allow us to synthesize novel
samples with specific attributes, they also allow us to
develop tools for intuitively editing images – for example
editing the hair style of a person in an image, making them
wear glasses or making them look younger [35]. Additional
applications of GANs to image editing include work by Zhu
and Brock et al. [2], [45].

C. Image-to-image translation

Conditional adversarial networks are well suited for
translating an input image into an output image, which is
a recurring theme in computer graphics, image process-
ing, and computer vision. The pix2pix model offers a
general purpose solution to this family of problems [46].
In addition to learning the mapping from input image
to output image, the pix2pix model also constructs
a loss function to train this mapping. This model has
demonstrated effective results for different problems of
computer vision which had previously required separate
machinery, including semantic segmentation, generating
maps from aerial photos, and colorization of black and
white images. Wang et al. present a similar idea, using
GANs to first synthesize surface-normal maps (similar
to depth maps) and then map these images to natural
scenes.

CycleGAN [4] extends this work by introducing a cycle
consistency loss that attempts to preserve the original
image after a cycle of translation and reverse translation.
In this formulation, matching pairs of images are no
longer needed for training. This makes data preparation
much simpler, and opens the technique to a larger family
of applications. For example, artistic style transfer [47]
renders natural images in the style of artists, such as
Picasso or Monet, by simply being trained on an unpaired
collection of paintings and natural images (Fig. 8).

D. Super-resolution

Super-resolution allows a high-resolution image to be
generated from a lower resolution image, with the trained
model inferring photo-realistic details while up-sampling.
The SRGAN model [36] extends earlier efforts by adding
an adversarial loss component which constrains images
to reside on the manifold of natural images.

The SRGAN generator is conditioned on a low resolu-
tion image, and infers photo-realistic natural images with
4x up-scaling factors. Unlike most GAN applications, the
adversarial loss is one component of a larger loss function,
which also includes perceptual loss from a pretrained
classifier, and a regularization loss that encourages spa-
tially coherent images. In this context, the adversarial loss
constrains the overall solution to the manifold of natural
images, producing perceptually more convincing solutions.

Customizing deep learning applications can often be
hampered by the availability of relevant curated training
datasets. However, SRGAN is straightforward to customize
to specific domains, as new training image pairs can
easily be constructed by down-sampling a corpus of high-
resolution images. This is an important consideration in
practice, since the inferred photo-realistic details that the
GAN generates will vary depending on the domain of
images used in the training set.

VII. DISCUSSION

A. Open Questions

GANs have attracted considerable attention due to their
ability to leverage vast amounts of unlabelled data. While

SUBMITTED TO IEEE-SPM, APRIL 2017 11

Fig. 7. Examples of Image Synthesis using the the Generative Adversarial What-Where Network (GAWWN). In GAWWN, images are conditioned
on both text descriptions and image location specified as either by keypoint or bounding box. Figure reproduced from [44] with authors’ permission.

Fig. 8. CycleGAN model learns image to image translations between two unordered image collections. Shown here are the examples of bi-
directional image mappings: Monet paintings to landscape photos, zebras to horses, and summer to winter photos in Yosemite park. Figure
reproduced from [4].

much progress has been made to alleviate some of the
challenges related to training and evaluating GANs, there
still remain several open challenges.

1) Mode Collapse: As articulated in Section IV, a com-
mon problem of GANs involves the generator collapsing to
produce a small family of similar samples (partial collapse),
and in the worst case producing simply a single sample
(complete collapse) [26], [48].

Diversity in the generator can be increased by practical
hacks to balance the distribution of samples produced
by the discriminator for real and fake batches, or by
employing multiple GANs to cover the different modes
of the probability distribution [49]. Yet another solution to
alleviate mode collapse is to alter the distance measure
used to compare statistical distributions. Arjovsky [32]
proposed to compare distributions based on a Wasserstein
distance rather than a KL-based divergence (DCGAN [5])
or a total-variation distance (energy-based GAN [50]).
Metz et al. [51] proposed unrolling the discriminator for
several steps, i.e., letting it calculate its updates on the
current generator for several steps, and then using the
“unrolled” discriminators to update the generator using the
normal minimax objective. As normal, the discriminator
only trains on its update from one step, but the generator

now has access to how the discriminator would update
itself. With the usual one step generator objective, the
discriminator will simply assign a low probability to the
generator’s previous outputs, forcing the generator to
move, resulting either in convergence, or an endless cycle
of mode hopping. However, with the unrolled objective,
the generator can prevent the discriminator from focusing
on the previous update, and update its own generations
with the foresight of how the discriminator would have
responded.

