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Abstract—In the era of the Internet-of-Things (IoT), efficient
localization is essential for emerging mass-market services and
applications. IoT devices are heterogeneous in signaling, sens-
ing, and mobility as well as their resources for computation
and communication are typically limited. Therefore, to enable
location-awareness in large-scale IoT networks, there is a need for
efficient, scalable, and distributed multi-sensor fusion algorithms.
This paper presents a framework to design network localiza-
tion and navigation (NLN) for IoT. Multi-sensor localization
and operation algorithms developed within NLN can exploit
spatiotemporal cooperation, are suitable for arbitrary large
network sizes, and only rely on an information exchange among
neighboring devices. The advantages of NLN are evaluated
in a large-scale IoT network with five hundreds agents. In
particular, it is demonstrated that due to multi-sensor fusion and
cooperation, the presented network localization and operation
algorithms can provide attractive localization performance and
reduce communication overhead and energy consumption.

Index Terms—Internet-of-Things, multi-sensor fusion, network
localization and navigation, Bayesian estimation.

I. INTRODUCTION

LOCATION-AWARENESS [1]–[6] is a keystone of the
Internet-of-Things (IoT) that fosters a wide range of

emerging applications such as crowdsensing [7], big data
analysis [8], environmental monitoring [9], and autonomous
driving [10]. In particular, the position information of IoT
devices can contribute to connect and exchange data more
efficiently, preserve communication security, and allow au-
tonomous motion. The increasing number and different types
of IoT devices generates scenarios where heterogeneous data
are collected via different sensing technologies in a distributed
way. Compared to conventional wireless localization networks,
typically consisting of a limited number of homogeneous
nodes, the scale and heterogeneity of an IoT network impose
new challenges that need to be addressed. Specifically, IoT
localization and navigation calls for a new class of algorithms
tailored to IoT networks.
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In IoT networks, the sensing capabilities of the devices
can vary significantly, providing different kind of measure-
ments carrying positional information such as range, angle-
of-arrival, channel state information, or inertial. In addition,
depending on the specific sensing technology used by each
device, communication ranges and measurement accuracies
are different. Since IoT devices are typically equipped only
with inexpensive sensors having limited capabilities, high-
accuracy localization and navigation usually requires multi-
sensor fusion and device cooperation. However, state-of-the-art
multi-sensor fusion algorithms based on sequential Bayesian
estimation (SBE) [11]–[13] are often impractical for IoT ap-
plications due to their decentralized network topology and the
limited processing units of IoT devices. In addition, the high
number of devices necessitates network operation strategies
to provide inter-device cooperation for an efficient use of the
limited battery power and spectral resources. For these reasons,
the major difficulties for efficient multi-sensor localization and
navigation in the IoT lie in fusing data and measurements
collected from heterogeneous sensors with low computation
and communication capabilities and in designing network
operation strategies that can efficiently allocate resources in
scenarios with insufficient infrastructure and limited battery
power. Addressing these difficulties can overcome the key
issues in the current IoT networks, including the heterogeneity
of sensing technologies and the limited capability of devices
in terms of computation, communication, and battery energy.

The recently introduced paradigm of network localization
and navigation (NLN) [1] has important characteristics that
are favorable for multi-sensor localization and navigation in
IoT networks. In particular, it can provide technology-agnostic
and low-complexity algorithms for heterogeneous multi-sensor
fusion [14] and scalable network operation [15] which typi-
cally do not require much communication and computation
overhead. A NLN scenario involving five devices and three
anchors is shown in Fig. 1(a). Fig. 1(b) shows devices of
Peregrine, a system developed for 3-D NLN.

This paper provides an overview of the NLN paradigm:

• we present a framework for developing scalable and
distributed inference algorithms for localization in IoT
networks;

• we devise centralized and distributed network operation
strategies that can increase battery lifetime and localiza-
tion accuracy;

• we demonstrate that multi-sensor fusion and cooperation
among devices can dramatically increase localization
performance in a large-scale scenario with hundreds of
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Fig. 1: (a) A graphical depiction of a NLN scenario involving five devices and three anchors. (b) Devices used in the Peregrine, a system
for 3-D NLN [16].

mobile agents; and
• we quantify how network operation algorithms can reduce

the communication overhead and energy consumption of
localization networks.

The remainder of the paper is organized as in the following.
Section II discusses localization and navigation algorithms for
single-node scenarios. Section III describes network localiza-
tion algorithms for IoT scenarios. Section IV presents efficient
operation for location-aware networks. Section V provides
localization results for an IoT case study. Finally, Section VI
summarizes the main insights offered by the paper.
Notation: Random variables (RVs) are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
and matrices are denoted by bold lowercase and uppercase
letters, respectively. Sets are denoted by calligraphic font.
For example, a RV and its realization are denoted by x
and x, respectively; a random vector and its realization are
denoted by x and x, respectively; a set is denoted by X . The
identity matrix is denoted by I . For the probability distribution
function (PDF) of the random vector x, at x, the following
short notation f(x) = fx(x) is used. Furthermore, x = [xi]i∈I
denotes vector that is obtained by arranging all the subvectors
xl, l ∈ L in an arbitrary but known order into a column
vector. Finally, the notations of important quantities that are
used throughout the paper are summarized in Table I.

II. SINGLE-NODE LOCALIZATION FOR IOT
This section revises localization and navigation algorithms

for single-node scenarios. First, consider a network of IoT
devices that consists of a mobile agent (with index set Na =
{1}) and of Nb anchors at known positions (with index set
Nb = {2, 3, ..., Nb + 1}). The agent are localized based on
heterogeneous sensor measurements by using the anchors as
reference points. Measurements for localization are made at
discrete time steps indexed by n = 1, 2, ..., N . Let x(n)1 ∈ RD
be the unknown positional state of the agent at time n, which
includes the position p

(n)
1 and other mobility parameters such

as velocity, acceleration, orientation, and angular velocity.
All measurements made at time n are summarized in the
vector z(n)1 , which is the concatenation of all inter-node

measurements z(n)1j with anchors j ∈ Nb. The localization
process is essentially the calculation of an estimate x̂(n)

1 of
x
(n)
1 from all available measurements up to time n (denoted

as z(1:n)1 , [z
(1)T
1 , z

(2)T
1 , . . . ,z

(n)T
1 ]T).

The relationship of the current state vector with the previous
state vector can be described by the state-evolution model

x
(n)
1 = a

(
x
(n−1)
1 , c

(n)
1 ;u

(n)
1

)
(1)

where c
(n)
1 is the state-evolution noise vector that is assumed

independent across time n and u(n)
1 is a known input [17] that

controls the motion of the agent. Note that the PDF f(c
(n)
1 )

can be different for distinct time steps n. From the state-
evolution model (1) one can directly obtain the state-evolution
function f

(
x
(n)
1

∣∣x(n−1)
1 ;u

(n)
1

)
. Note that (1) implies a Markov

property, i.e., given x(n−1)
1 , x(n)1 is statistically independent of

previous x
(0)
1 , x

(1)
1 , . . . , x

(n−2)
1 and future x

(n+1)
1 , x

(n+2)
1 , . . .

states. The prior PDF f
(
x
(0)
1

)
at time n= 0 is known. The

prior information for all times 1, 2, . . . , n, i.e., all available
information before any measurement is performed, can now
be expressed as

f
(
x
(0:n)
1 ;u

(1:n)
1

)
= f

(
x
(0)
1

) n∏
k=1

f
(
x
(k)
1

∣∣x(k−1)
1 ;u

(k)
1

)
. (2)

The relationship of the current measurements with the
current state vector is described by the measurement model

z
(n)
1 = h

(
x
(n)
1 , v

(n)
1

)
(3)

where v
(n)
1 is the measurement noise, which is assumed

independent across times n. Note that the PDF f(v
(n)
1 ) can

be different for distinct time steps n. From the measurement
model (3) one can directly obtain the likelihood function
f
(
z
(n)
1

