
88 November/December 2017 Copublished by the IEEE Computer and Reliability Societies 1540-7993/17/$33.00 © 2017 IEEE

LAST WORD

Steven M. Bellovin
Columbia University

Who Are You?

M any security mechanisms, including
authorization, depend on the proper

handling of identity, but it’s hard to get right.
To understand why, we must examine, funda-
mentally, what identity is.

One traditional answer is that an identity
is a name. That’s unsatisfactory, for several
reasons. First, a name points to an object—an
entity—but is not itself that object. Second,
authentication is needed when dealing with
identity. Thus, we must ensure that the bind-
ing is correct, that the asserted name actually
points to the proper entity. Public-key cer-
tificates try to make that linkage explicit, but
instead substitute a different indirection: cer-
tificates bind a name to a key, but not to the
underlying entity.

If an identity isn’t a name, then what is it?
And if we must use names as proxies for iden-
tities, how should we authenticate the bind-
ing? As we shall see, the two questions are
linked.

The most common way we authenticate
bindings is by the assertion of a trusted third
party. For certificates, the third party is a cer-
tificate authority. Enterprise logins also rely
on a third party: the sysadmin who added
the login name for a particular person. The
enterprise trusts that sysadmin would not add
a login for L337Hack3rD00d, although that
trust might be backed up by an audit.

Still, a login is not the entity itself. This is
seen most clearly with role logins, which can
legitimately be used by more than one person.
In most enterprises, the “root” or “Admin-
istrator” login can be used by anyone in the
system administration group. Some logins are
associated with services, such as a webserver,
rather than a human being. The name-to-
identity mapping, then, is not one-to-one; it
can be one-to-many, many-to-many, or—if
you don’t regard webservers as having their
own identity—one-to-zero.

Continuity is another common way to
authenticate bindings, although it’s often

(and incorrectly) regarded as a lesser form.
With continuity, a binding is presumed cor-
rect today because it was correct yesterday.
This is sometimes used to validate public keys
independent of certificate authorities; it’s the
only way we can trust generic mail services
like Google’s or Microsoft’s.

I assert that continuity is the answer.
Think of it as a timeline. Initial enrollment
in a system is the intersection of two time-
lines, yours and the system’s. At this intersec-
tion, information—a password, a public key,
a biometric—is exchanged. At subsequent
contacts, such as login attempts, this shared
knowledge is used to confirm each side’s iden-
tity. Authentication, then, uses shared knowl-
edge to confirm the previous intersection.

Password theft or key compromise can
be understood as sufficient knowledge being
stolen to allow one party to deceive the other
about continuity. The same is true of identity
theft. One approach to this problem is to rely
on more shared knowledge; the risk is that the
attacker also has this knowledge. The solution
is thus to rely on things like a known residence
or a long-term mobile phone number. It’s not
that these methods are inherently stronger;
rather, it’s that they leverage aspects of con-
tinuity other than shared knowledge. Simi-
larly, focusing on continuity teaches us that
although certificate authorities might work
to validate initial contacts, key continuity is
a stronger technique for subsequent website
visits.

No authentication framework will com-
pletely protect us from hacks, but

a good one might guide our choice of
techniques.

Steven M. Bellovin is a professor of com-
puter science at Columbia University.
Contact him via https://www.cs.columbia
.edu/,smb.