2) Training instability – saddle points: In a GAN, the
Hessian of the loss function becomes indefinite. The
optimal solution, therefore, lies in finding a saddle point
rather than a local minimum. In deep learning, a large
number of optimizers depend only on the first derivative
of the loss function; converging to a saddle point for
GANs requires good initialization. By invoking the stable
manifold theorem from non-linear systems theory, Lee et
al. [52] showed that, were we to select the initial points
of an optimizer at random, gradient descent would not
converge to a saddle with probability one (also see [53],
[25]). Additionally, Mescheder et al. [54] have argued that
convergence of a GAN’s objective function suffers from
the presence of a zero real part of the Jacobian matrix

SUBMITTED TO IEEE-SPM, APRIL 2017 12

as well as eigenvalues with large imaginary parts. This is
disheartening for GAN training; yet, due to the existence of
second-order optimizers, not all hope is lost. Unfortunately,
Newton-type methods have compute-time complexity that
scales cubically or quadratically with the dimension of the
parameters. Therefore, another line of questions lies in ap-
plying and scaling second-order optimizers for adversarial
training.

A more fundamental problem is the existence of an
equilibrium for a GAN. Using results from Bayesian non-
parametrics, Arora et al. [48] connects the existence of
the equilibrium to a finite mixture of neural networks – this
means that below a certain capacity, no equilibrium might
exist. On a closely related note, it has also been argued
that whilst GAN training can appear to have converged,
the trained distribution could still be far away from the
target distribution. To alleviate this issue, Arora et al. [48]
propose a new measure called the ‘neural net distance’.

3) Evaluating Generative Models: How can one gauge
the fidelity of samples synthesized by a generative mod-
els? Should we use a likelihood estimation? Can a GAN
trained using one methodology be compared to another
(model comparison)? These are open-ended questions
that are not only relevant for GANs, but also for proba-
bilistic models, in general. Theis [55] argued that evalu-
ating GANs using different measures can lead conflicting
conclusions about the quality of synthesised samples; the
decision to select one measure over another depends on
the application.

B. Conclusions

The explosion of interest in GANs is driven not only by
their potential to learn deep, highly non-linear mappings
from a latent space into a data space and back, but also
by their potential to make use of the vast quantities of
unlabelled image data that remain closed to deep repre-
sentation learning. Within the subtleties of GAN training,
there are many opportunities for developments in theory
and algorithms, and with the power of deep networks,
there are vast opportunities for new applications.

ACKNOWLEDGMENT

The authors would like to thank David Warde-Farley for
his valuable feedback on previous revisions of the paper.
Antonia Creswell acknowledges the support of the EPSRC
through a Doctoral training scholarship.

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems, 2014, pp.
2672–2680.

[2] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros, “Gen-
erative visual manipulation on the natural image manifold,” in
European Conference on Computer Vision. Springer, 2016, pp.
597–613.

[3] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krish-
nan, “Unsupervised pixel-level domain adaptation with generative
adversarial networks,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2016.

[4] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-
image translation using cycle-consistent adversarial networks,” in
Proceedings of the International Conference on Computer Vision,
2017. [Online]. Available: https://arxiv.org/abs/1703.10593

[5] A. Radford, L. Metz, and S. Chintala, “Unsupervised represen-
tation learning with deep convolutional generative adversarial
networks,” in Proceedings of the 5th International Conference on
Learning Representations (ICLR) - workshop track, 2016.