∣∣x(n)
1

)
. Note that (3) implies that given x

(n)
1 , z

(n)
1

is statistically independent of previous x
(0)
1 , x

(1)
1 , . . . , x

(n−1)
1

and of future x
(n+1)
1 , x

(n+2)
1 , . . . states, as well as of previ-

ous z
(0)
1 , z

(1)
1 , . . . , z

(n−1)
1 and future z

(n+1)
1 , z

(n+2)
1 , . . . mea-

surements. Therefore, the likelihood function for all times
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Notation Definition Notation Definition

Na Index set of mobile agents Nb Index set of anchors

x
(n)
i Positional state of the ith node at time n p

(n)
i Position of the ith node at time n

z
(n)
ij Inter-node measurement between ith agent and jth node at time n z

(n)
i All inter-node measurements of the ith agent at time n

x
(0:n)
i All the positional states of the ith node up to time n z

(1:n)
i All the measurements of the ith agent up to time n

αf (x(n)) Message passed from variable node “x” to factor node “f” βf (x(n)) Message passed from factor node “f” to variable node “x”

µ
(n)
p Predicted mean vector Σ

(n)
p Predicted covariance matrix

µ(n) Posterior mean vector Σ(n) Posterior covariance matrix

x̄
(n)
i Augmented state vector z̄

(n)
i Augmented measurement vector

Q(n) Localization error matrix J(n) Fisher information matrix

P
(n)
NA Optimization problem for node activation P

(n)
NP Optimization problem for node prioritization

ζ
(n)
i Channel access probability of agent i y

(n)
ij Amount of resources allocated to the measurement link pair (i, j)

χ
(n)
i Potential error reduction of agent i related to inter-node measurements ξ

(n)
ij Channel quality between node i and j

TABLE I: Notations of Important Quantities.

1, 2, . . . , n (i.e., all available information related to the per-
formed measurements) can be expressed as

f
(
z
(1:n)
1

∣∣x(1:n)
1

)
=

n∏
k=1

f
(
z
(k)
1

∣∣x(k)
1

)
. (4)

f− x−

n− 1

f−z

f

αf−→ x

n

fz

−→βfz

βf−→

Fig. 2: Factor graph for single-node localization representing the
factorization in (5). Nodes in green represent factors related to the
state-evolution function, nodes in red represent factors related to
the likelihood function,while messages related to the sum-product
algorithm (SPA) are in blue. The following short notations are used:
x− , x

(n−1)
1 , x , x

(n)
1 , f− , f(x

(n−1)
1 |x(n−2)

1 ;u
(n−1)
1 ),

f , f(x
(n)
1 |x(n−1)

1 ;u
(n)
1 ), f−

z , f(z
(n−1)
1 |x(n−1)

1 ), fz ,
f(z

(n)
1

∣∣x(n)
1 ), αf , αf (x

(n−1)
1 ), βf , βf (x

(n)
1 ), and βfz ,

βfz (x
(n)
1 )

.

By using Bayes rules, (2), and (4), the joint posterior PDF
of x(0:n)1 given z(1:n)1 for n > 0 results in

f
(
x
(0:n)
1

∣∣z(1:n)1 ;u
(1:n)
1

)
∝ f

(
z
(1:n)
1

∣∣x(1:n)
1

)
f
(
x
(0:n)
1 ;u

(1:n)
1

)
= f

(
x
(0)
1

) n∏
k=1

f
(
x
(k)
1

∣∣x(k−1)
1 ;u

(k)
1

)
f
(
z
(k)
1

∣∣x(k)
1

)
. (5)

The factor graph [18] representing this joint posterior for SBE
is shown in Fig. 2. 1

A. Temporal Fusion Based on SBE

Temporal multi-sensor fusion in a Bayesian setting is ac-
complished by determining an estimate of x(n) from the

1For simplicity in notation, the index of the agent is dropped in the
following, e.g., x(n)

1 is replaced by x(n).

marginal posterior PDF f
(
x(n)

∣∣z(1:n)). For example the
minimum-mean-square-error (MMSE) estimate is given by
[19]

x̂
(n)
MMSE ,

∫
x(n)f

(
x(n)

∣∣z(1:n);u(1:n)
)
dx(n). (6)

The marginal posterior PDF f(x(n)|z(1:n);u(1:n)) in
(6) can be obtained from the joint posterior PDF
f(x(1:n)|z(1:n);u(1:n)) in (5) by marginalization. However,
direct marginalization of f(x(1:n)|z(1:n);u(1:n)) is infeasible
in general because it relies on integration over a state space
whose dimension grows with the time n.

This problem known as the curse of dimensionality [20]
can be addressed by SBE [12] if the joint posterior PDF
f(x(1:n)|z(1:n);u(1:n)) has a structure as in (5). The exact
calculation of f(x(n)|z(1:n);u(1:n)) is then possible sequen-
tially: at each time n, SBE consists of the prediction step

f(x(n)|z(1:n−1);u(1:n))

=

∫
f(x(n)|x(n−1);u(n))f(x(n−1)|z(1:n−1);u(1:n−1))dx(n−1)

(7)

which is followed by the update step

f
(
x(n)

∣∣z(1:n);u(1:n)
)

∝ f(z(n)|x(n))f
(
x(n)

∣∣z(1:n−1);u(1:n)
)
. (8)

Contrary to direct marginalization where integration is per-
formed over a nD-dimensional state space, SBE involves only
operations in D-dimensional state spaces that are performed n
times. As a consequence, the complexity related to calculating
f
(
x(n)

∣∣z(1:n−1);u(n)
)

scales only linearly with the number of
time steps n. Note that the information acquired by all sensors
up to time n, is represented by the low-dimensional predicted
posterior PDF f(x(n)|z(1:n−1);u(n)) and temporal fusion is
directly performed in the update step according to (8).

B. Message Passing Interpretation of SBE

For an arbitrary estimation problem, the sum-product algo-
rithm (SPA) [18] can calculate exact or approximate marginal
posterior PDFs in an efficient way. In particular, the SPA
avoids the curse of dimensionality inherent to direct marginal-
ization. Therefore, SPA-based solutions are attractive for high
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dimensional inference problems. The SPA is a so called
“message passing” algorithm since its basic operations can
be interpreted as an exchange of statistical information on
adjacent nodes of a factor graph, i.e., as messages passed along
the edges of the graph.

If the factor graph is tree-structured, such as that in Fig. 2,
message updates are performed only once for each node
in the graph. The message passing procedure begins at the
variable and factor nodes with only one edge (which pass a
constant message and the corresponding factor, respectively),
and continues with those nodes where all incoming messages
are computed already. According to the SPA message passing
rules, in a factor graph as in Fig. 2, the message passed from
factor node “f” to variable node “x” is obtained as [18]

βf (x(n)) =

∫
f(x(n)|x(n−1);u(n))αf (x(n−1))dx(n−1) (9)

where αf (x(n−1)) is the message passed from variable node
“x−” to factor node “f”. Furthermore, the message passed
from “fz” to “x” is given by βfz (x(n)) = f(z(n)

∣∣x(n)). After
these two messages are calculated, the belief for “x” is finally
obtained as

b(x(n))∝ βf (x(n))βfz (x(n)) .

For αf (x(n−1)) = b(x(n−1)), it can be seen that b(x(n)) =
f(x(n)|z(1:n);u(1:n)) as provided by SBE. Thus, SBE based
on prediction and update steps, respectively (7) and (8), is
equivalent to calculating the belief b(x(n)) by running the SPA
on the factor graph in Fig. 2.

C. Node Localization and Navigation Algorithms

A large variety of filtering algorithms suitable for node
localization and navigation are based on SBE according to
(7) and (8). Here, we focus on two widely adopted techniques
namely Kalman filtering and particle filtering.

1) The Kalman Filter: Consider the case where the state-
evolution model and the measurement model are linear, i.e,
(1) and (3) can be expressed as

x(n) = Ax(n−1) +Bu(n) + c(n) (10a)

z(n) = Hx(n) + v(n) (10b)

where the matricesA,B, andH are assumed known. Further-
more, the noise c(n) ∼ N (0,Σ

(n)
c ) and v(n) ∼ N (0,Σ

(n)
v ) is

Gaussian distributed with noise covariance matrices Σ(n)
c and

Σ
(n)
v . In this case, closed-form solutions for the prediction

(7) and update step (8) of SBE can be obtained. These
closed-from expressions are used within the Kalman filter
[19] that represents posterior PDFs f

(
x(n)

∣∣z(1:n);u(1:n)
)

by
second order statistics, i.e., by means µ(n) and covariance
matrices Σ(n). If the prior f

(
x(0)

)
is also Gaussian, the

PDFs f
(
x(n)

∣∣z(1:n−1);u(1:n)
)

and f
(
x(n)

∣∣z(1:n);u(1:n)
)

are
Gaussian as well for arbitrary n. In that case the Kalman
filter can provide the optimum solution and the exact MMSE
estimator x̂(n)

MMSE in (6) is given by µ(n). The Kalman Filter
consists of two steps: In the prediction step of the Kalman
filter, the predicted mean µ(n)

p and covariance matrix Σ(n)
p

that fully characterize f(x(n)|z(1:n−1);u(1:n)) are calculated

based on (10a). In the update step of the Kalman filter,
first the mean µ

(n)
z , the covariance matrix Σ

(n)
z , and the

cross-covariance matrix Σ(n)
xz are calculated based on (10b),

then the posterior mean µ(n) and posterior covariance matrix
Σ(n) are obtained using the Kalman update equations [19].
For non-linear non-Gaussian models inherent to multi-sensor
localization, computationally feasible approximate algorithms
include variants of the Kalman filter such as the extended
Kalman filter (EKF) [19] and the unscented Kalman filter
(UKF) [11].

The EKF and the UKF are versions of the Kalman filter
that are suitable for nonlinear state-evolution and measurement
models. If a

(
x(n−1), c(n);u(n)

)
in (1) and h

(
x(n), v(n)

)
in (3)

are non-linear functions, the covariance matrices Σ(n)
p as well

as Σ(n)
z and Σ(n)

xz cannot be calculated directly. The EKF and
the UKF are still based on the Kalman update equations but
perform different approximations to obtain these matrices.

In the EKF, a multivariate Taylor series expansion of (1)
and (3) is used to linearize them around

[
µ(n−1)T,0T

]T
and

[µ
(n)T
p ,0T

]T
, respectively [19]. In this way, an approximation

of the matrices Σ(n)
p , Σ(n)

z , and Σ
(n)
xz is obtained. While

the EKF is widely adopted, it is accurate only if the sys-
tem model is moderately nonlinear. Furthermore, the EKF is
challenging to implement and difficult to tune. The UKF is
a widely adopted solution for applications where the EKF is
not accurate or (1) and (3) are not differentiable. The UKF
performs approximate inference by using a minimal set of
deterministically chosen samples referred to as sigma points
(SPs) [11]. The nonlinear model (1) and (3) is evaluated at
the SPs and from the resulting new SPs, approximate second-
order statistics µ(n)

p ,Σ
(n)
p as well as µ(n)

z , Σ(n)
z , and Σ(n)

xz are
calculated (see [11] for details). The UKF can often provide
approximations of µ(n) and Σ(n) that are more accurate
compared to those provided by the EKF at a comparable
computational complexity.

2) The Particle Filter: The particle filter (PF) is an attrac-
tive alternative to the EKF and the UKF for applications where
a representation of f(x(n)|z(1:n);u(1:n)) using second-order
statistics is not accurate. This might be the case if the state-
evolution and/or measurement model are highly non-linear and
f(x(n)|z(1:n);u(1:n)) is multimodal. The key idea of PFs is
to represent the posterior distribution, by a set of samples
(particles) with associated weights, i.e.,

f̃(x(n)|z(1:n);u(1:n)) ≈
np∑
l=1

w
(n)
l δ(x(n)−x(n)

l ) (11)

where np is the number of particles, δ(·) is the Dirac delta
function, w(n)

l > 0 is the weight of the lth particle x(n)
l at

time index n, and
∑np

l=1 w
(n)
l = 1. Note that the number of

randomly sampled particles np is typically significantly larger
compared to the number of deterministically calculated SPs
ns used in the UKF.

An approximation of the MMSE estimate in (6) is given by
the mean of f̃(x(n)|z(1:n);u(1:n)) in (11), which is equal to
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the mean of the weighted particles, i.e.,

x̂(n) =

∫
x(n)f̃(x(n)|z(1:n);u(1:n))dx(n) =

np∑
l=1

w
(n)
l x

(n)
l .

(12)
A large variety of particle filtering algorithms have been in-
troduced. In what follows, we review the prominent sequential
importance resampling (SIR) filter [12] which consists of three
steps referred to as sampling, weight update, and resampling.

The sampling step corresponds to the prediction step of
SBE in (7). For each particle x(n−1)

l , a new particle x(n)
l

is drawn from the state-evolution PDF f(x(n)|x(n−1);u(n))

evaluated at x(n−1)
l . The weight update step corresponds

to the update step of SBE in (8). For each particle
x
(n)
l the updated weight w

(n)
l is obtained as w

(n)
l =

f
(
z(n)|x(n)

l

)
/
∑np

`=1 f
(
z(n)|x(n)

`

)
. Then, particle-based state

estimation is performed as in (12). The resampling step is
a step that is performed to avoid degeneracy of particles.
It is typically executed only if an indicator called effective
sample size is smaller than a threshold. In the resampling
step, np “resampled” particles are obtained by sampling from
f̃(x(n)|z(1:n);u(1:n)) in (11) and setting the weight of the
resampled particles to 1/np, with resampled particles used at
time n+1.

Remark 1: Most PFs are optimum in the sense that for
np → ∞ the estimate x̂(n) in (12) converges to the true
MMSE estimate x̂(n)

MMSE in (6). Contrary to EKF and the UKF,
PFs are also suitable for highly non-linear SBE problems.
However, their computational complexity is significantly in-
creased compared to variants of the Kalman filter (KF). In
certain settings, PFs can avoid the curse of dimensionality
[20]. However, they do not scale well with the dimension of
the state to be estimated and are not directly amendable for
distributed implementations.

III. NETWORK LOCALIZATION FOR IOT

Consider the localization of a network of IoT devices that
consists of Na agents (with index setNa = {1, 2, . . . , Na}) and
Nb anchors (with index set Nb = {Na + 1, Na + 2, . . . , Na +

Nb}). Let x(n)i ∈ RD be the positional state of the node i ∈
{1, 2, . . . , Na + Nb}. The states of all nodes are represented
by the joint state vector x(n) ,

[
x
(n)T
1 , x

(n)T
2 , . . . , x

(n)T
Na+Nb

]T
.

At time n, agent i ∈ Na is able to communicate and perform
an inter-node measurement z(n)ij with nodes j in its neighbor
set A(n)

i . For anchors i ∈ Nb, the neighbor set is empty, i.e.,
A(n)
i = ∅. Agent communication is symmetric, i.e, for i, j ∈
Na , j ∈ A(n)

i implies i ∈ A(n)
j . All measurements performed

by all agents i ∈ Na at time n are summarized in th e joint
measurement vector z(n). Every agents aims to calculate an
estimate x̂(n)

i of x
(n)
i from all available measurements z(1:n)

collected up to time n.
For node i at time n, the relationship of the current state

vector x
(n)
i with the previous state vector x

(n−1)
i is given by

the state-evolution model

x
(n)
i = ai

(
x
(n−1)
i , c

(n)
i ;u

(n)
i

)
(13)

where the state-evolution noise vector c
(n)
i is assumed in-

dependent across n and i. Note that the PDF f(c
(n)
i ) can

be different for distinct time steps n and agent indexes
i. In particular, for anchors i ∈ Nb it is assumed that
f(c

(n)
i ) = δ(c

(n)
i ), i.e., c(n)i is deterministic and equal to zero.