[6] A. Creswell and A. A. Bharath, “Adversarial training for sketch re-
trieval,” in Computer Vision – ECCV 2016 Workshops: Amsterdam,
The Netherlands, October 8-10 and 15-16, 2016, Proceedings,
Part I. Springer International Publishing, 2016.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[8] H. Hotelling, “Analysis of a complex of statistical variables into
principal components.” Journal of educational psychology, vol. 24,
no. 6, p. 417, 1933.

[9] I. J. Goodfellow, “On distinguishability criteria for estimating gen-
erative models,” International Conference on Learning Represen-
tations - workshop track, 2015.

[10] M. Gutmann and A. Hyvärinen, “Noise-contrastive estimation: A
new estimation principle for unnormalized statistical models.” in
AISTATS, vol. 1, no. 2, 2010, p. 6.

[11] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized denoising
auto-encoders as generative models,” in Advances in Neural
Information Processing Systems, 2013, pp. 899–907.

[12] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial
networks,” 2016, presented at the Neural Information Processing
Systems Conference. [Online]. Available: https://arxiv.org/abs/
1701.00160

[13] E. L. Denton, S. Chintala, R. Fergus et al., “Deep generative
image models using a laplacian pyramid of adversarial networks,”
in Advances in Neural Information Processing Systems, 2015, pp.
1486–1494.

[14] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum,
“Learning a probabilistic latent space of object shapes via 3d
generative-adversarial modeling,” in Advances in Neural Informa-
tion Processing Systems, 2016, pp. 82–90.

[15] M. Mirza and S. Osindero, “Conditional generative adversarial
nets,” arXiv preprint arXiv:1411.1784, 2014.

[16] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever,
and P. Abbeel, “Infogan: Interpretable representation learning by
information maximizing generative adversarial nets,” in Advances
in Neural Information Processing Systems, 2016.

[17] A. Creswell and A. A. Bharath, “Inverting the generator of a
generative adversarial network,” in NIPS Workshop on Adversarial
Training, 2016.

[18] Z. C. Lipton and S. Tripathi, “Precise recovery of latent vectors
from generative adversarial networks,” in ICLR (workshop track),
2017.

[19] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb,
M. Arjovsky, and A. Courville, “Adversarially learned inference,” in
(accepted, to appear) Proceedings of the International Conference
on Learning Representations, 2017.

[20] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature
learning,” in (accepted, to appear) Proceedings of the International
Conference on Learning Representations, 2017.

https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/1701.00160

SUBMITTED TO IEEE-SPM, APRIL 2017 13

[21] C. Li, H. Liu, C. Chen, Y. Pu, L. Chen, R. Henao, and L. Carin,
“Towards understanding adversarial learning for joint distribution
matching,” in Advances in Neural Information Processing Systems,
2017.

[22] A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow,
“Adversarial autoencoders,” in International Conference on
Learning Representations (to appear), 2016. [Online]. Available:
http://arxiv.org/abs/1511.05644

[23] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
in Proceedings of the 2nd International Conference on Learning
Representations (ICLR), 2014.

[24] L. M. Mescheder, S. Nowozin, and A. Geiger, “Adversarial
variational bayes: Unifying variational autoencoders and
generative adversarial networks,” 2017. [Online]. Available:
http://arxiv.org/abs/1701.04722

[25] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
and X. Chen, “Improved techniques for training gans,” in Advances
in Neural Information Processing Systems, 2016, pp. 2226–2234.

[26] M. Arjovsky and L. Bottou, “Towards principled methods for
training generative adversarial networks,” NIPS 2016 Workshop
on Adversarial Training, 2016.

[27] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” IEEE transactions on pattern
analysis and machine intelligence, vol. 39, no. 4, pp. 640–651,
2017.

[28] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceed-
ings of The 32nd International Conference on Machine Learning,
2015, pp. 448–456.

[29] C. K. Sønderby, J. Caballero, L. Theis, W. Shi, and F. Huszár,
“Amortised map inference for image super-resolution,” in Interna-
tional Conference on Learning Representations, 2017.

[30] S. Nowozin, B. Cseke, and R. Tomioka, “f-gan: Training generative
neural samplers using variational divergence minimization,” in
Advances in Neural Information Processing Systems, 2016, pp.
271–279.