From the state-evolution model (13) one can directly obtain
the state-evolution function f

(
x
(n)
i

∣∣x(n−1)
i ;u

(n)
i

)
. At n = 0,

the prior PDF of the joint state vector can be expressed as
f
(
x(0)

)
=
∏Na+Nb
i=1 f

(
x
(0)
i

)
. In particular, anchors i ∈ Nb

have perfect knowledge of their state, i.e., their prior PDFs are
given by f

(
x
(0)
i

)
= δ(x

(0)
i −x̃

(0)
i ) where x̃(0)

i is the true state.
Furthermore, agents have an uninformative prior information
f
(
x
(0)
i

)
that is assumed known. For n > 0, the joint prior

PDF, can be expressed as

f
(
x(0:n);u(1;n)

)
= f

(
x(0)

) n∏
k=1

f
(
x(k)

∣∣x(k−1);u(k)
)

=

Na+Nb∏
i=1

f
(
x
(0)
i

) n∏
k=1

f
(
x
(k)
i

∣∣x(k−1)
i ;u

(k)
i

)
.

(14)

Agents i ∈ Na performs inter-node measurements z
(n)
ij , j ∈

A(n)
i that are related to the states x

(n)
i and x

(n)
j as

z
(n)
ij = hij

(
x
(n)
i , x

(n)
j , v

(n)
ij

)
(15)

where v
(n)
ij is the inter-node measurement noise. Note that the

PDF f(v
(n)
ij ) can be different for distinct time steps n and

agent indexes i, and is typically a function of the channel
quality ξ(n)ij (see also Section IV-B).

The measurement noise v
(n)
ij is assumed independent across

all (i, j) pairs and all times n. From the measurement
model (15), one can directly obtain the likelihood function
f
(
z
(n)
ij

∣∣x(n)
i ,x

(n)
j

)
. The joint likelihood function can be ex-

pressed as

f
(
z(1:n)

∣∣x(1:n)
)

=

n∏
k=1

Na∏
i=1

∏
j∈A(k)

i

f
(
z
(k)
ij

∣∣x(k)
i ,x

(k)
j

)
. (16)

Using Bayes rules together with (14) and (16), the joint
posterior PDF of x(0:n) given z(1:n) for n > 0 is obtained as

f
(
x(0:n)

∣∣z(1:n);u(1;n)
)

∝ f
(
z(1:n)

∣∣x(1:n)
)
f
(
x(0:n);u(1;n)

)
= f

(
x(0)

) n∏
k=1

f
(
x(k)

∣∣x(k−1);u(k)
)
f
(
z(k)

∣∣x(k)
)

(17)

=

Na+Nb∏
i=1

f
(
x
(0)
i

) n∏
k=1

f
(
x
(k)
i

∣∣x(k−1)
i ;u

(k)
i

)
×

∏
j∈A(k)

i

f
(
z
(k)
ij

∣∣x(k)
i ,x

(k)
j

)
. (18)

Remark 2: Note that the factorization of the marginal
posterior in (17) has the same temporal structure as the
marginal posterior in the single node localization and naviga-
tion problem. The factor graph representing the factorization



6 IEEE SIGNAL PROCESSING MAGAZINE – SPECIAL ISSUE ON SIGNAL PROCESSING FOR INTERNET-OF-THINGS

f−1 x−
1

f−1j f−12
. . . . . .
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Fig. 3: Factor graph for network localization corresponding to
the factorizes (18). Nodes in green represent factors related to
the state-evolution function, nodes in red represent factors related
to the likelihood function, while SPA messages are in blue. The
following short notations are used: x−

i , x
(n−1)
i , xi , x

(n)
i ,

fi , f
(
x

(n)
i

∣∣x(n−1)
i ;u

(n)
i

)
, f−

i , f
(
x

(n−1)
i

∣∣x(n−2)
i ;u

(n−1)
i

)
,

fij , f
(
z
(n)
ij

∣∣x(n)
i ,x

(n)
j

)
, f−

ij , f
(
z
(n−1)
ij

∣∣x(n−1)
i ,x

(n−1)
j

)
, αfi ,

αfi(x
(n−1)
i ), βfi , βfi(x

(n)
i ), and βfij , βfij (x

(n)
i ).

of the marginal posterior in (18) is shown in Fig. 3. The
spatiotemporal structure of the marginal posterior allows to
develop distributed inference algorithms that are scalable both
in time n and in the number of agents Na as discussed in the
next section.

A. Spatiotemporal Fusion Based on the SPA

In a network with multiple agents, state estimation is com-
plicated by the fact that, since inter-node measurements are
performed, the posterior distributions f(x

(n)
i |z(1:n);u(1:n)) of

agents are coupled and thus should be estimated jointly. A
naive approach to joint sequential state estimation would be
to only exploit the temporal structure of the joint posterior
PDF f

(
x(0:n)

∣∣z(1:n);u(1:n)
)

in (17) to obtain a marginal pos-
terior PDF f

(
x(n)

∣∣z(1:n);u(1:n)
)

by means of an algorithm
presented in Section II-C and then calculating an estimate
for the joint agent state x(n). However, this approach is not
scalable, as the dimension of x(n) increases with the number
of agents Na. In addition, it is not amenable for a distributed
implementation as it necessitates the existence of a fusion

center that collects all pairwise measurements performed in
the network.

Alternatively, distributed and scalable estimation can be
performed by running SPA on the factor graph shown in Fig. 3.
In the case of a factor graph with loops, the beliefs produced
by the SPA are generally only approximations of the marginal
posterior PDFs and they typically suffer from overconfidence2.
Furthermore, there is no fixed order for message calculation in
loopy SPA, and different orders may lead to different beliefs.
This means that there is a certain freedom to design the order
of messages in the development of SPA algorithms.

The message passing rules presented next are obtained by (i)
applying SPA [18] to the factor graph in Fig. 3, (ii) performing
temporal fusion by sending messages only forward in time,
and (iii) performing only a single message passing iteration
in the spatial fusion step. In the temporal fusion step at agent
i and time n, since messages are sent only forward in time,
the messages αfi(x

(n−1)
i ) are equal to the beliefs computed

at n−1, i.e., [18]

αfi(x
(n−1)
i ) = b(x

(n−1)
i ) . (19)

Therefore, the messages βfi(x
(n)
i ) can be obtained as

βfi(x
(n)
i ) =

∫
f(x

(n)
i |x

(n−1)
i ;u

(n)
i )αfi(x

(n−1)
i )dx

(n−1)
i

=

∫
f(x

(n)
i |x

(n−1)
i ;u

(n)
i )b(x

(n−1)
i )dx

(n−1)
i . (20)

Note that the calculation of the message βfi(x
(n)
i ) in the

temporal fusion step is equivalent to the prediction step of
SBE in (7) and its SPA interpretation in (9).

In the spatial fusion step, since only a single message pass-
ing iteration is performed, “outgoing” messages αfij (x

(n)
i ),

i ∈ Aj passed from variable node “xi” to factor nodes “fij”
are directly given by αfij (x

(n)
i ) = βfi(x

(n)
i ). Furthermore,

“incoming” messages βfij (x
(n)
i ), j ∈ Ai can be obtained as

βfij (x
(n)
i ) =

∫
f(z

(n)
ij |x

(n)
i ,x

(n)
j )αfji(x

(n)
j )dx

(n)
j

=

∫
f(z

(n)
ij |x

(n)
i ,x

(n)
j )βfi(x

(n)
j )dx

(n)
j . (21)

Finally, the belief of an agent i at time n is calculated as

b(x
(n)
i ) ∝ βfi(x

(n)
i )

∏
j∈A(n)

i

βfij (x
(n)
i ). (22)

The messages βfi(x
(n)
i ) in (20) and the belief b(x(n)

i ) in (22)
are PDFs, i.e., they integrate to one. The belief b(x(n)

i ) ≈
f(x

(n)
i |z(1:n);u(1:n)) can now be used to calculate an estimate

x̂
(n)
i of the positional state of agent i at time n. Note that

for anchors i ∈ Nb, the belief and the messages are given
by b(x

(n)
i ) = αfi(x

(n)
i ) = βfi(x

(n)
i ) = δ(x

(n)
i − x̃(n)

i ) and
A(n)
i = ∅ for all n.
Contrary to SBE, which only exploits the temporal structure

of the estimation problem, loopy SPA performed on the factor
graph in Fig. 3 also exploits spatial structure. In particular,

2In the sense that the uncertainty of the estimates is underestimated by their
spread.
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increasing the number of agents leads to additional variable
nodes in the factor graph but not to a higher dimension
of the exchanged SPA messages. Therefore, the curse of
dimensionality in time n and in network size Na + Nb is
avoided. In addition, as will be discussed next, message
passing according to (19)–(22) almost automatically yields to
a distributed implementation.

B. Distributed Network Localization Algorithms

We now present a framework for designing network lo-
calization algorithms that is based on a reformulation of
SPA for spatiotemporal fusion (19)–(22) as local instances of
SBE performed on each agent [5], [6]. With this framework,
spatiotemporal fusion is possible in a scalable and distributed
way by directly applying arbitrary existing algorithms based
on SBE such as those reviewed in Section II-C.

Consider the spatiotemporal fusion at agent i, and introduce
the augmented state vector x̄

(n)
i and the augmented measure-

ment z̄(n)i as

x̄
(n)
i =

[
x
(n)
j

]
j∈{i}∪A(n)

i

z̄
(n)
i =

[
z
(n)
ij

]
j∈A(n)

i

.

Moreover, the belief b(x̄(n)
i ) of x̄(n)i is introduced as

b(x̄
(n)
i ) ∝ f(z̄

(n)
i |x̄

(n)
i )f(x̄

(n)
i ) (23)

where the “prior” f(x̄
(n)
i ) and the “likelihood function”

f(z̄
(n)
i |x̄

(n)
i ) are given by

f(x̄
(n)
i ) =

∏
j∈{i}∪A(n)

i

βfj (x
(n)
j ) (24)

f(z̄
(n)
i |x̄

(n)
i ) =

∏
j∈A(n)

i

f(z
(n)
ij |x

(n)
i ,x

(n)
j ) . (25)

Note that here, with an abuse of notation, control inputs
u
(k)
i and measurements z(k)ij from previous time steps k ∈
{1, 2, . . . , n − 1} are avoided. The expression (23) has the
same form as the update step of SBE in (8).

By plugging (21) into (22) and subsequently exchanging the
order of multiplication and integration, (22) becomes

b(x
(n)
i ) =

∫
b(x̄

(n)
i )dx̄

(n)
∼i (26)

where x̄(n)
∼i is the vector obtained by removing x(n)

i from x̄
(n)
i .

Equations (23) and (26) indicate that b(x(n)
i ) can be ob-

tained via an update step (cf. (8)) followed by marginalization.
This observation motivates the following three steps at each
agent i ∈ Na to perform spatiotemporal fusion by means of
SPA.

Step 1: Local Prediction and Information Exchange. Agent
i calculates βfi(x

(n)
i ) locally according to (20) which is equiv-

alent to the prediction step in (7).3 Then each agent broadcasts
βfi(x

(n)
i ) and receives βfj (x

(n)
j ) from its neighbors j ∈ A(n)

i

such that f(x̄
(n)
i ) in (24) becomes available at agent i.

3The prediction step of any algorithm based on SBE such as those presented
in Section II-B can be used to calculate βfi (x

(n)
i ).

Step 2: Measurement Phase and State Update. Agent i
cooperates with its neighbors j ∈ A(n)

i to acquire inter-node
measurements z(n)ij . Now the likelihood function f(z̄

(n)
i |x̄

(n)
i )

in (25) is available at agent i and the belief b(x̄(n)
i ) of x̄(n)i can

be calculated locally by performing the update step in (23).4

Step 3: Marginalization. In this step, agent i computes
the belief b(x

(n)
i ) from b(x̄

(n)
i ). This typically incurs no

computational overhead. For example, if b(x̄(n)
i ) is represented

by the mean vector µ̄(n)
i and the covariance matrix Σ̄(n)

i , then
the mean vector µ(n)

i and the covariance matrix Σ(n)
i related

to b(x
(n)
i ) can be directly extracted from µ̄

(n)
i and Σ̄

(n)
i ,

respectively. In case a particle representation {(x̄(n)
i,l , w

(n)
i,l )}Ll=1

of the belief b(x̄(n)
i ) is available, a particle representation

{(x(n)
i,l , w

(n)
i,l )}Ll=1 of the belief b(x(n)

i ) can be obtained by
discarding from the particles x̄(n)

i,l all subvectors x(n)
j,l with

j ∈ A(n)
i .

Note that the belief b(x
(n)
i ) can be calculated by only

communicating with neighboring agents in the network. For
accurate localization and navigation of an agent i∈Na , typi-
cally only a small number of neighbors |A(n)

i | are necessary.
Therefore, the communication cost related to the information
exchange in Step 1 as well as the computation cost related
to calculating the beliefs b(x̄(n)

i ) remain feasible. More im-
portantly, for a single agent i ∈ Na these costs only depend
on the number of neighbors |A(n)

j | but not on the network
size Na +Nb. An attractive property of calculating b(x(n)

i ) by
means of Step 1 – Step 3 is that existing techniques for single-
node localization and navigation can be directly leveraged
for scalable and distributed network localization. Note that
sigma point belief propagation (SPBP) [5] and the network
localization algorithm in [6] have been developed according
to Steps 1–3.

IV. EFFICIENT NETWORK OPERATION

Efficient network operation [21]–[26] is an indispensable
part for localization in the IoT. The network operation strate-
gies presented in this paper focus on the coordination of
measurements provided by range measurement units (RMUs),
i.e., the measurement model in (15) is

z
(n)
ij = ‖x(n)i − x

(n)
j ‖+ v

(n)
ij .

The performance of RMUs such as ultrawide-band (UWB)
radios is often limited by the fact that [16], [27], [28]

1) agents often make measurements with nodes with low
link quality or poor geometry; or

2) different agents, which simultaneously transmit ranging
signals, interfere with each other.

To address these issues, node activation strategies to reduce
interference and node prioritization strategies to allocate re-
sources to measurements with neighbor nodes can be em-
ployed. A flowchart that visualizes the interaction of node
activation, node prioritization, network localization, and the
RMU is shown in Fig. 4.

4Note that update step of any algorithm based on SBE such as those
presented in Section II-B can be used to calculate b(x̄(n)

i ).
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ζ
(n)
i

z
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y
(n)
ij j ∈ A(n)

i

ξ
(n)
ij
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(n)
i )
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(n)
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j ∈ A(n)
i
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Network Localization
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Software

Hardware

Fig. 4: Flowchart showing the interaction of node activation, node
prioritization, network localization, and the RMU.

Note that in what follows, the inverse Fisher information
matrix [3] is referred to as error matrix. In particular, all
strategies developed in this paper rely either on the individual
error matrices Q(n)

i related to the positions p
(n)
i of the agents

i ∈ Na or on the joint error matrix Q(n) related to the
individual positions of all agents as defined in [24]. These error
matrices are not accessible in real-world localization systems
as they rely on the knowledge of true positions. For this
reason, in an implementation of the presented node operations
strategies [16] these error matrices are approximated by the
corresponding covariance matrices which can be provided by
network localization algorithms.

A. Node Activation

The goal of node activation strategies is to determine a
set of nodes that are permitted to make range measurements,
such that packet collisions are avoided and the localization
error reduction of the network is maximized. In what follows,
we discuss centralized and distributed strategies for node
activation.