[31] M. Uehara, I. Sato, M. Suzuki, K. Nakayama, and Y. Matsuo,
“Generative adversarial nets from a density ratio estimation per-
spective,” arXiv preprint arXiv:1610.02920, 2016.

[32] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” in
Proceedings of The 34nd International Conference on Machine
Learning, 2017.

[33] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved training of wasserstein gans,” in (accepted, to appear)
Advances in Neural Information Processing Systems, 2017.

[34] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” in International Confer-
ence on Learning Representations, 2013.

[35] S. Gurumurthy, R. K. Sarvadevabhatla, and V. B. Radhakrishnan,
“Deligan: Generative adversarial networks for diverse and limited
data,” in IEEE Conference On Computer Vision and Pattern
Recognition (CVPR), 2017.

[36] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Aitken, A. Tejani,
J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image
super-resolution using a generative adversarial network,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[37] X. Yu and F. Porikli, “Ultra-resolving face images by discrimina-
tive generative networks,” in European Conference on Computer
Vision. Springer, 2016, pp. 318–333.

[38] ——, “Hallucinating very low-resolution unaligned and noisy face
images by transformative discriminative autoencoders,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 3760–3768.

[39] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and
R. Webb, “Learning from simulated and unsupervised images

through adversarial training,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[40] M. Zhang, K. T. Ma, J. H. Lim, Q. Zhao, and J. Feng, “Deep future
gaze: Gaze anticipation on egocentric videos using adversarial
networks,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 4372–4381.

[41] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial networks,”
in Advances in neural information processing systems, 2016, pp.
469–477.

[42] X. Huang, Y. Li, O. Poursaeed, J. Hopcroft, and S. Belongie,
“Stacked generative adversarial networks,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2016.

[43] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and
H. Lee, “Generative adversarial text to image synthesis,” in
International Conference on Machine Learning, 2016. [Online].
Available: https://arxiv.org/abs/1605.05396

[44] S. E. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, and
H. Lee, “Learning what and where to draw,” in Advances in Neural
Information Processing Systems, 2016, pp. 217–225.

[45] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Neural photo
editing with introspective adversarial networks,” in Proceedings
of the 6th International Conference on Learning Representations
(ICLR), 2017.

[46] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image trans-
lation with conditional adversarial networks,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[47] C. Li and M. Wand, “Precomputed real-time texture synthesis
with Markovian generative adversarial networks,” in European
Conference on Computer Vision. Springer, 2016, pp. 702–716.

[48] S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang, “Generalization and
equilibrium in generative adversarial nets (gans),” in Proceedings
of The 34nd International Conference on Machine Learning, 2017.

[49] I. Tolstikhin, S. Gelly, O. Bousquet, C.-J. Simon-Gabriel, and
B. Schölkopf, “Adagan: Boosting generative models,” Tech. Rep.,
2017.

[50] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative
adversarial network,” in International Conference on Learning
Representations, 2017. [Online]. Available: https://arxiv.org/abs/
1609.03126

[51] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled
generative adversarial networks,” in Proceedings of the
International Conference on Learning Representations, 2017.
[Online]. Available: https://arxiv.org/abs/1611.02163

[52] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht, “Gradient
descent only converges to minimizers,” in Conference on Learning
Theory, 2016, pp. 1246–1257.

[53] R. Pemantle, “Nonconvergence to unstable points in urn models
and stochastic approximations,” Ann. Probab., vol. 18, no. 2, pp.
698–712, 04 1990.

[54] L. M. Mescheder, S. Nowozin, and A. Geiger, “The numerics of
gans,” in Advances in Neural Information Processing Systems,
2017. [Online]. Available: http://arxiv.org/abs/1705.10461

[55] L. Theis, A. van den Oord, and M. Bethge, “A note on the eval-
uation of generative models,” in Proceedings of the International
Conference on Learning Representations.