1) Centralized Node Activation: If agent i is selected to
make inter-node measurements with its neighbors at time n,
the error evolution relationship is given by [24]

Q(n+1) =
((
Q(n)

)−1
+
∑

j∈A(n)
i

S
(n)
ij

)−1
+∆(n+1)

where S
(n)
ij denotes the information matrix corresponding

to the measurement z(n+1)
ij , and ∆(n+1) denotes the matrix

corresponding to the error introduced in the temporal coop-
eration step. Note that S(n)

ij also depends on the amount of
resources yij allocated to the measurements link (i, j) that

can be determined by node prioritization discussed in the next
subsection [24].

Centralized node activation can be performed by calculating
the agent index in that is optimum, in the sense that the
localization error reduction of the network is maximized. The
optimum index can be obtained as follows

in = max
i∈Na

tr
((
Q(n)

)−1
+
∑

j∈A(n)
i

S
(n)
ij

)−1
. (27)

This node activation strategy is one-step optimal because the
active node is selected such that the localization error at time
n+ 1 is minimized. Alternatively, one can also try to activate
nodes such that the average error over multiple time instants
is minimized. Such a problem can be solved through dynamic
programming, but the computational complexity increases
rapidly with the number of time steps. Note that the evaluation
of (27) relies on the joint error matrix Q(n). The centralized
node activation strategy is thus not scalable with the network
size since it necessitates a central controller that collects the
information of all the agents in the network. For this reason,
for large scale NLN, distributed node activation strategies are
needed.

2) Distributed Node Activation: Consider the case where
the activation set may consist of multiple agents. In particular,
at time n every agent i tries to make distance measurements
with its neighbors j ∈ A(n)

i with a certain channel access prob-
ability ζ(n)i . The one-step optimization problem that minimizes
the localization error over the channel access probabilities ζ(n)i

is given by

P
(n)
NA : minimize

{ζ(n)
i }i∈Na

E{tr{Q(n+1)}|Q(n)}

subject to 0 6 ζ
(n)
i 6 1, i ∈ Na

where the expectation in the objective function is over the
randomness in the channel access event for all the agents. It
can be shown [26] that the optimal channel access probabilities
ζ
(n)
i , i ∈ Na resulting from P

(n)
NA can be obtained as

ζ
(n)
i =

{
1, if χ(n)

i >
∑
j∈A(n)

i ∪{i}
∆

(n)
j

0, otherwise
(28)

where χ(n)
i denotes the expected error reduction of agent i,

if it is activated and successfully makes range measurements
with its neighbors A(n)

i and ∆
(n)
j denotes the error increase

of the agents in the subnetwork A(n)
i ∪ {i} during the time

range measurements are performed. Note that χ(n)
i and ∆

(n)
j

are functions of Q(n)
i and Q(n)

j , j ∈ Ai ∪ {i}, respectively.
Remark 3: This optimal strategy P

(n)
NA leads to a non-

random node activation in the sense that an agent accesses
the channel either with probability one or with probability
zero. Moreover, the optimal strategy is distributed because
for agent i, χ(n)

i and ∆
(n)
j can be determined or accurately

approximated using information that is either locally available
or has been received from neighboring nodes j ∈ A(n)

i . Unlike
the setting in the centralized node activation, the distributed
strategy may activate multiple nodes at the same time and
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Algorithm 1 Distributed Node Activation Strategy

1: for all i ∈ Na do
2: Agent i listens to the channel;
3: if the channel is busy then
4: Wait for a certain amount of time;
5: else
6: Determine the access probability ζ(n)i from (28);
7: if ζ(n)i = 1 then
8: Access the channel and perform inter-node

measurements;
9: end if

10: end if
11: Broadcast ∆

(n)
j ;

12: end for

cause packet collisions. The possibility of such collision
events can be reduced by incorporating channel sensing in
the presented activation strategy. This results in the distributed
node activation strategy presented in Algorithm 1 that has been
successfully verified on-the-field with the Peregrine system for
3-D NLN.

B. Node Prioritization

The goal of node prioritization is to achieve the best tradeoff
between resource consumption and localization accuracy. In
what follows, we again discuss centralized and distributed
strategies for node prioritization.

1) Centralized Node Prioritization: For time n+1, the error
matrix Q(n+1) can be obtained as [24]

Q(n+1) =
((
Q(n)

)−1
+
∑

(i,j)∈E(n)

y
(n)
ij ξ

(n)
ij u

(n)
ij u

(n)T
ij

)−1
+∆(n+1)

where E(n) = {(i, j) : i ∈ Na, j ∈ A(n)
i , i > j} is the set

of candidate measurement link pairs, y(n)ij is the amount of
resources allocated to the measurement link pair (i, j), ξ(n)ij

represents the channel quality between nodes i and j, and
u
(n)
ij is given in [21, Section III-A] and depends on the relative

positions of nodes i and j. Furthermore, y(n)ij are the variables
to be optimized.5

Now the following optimization problem for centralized
node prioritization can be introduced

P
(n)
NP−C : minimize

{y(n)
ij }(i,j)∈E(n)

tr
(
Q(n+1)

)
subject to lk({y(n)ij }(i,j)∈E(n)) 6 0, k ∈ L

where L is the set of linear constraints lk(·). Due to the special
structure of Q(n+1), P

(n)
NP can be transformed to the following

5As a special case, if only node i is activated, E(n) =
{

(i, j) : j ∈ A(n)
i

}
.

semi-definite program (SDP):

minimize
M ,{y(n)

ij }(i,j)∈E(n)

tr(M)

subject to
[
M I
I J (n)

]
< 0

J (n) =
(
Q(n)

)−1
+
∑

(i,j)∈E(n)

y
(n)
ij ξ

(n)
i,j u

(n)
ij u

(n)T
ij

lk({y(n)ij }(i,j)∈E(n)) 6 0, k ∈ L

where M is an auxiliary matrix for the SDP formulation [21].
Convex optimization engines [29] can be used to solve the
SDP above. Note that similarly to the node activation prob-
lem, solving the node prioritization problem above requires
obtaining the estimates of Q(n), y(n)ij , ξ(n)i,j , and U (n)

ij for the
solution of this SDP. A central controller is needed to collect
such information. Moreover, the computational complexity of
this SDP largely depends on the dimension of Q(n), which
is a DNa × DNa matrix. For this reasons, centralized node
prioritization is not scalable with the network size.

2) Distributed Node Prioritization: Though the centralized
formulation can provide better localization performance, in
large networks it incurs in extensive communication over-
head and computational complexity. For this reason, fully
distributed and thus scalable variants are more amenable, in
practice.

The error matrix for the position of agent i is the ith
diagonal D×D block of Q(n+1), denoted by

[
Q(n+1)

]
i
. This

error matrix depends on the geometry of the network and the
accuracies of all inter-node measurements. Therefore, directly
optimizing this error matrix does not lead to distributed
implementation. An approximation of

[
Q(n+1)

]
i

that involves
only local parameters, can be introduced as follows[

Q(n+1)
]
i
≈ Q̃(n+1)

i (29)

where

Q̃
(n+1)
i =

(([
Q(n)

]
i

)−1
+
∑
j∈Ai

y
(n)
ij %

(n)
ij v

(n)
ij [v

(n)
ij ]T

)−1
+
[
∆(n+1)

]
i
.

In this expression, %(n)ij is given by

%
(n)
ij =


ξ
(n)
ij , if j ∈ A(n)

i ∩Nb

ξ
(n)
ij

1+y
(n)
ij tr
(
u

(n)
ij [u

(n)
ij ]T

[
Q(n)

]
j

) if j ∈ A(n)
i ∩Na

and v(n)ij ∈ RD is a unit vector representing the direction
between node i and j. Note that Q̃(n+1)

i involves %(n)ij , v(n)ij ,
and y

(n)
ij for j ∈ A(n)

i , which are either locally available at
agent i or can be received by communicating with neighboring
nodes j ∈ A(n)

i .
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Using tr
(
Q̃

(n+1)
i

)
as the objective function, a distributed

node prioritization problem is formulated as

P
(n)
i,NP−D : minimize

{y(n)
ij }j∈Na∪Nb\{i}

tr
(
Q̃

(n+1)
i

)
subject to lik({y(n)ij }j∈Ai

) 6 0, k ∈ Li
(30)

where lik(·) are linear constraints [21]. It can be shown that
P

(n)
i,NP−D is a convex problem by performing the same steps

as in [21]. Moreover, for a general D, one can show that
P

(n)
i,NP−D is an SDP. For D = 2, Q̃(n+1)

i is a 2×2 matrix and
tr
(
Q̃

(n+1)
i

)
has a simpler explicit expression as a function of

y
(n)
ij . As a consequence, P

(n)
i,NP−D can be further transformed

into a second-order cone program (SOCP) [22], [29].
So far, we have discussed node prioritization for cooperative

IoT networks. In noncooperative scenarios where agents only
perform agent-anchor range measurements, the approximation
(29) becomes an equality and the error matrix for agent i is[
Q(n+1)

]
i

=
(([
Q(n)

]
i

)−1
+
∑
j∈Nb

y
(n)
ij ξ

(n)
ij v

(n)
ij [v

(n)
ij ]T

)−1
+
[
∆(n+1)

]
i
.

Remark 4: The node prioritization problem in noncoopera-
tive scenarios is a special case of P

(n)
i,NP−D that can be solved

even more efficiently by using geometric optimization methods
[15]. Furthermore, if the constraint (30) can be expressed as
follows ∑

j∈Nb

y
(n)
ij 6 Rtot with y(n)ij > 0, j ∈ Nb

the optimal solution is demonstrated to have a sparsity prop-
erty. Note that here Rtot it the total amount of available
resources. In particular, the optimal set of measurements can
be performed with at most D(D+1)/2 anchors. This sparsity
property provides a theoretical basis for reducing measurement
links in localization networks.

V. CASE STUDY

In this section, we demonstrate the performance benefits of
cooperation among devices and multi-sensor fusion in a large
scale IoT network using simulated measurements. Some of the
presented algorithms have also been evaluated in the real-time
localization system called Peregrine [16].6

A. Scenario

An IoT network that consists of 512 mobile agents and 27
anchors is considered. The anchors form an equally spaced
3-D grid, where possible coordinate values on each axis in 3-
D space are {−60, 0, 60}m. Mobile agents are equipped with
an inertial measurement unit (IMU) and an RMU, and they
infer navigation information every ∆T = 0.05s. This scenario
is inspired by a swarm of micro unmanned aerial vehicles

6A video that demonstrates how this system operates and the perfor-
mance advantages related to the proposed algorithms is available online at
http://winslab.lids.mit.edu/nln-technology-readiness.mp4.

(UAVs) that operate in a large building such as a stadium or
warehouse.

The state x
(n)
i , of agent i ∈ Na consists of its position

p
(n)
i =

[
p
(n)
i,1 p

(n)
i,2 p

(n)
i,3

]T ∈ R3, velocity ṗ
(n)
i ∈ R3, and its

orientation represented by an unit quaternion q
(n)
i ∈ R4. The

initial states x
(1)
i , i ∈ Na are chosen as follows. The initial

positions p
(1)
i are sampled from the PDF that is uniform on

the 3-D cube R = [−60, 60]m × [−60, 60]m × [−60, 60]m;
the initial velocity is set to ṗ

(1)
i = 0 m/s, and the initial

quaternion is set to q
(1)
i = [1 0 0 0]T. The trajectories of the

agents are generated randomly. The parts of the trajectories
that are related to the substates s(n)i :=

[
[p

(n)
i ]T [ ṗ

(n)
i ]T

]T
, are

generated by means of a constant velocity motion model [17,
Chapter 6.3.2]. More specifically, at time n the new substate
s
(n)
i of agent i ∈ Na is obtained from s

(n−1)
i as

s
(n)
i = As

(n−1)
i +Cg

(n)
i

where matrices A and C are given as in [17, Chapter 6.3.2]
and g

(n)
i ∈ R3 is the acceleration vector in the global reference

frame.
Vector g

(n)
i consists of the random driving noise r

(n)
i and

the drag force f
(n)
i , i.e., g(n)

i = r
(n)
i +f

(n)
i . In particular, r(n)i is

a zero-mean Gaussian random vector, i.e., r(n)i ∼ N (0, σ2
r I3)

and the drag force is given by f
(n)
i =

[
f
(n)
1,i f

(n)
2,i f

(n)
3,i

]T
with

elements f
(n)T
k,i = −γf ṗ(n−1)k,i |ṗ(n−1)k,i |, k ∈ {1, 2, 3}. The

drag force is introduced to limit the speed of the agents.
The following parameters are used: σr = 4.0m/s2 and
γf = 0.2m−1. These values result in trajectories with speeds
and maneuverabilities that are reasonable for micro UAVs. In
particular, the maximum speed of each agent remains typically
below 5.0m/s. The agent orientation q

(n)
i evolves as follows:

At each time step n, agent i rotates with random turn rate
ω

(n)
i ∼ N (0, σ2

ω
I3), where σω = 0.5s−1. Note that ω(n)

i

is the turn rate in the local reference frame of agent i. The
corresponding state evolution model is provided in [30].

As in most inertial navigation techniques for multi-sensor
fusion, in the simulated algorithm, the measurements provided
by the IMU are incorporated as deterministic control input
u
(n)
i =

[
u
(n)T
i,φ u

(n)T
i,ω

]T
(cf. (1)). In particular, the IMU meas-

urement u(n)
i consists of an acceleration measurement u(n)

i,φ

and a turn-rate measurement u(n)
i,ω , which are realizations of

the random variables (RVs)

u
(n)
i,φ = φ

(n)
i + c

(n)
i,φ

u
(n)
i,ω = ω

(n)
i + c

(n)
i,ω

where φ(n)i is the true acceleration of agent i in its local
reference frame. The IMU noise c

(n)
i =

[
c
(n)T
i,φ c

(n)T
i,ω

]T
consists

of acceleration c
(n)
i,φ ∼ N (0, σ2

φ
I3) and turn rate c

(n)
i,ω ∼

N (0, σ2
ω
I3) components. The functional form of the resulting

state-evolution model x(n)i = ai
(
x
(n−1)
i , c

(n)
i ;u

(n)
i

)
is provided

in [30].
The RMU measurement z(n)ij made by agent i ∈ Na with

node j at time step n is modeled as

z
(n)
ij = ‖p(n)i − p

(n)
j ‖+ v

(n)
ij
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where v
(n)
ij ∼ N (0, σ2

v ) is the Gaussian noise with standard
deviation σv = 0.1m. A more detailed, technology-specific
model for ranging from wideband radiofrequency (RF) signals
can be found in [27], [28].

It is assumed, that the number of available channels for
performing range measurements is limited to 16, which means
that only a subset of 16 agents can perform range measure-
ments at a specific time step n. For this reason, time division
multiple access (TDMA) is performed by partitioning 512
agents into 32 disjoint groups, with each group consisting of
16 agents. At each time step n, only the agents in one of the
32 groups can make range measurements while all the others
remain idle. At each time step n, for those 16 agents that
perform range measurements, the set A(n)

i is given as follows:
range measurements can only be performed with nodes that
are located within a communication range of 52m. Moreover,
if there are more then M potential neighbor nodes, M of
them are randomly selected. This selection of at most M
neighbor nodes limits the energy consumption. It also reduces
the number of loops in the factor graph in Fig. 3 and thus
the related negative effects such as overconfident beliefs. Note
that the communication range of 52m was chosen such that
for agents inside the region R, there is at least one and at
most four neighbor anchors.