Antonia Creswell (ac2211@ic.ac.uk) holds a first-class degree from
Imperial College in Biomedical Engineering (2011), and is currently
a PhD student in the Biologically Inspired Computer Vision (BICV)
Group at Imperial College London (2015). The focus of her PhD is on
improving the training of generative adversarial networks and applying

http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/1701.04722
https://arxiv.org/abs/1605.05396
https://arxiv.org/abs/1609.03126
https://arxiv.org/abs/1609.03126
https://arxiv.org/abs/1611.02163
http://arxiv.org/abs/1705.10461

SUBMITTED TO IEEE-SPM, APRIL 2017 14

them to visual search and to learning representations in unlabelled
sources of image data.

Tom White Tom received his BS in Mathematics from the University
of University of Georgia, USA, and MS from Massachusetts Institute
of Technology in Media Arts and Sciences. He is currently a senior
lecturer in the School of Design at Victoria University of Wellington,
New Zealand. His current research focuses on exploring the growing
use of constructive machine learning in computational design and
the creative potential of human designers working collaboratively with
artificial neural networks during the exploration of design ideas and
prototyping.

Vincent Dumoulin holds a BSc in Physics and Computer Science from
the University of Montréal. He is a doctoral candidate at the Montréal
Institute for Learning Algorithms under the co-supervision of Yoshua
Bengio and Aaron Courville, working on deep learning approaches to
generative modelling.

Kai Arulkumaran (ka709@ic.ac.uk) is a Ph.D. candidate in the De-
partment of Bioengineering at Imperial College London. He received
a B.A. in Computer Science at the University of Cambridge in 2012,
and an M.Sc. in Biomedical Engineering at Imperial College London in
2014. He was a Research Intern in Twitter Magic Pony and Microsoft
Research in 2017. His research focus is deep reinforcement learning
and computer vision for visuomotor control.

Biswa Sengupta received his B.Eng. (Hons.) and M.Sc. degrees in
electrical and computer engineering (2004) and theoretical computer
science (2005) respectively from the University of York. He then read
for a second M.Sc. degree in neural and behavioural sciences (2007) at
the Max Planck Institute for Biological Cybernetics, obtaining his PhD in
theoretical neuroscience (2011) from the University of Cambridge. He
received further training in Bayesian statistics and differential geometry
at the University College London and University of Cambridge before
leading Cortexica Vision Systems as its Chief Scientist. Currently, he
is a visiting scientist at Imperial College London along with leading
machine learning research at Noah’s Ark Lab of Huawei Technologies
UK.

Anil A Bharath (a.bharath@imperial.ac.uk) Anil Anthony Bharath is
a Reader in the Department of Bioengineering at Imperial College
London, an Academic Fellow of Imperial’s Data Science Institute and a
Fellow of the Institution of Engineering and Technology. He received a
B.Eng. in Electronic and Electrical Engineering from University College
London in 1988, and a Ph.D. in Signal Processing from Imperial
College London in 1993. He was an academic visitor in the Signal
Processing Group at the University of Cambridge in 2006. He is a
co-founder of Cortexica Vision Systems. His research interests are in
deep architectures for visual inference.

	I Introduction
	II Preliminaries
	II-A Terminology
	II-B Notation
	II-C Capturing Data Distributions
	II-D Related Work

	III GAN Architectures
	III-A Fully Connected GANs
	III-B Convolutional GANs
	III-C Conditional GANs
	III-D GANs with Inference Models
	III-E Adversarial Autoencoders (AAE)

	IV Training GANs
	IV-A Introduction
	IV-B Training Tricks
	IV-C Alternative formulations
	IV-C1 Generalisations of the GAN cost function
	IV-C2 Alternative Cost functions to prevent vanishing gradients

	IV-D A Brief Comparison of GAN Variants

	V The Structure of Latent Space
	VI Applications of GANs
	VI-A Classification and Regression
	VI-B Image Synthesis
	VI-C Image-to-image translation
	VI-D Super-resolution

	VII Discussion
	VII-A Open Questions
	VII-A1 Mode Collapse
	VII-A2 Training instability – saddle points
	VII-A3 Evaluating Generative Models

	VII-B Conclusions

	References
	Biographies
	Antonia Creswell
	Tom White
	Vincent Dumoulin
	Kai Arulkumaran
	Biswa Sengupta
	Anil A Bharath