In our simulation the SPBP algorithm [5] is used, which
is based on the design framework presented in Section III-B.
Note that in the considered scenario with 512 UAVs, local-
ization algorithms based on SBE are infeasible because they
are note scalable in the number of agents [6, Section VII-C].
To the best of our knowledge, SPBP is the only available al-
gorithm for cooperative location and orientation estimation in
3-D. 1200 time steps were simulated and 100 simulation runs
were performed. Examples of true and estimated trajectories
are shown in Fig. 5. As a metric for localization performance
the 3-D localization error outage (LEO) was used.7

B. Network Localization Results

To study the impact of cooperation among agents as well
as the impact related to multi-sensor fusion, the following
configurations are compared: In the “Baseline” configuration
an agent makes range measurements only with the anchors
within its communication range and does not perform IMU
measurements. In the “Spatial Cooperation” configuration,
additional range measurements are performed by cooperation
among agents. In the “IMU Fusion” configuration IMU mea-
surements are performed but agents do not cooperate. Finally,
in the “Spatial Cooperation + IMU Fusion” configuration,
cooperation among agents as well as IMU measurements
are performed. Note that for the network localization results
presented in this section the following parameters were used:
M = 6, σφ = 10−4m/s2, and σω = 5× 10−3 s−1.

Fig. 6 shows the LEOs (obtained by averaging over 100
simulation runs, 512 agents, and 900 time steps) versus

7The outage is a well-established concept in wireless communications. In
the context of NLN, the LEO is similarly defined as the empirical probability
that the localization error is above the predefined threshold eth.
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Fig. 5: Trajectories related to eight exemplary agents and one simu-
lation run. Colored curves and black curves represent the estimated
and the true trajectories, respectively. Similarly, colored crosses and
black circles represent the estimated and true positions at the last
time step, respectively.

threshold eth for the four simulated configurations8. The fol-
lowing key observations can be obtained from these results:
(i) very desirable localization performance can be obtained
with “Spatial Cooperation + IMU Fusion”. Specifically, the
threshold eth is 0.11m and 0.17m at a LEO of 10−1 and
10−2, respectively. Remarkably, for eth > 0.3m the LEO is
0; (ii) the localization error is significantly reduced by spatial
cooperation. In particular, by comparing “IMU Fusion” with
“Spatial Cooperation + IMU Fusion”, it can be seen that the
eth is reduced from 0.54m to 0.11m (by 79.6%) at a LEO
of 10−1 and from 4.21m to 0.17m (by 96.0%) at a LEO
of 10−2. The reason for the performance gain of “Spatial
Cooperation + IMU Fusion” with respect to “IMU Fusion”
is that in the former configuration the agents have more
neighbor nodes available for localization; (iii) incorporating
IMU measurements also significantly reduces the localization
error. More specifically, by comparing “Spatial Cooperation”
with “Spatial Cooperation + IMU Fusion” it can be seen that
the eth is reduced from 2.92m to 0.11m (by 96.2%) at a LEO
of 10−1 and from 5.00m to 0.17m (by 96.0%) at a LEO of
10−2. The performance benefits “Spatial Cooperation + IMU
Fusion” can be explained by the fact that the agents only
makes range measurements every 32 time steps. Using “Spatial
Cooperation” the localization error accumulates rapidly during
the time period when no range measurements are performed.
In contrast, by incorporating IMU measurements as in “Spatial
Cooperation + IMU Fusion” this localization error accumula-
tion can be significantly reduced; (iv) due to the few neighbor
nodes available for localization and the high mobility of the
agents, the localization performance of “Baseline” is very
poor.

8Since SPBP needs a certain number of time steps for initialization, for the
network localization results, the first 300 times steps were not incorporate in
the LEOs evaluation.
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Fig. 6: LEO versus threshold eth for the different simulated network
localization configurations.

C. Network Operation Results

To demonstrate the benefits of network operation algo-
rithms, a heterogeneous network that consists of two UAV
classes was simulated. There are 256 UAVs in each class. The
first class performs IMU measurements with noise standard
deviations σφ = 3.3×10−5m/s2 and σω = 1.7×10−3 s−1; the
second class performs IMU measurements with noise standard
deviations σφ = 3× 10−4m/s2, and σω = 1.5× 10−2 s−1. All
other parameters are as described in Section V-A and identical
for both classes. For “Node Activation”, spatial cooperation
and IMU fusion was simulated together with the distributed
network activation algorithm described in Section IV-A2 to
control the RMU measurements. At each time step n, every
UAV determines its channel access probability ζ(n)i according
to (28) and if ζ(n)i = 1, it tries to access the channel. In a
certain step, if multiple UAVs of the same group (cf. Section
V-A) that are also in the same subnetwork try to access the
channel, only one randomly selected UAV is able to perform
an RMU measurement. As a reference method, “TDMA”
was simulated where, as in the previous Section V-B, spatial
cooperation and IMU fusion with TDMA for channel access is
performed. For both “Node Activation” and “TDMA”, M = 4
and M = 6 were considered.

In the simulated scenario, “Node Activation” has a number
of communication links related to RMU measurements that,
compared to “TDMA”, is reduced by 14.2% and 19.9% for
M = 4 and M = 6, respectively. The average number of
measurements performed per agent and per time step is 0.13
(M = 4) and 0.19 (M = 6) for TDMA and 0.11 (M = 4) and
0.15 (M = 6) for “Node-Activation”. Furthermore, consider a
UWB radio that consumes 1.7×10−4 J per range measurement
is used as RMU [16], “Node Activation” can reduce the overall
energy consumption of the network for all 1200 time steps by
2.1J for M = 4 and by 4.2J for M = 6.

Fig. 7 shows the LEOs—obtained by averaging over 100
simulation runs, 512 agents, and 1200 time steps—versus
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Fig. 7: LEO versus threshold eth for the different channel access
strategies and different M .

threshold eth for the four simulated configurations.9 The fol-
lowing two observations can be made: (i) “Node Activation”
can significantly increase localization accuracy. In particular,
at a LEO of 10−2, eth is reduced from 7.18m to 2.29m,
i.e., by 68.1% for M = 4 and from 6.42m to 0.85m,
i.e., by 86.8% for M = 6. This is because with “Node
Activation”, UAVs in the second class tend to perform more
range measurements compared to the ones in the first class,
so they can compensate for their larger IMU noise standard
deviation. In this way, “Node Activation” can also reduce
the overall localization error of the network compared to
“TDMA”, where the UAVs in both classes make the same
number of range measurements on average. Note that the
improvement in localization performance is most significant
at the first time steps, during the initialization phase of the
algorithm; (ii) incrementing M from 4 to 6 results in a
localization error reduction that is small compared to the
reduction related to performing “Node Activation” instead
of “TDMA”. In particular, “Node Activation” for M = 4
performs significantly better then “TDMA” for M = 6. Thus it
can be noted that a smart activation of agents can compensate
for a low number of neighboring nodes.

VI. FINAL REMARK

The scale and heterogeneity of Internet-of-Things (IoT)
networks calls for a new class of localization algorithms. In
this paper, we presented network localization and navigation
(NLN), a paradigm that introduces scalable and distributed
techniques for multi-sensor fusion in the IoT. NLN can
provide technology-agnostic algorithms for IoT networks that
exploit spatiotemporal cooperation to reduce the amount of
required infrastructure. It also leads to the development of
intelligent network operation strategies that allocate localiza-
tion resources (e.g., transmission power and channel access

9Note that the “Spatial Cooperation + IMU Fusion” results in Fig. 6
correspond to the identical scenario as the “TDMA, M = 6” results in Fig. 7.
However, contrary to Fig. 6, in Fig. 7 all 1200 time steps are considered.
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opportunity) to extend the energy consumption of devices and
to increase the localization accuracy. Localization performance
and saving in terms of communication costs and energy
consumption have been demonstrated in a case study with five
hundreds of mobile agents that aim to infer their location and
their orientation in 3-D space. In particular, “Node Activation”
significantly reduced energy consumption and at the same time
increases the localization performance of the network. These
results consolidated that in IoT applications localization and
navigation performance can be strongly increased by multi-
sensor fusion and cooperation among devices.
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