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Machine Learning From Distributed, Streaming Data

The field of machine learning has 
undergone radical transforma-
tions during the last decade. These 

transformations, which have been fueled 
by our ability to collect and generate 
tremendous volumes of training data 
and leverage massive amounts of low-
cost computing power, have led to an 
explosion in research activity in the field 
by academic and industrial researchers. 
Unlike many other disciplines, advances 
in machine learning research are being 
rapidly adopted by industry and are 
beginning to disrupt fields ranging from 
health care [1], journalism [2], and the 
retail industry [3] to wireless communica-
tions [4], supply-chain management [5], 
and the automotive industry [6]. 

In many of the up-and-coming appli-
cations of machine learning in these 
and other fields, such as connected and/
or autonomous vehicles, smart grids, 
edge-caching wireless networks, cloud 
computing, and urban policing, data are 
increasingly distributed and are also 
often streaming. Training predictive 
models in this distributed, streaming set-
ting requires a rethinking of off-the-shelf 
machine learning solutions. A number 
of academic and industrial researchers 
have recognized the need for this in the 
last few years; the resulting solutions 
leverage algorithmic and analytical tools 
from a number of research areas that cut 
across multiple disciplines [7]–[10]. 

Many of these tools, such as stochastic 
approximation [11], [12], online learning 
[13], [14], distributed optimization [15], 
[16], and decentralized computing [17], 
have been the mainstay of signal pro-
cessing researchers for more than a few 
decades. IEEE Signal Processing Maga-
zine (SPM), therefore, 
is one of the best 
forums for archiving 
the latest advances 
in machine learning 
from data that are dis-
tributed, streaming, 
or both distributed 
and streaming and 
for discussing many of the open chal-
lenges that remain to be solved for the 
broad adoption of machine learning tools 
across a large number of industries that 
are expected to routinely deal with large 
volumes of distributed and/or streaming 
data sets.

An overview of the special issue
This special issue of SPM on distrib-
uted, streaming machine learning 
presents recent advances in several 
topic areas that pertain to the training 
of machine learning models from data 
that are distributed, streaming, or both 
distributed and streaming. A particular 
emphasis of the articles in the special 
issue is to provide readers with an entry 
point into algorithmic and analytical 
techniques that may be relevant to the 
industry for the emerging era of real-
time, decentralized, and autonomous 
decision making. In particular, the 13 

articles not only focus on potentially 
disruptive techniques that may form the 
core of future machine learning driven 
systems, but they also cover techniques 
that are already being adopted by prac-
titioners. These articles, authored by 
leading researchers in industry and 

academia, can be 
broadly categorized 
into seven intercon-
nected themes within 
distributed, stream-
ing machine learn-
ing, with some of 
the articles spanning 
mult iple  t hemes. 

These themes and their connections to 
the different overview articles appear-
ing in the special issue are summarized 
as follows.

Distributed learning
While future machine learning sys-
tems will revolve around a number 
of technological themes, there is one 
paradigm that is expected to form the 
core of many future systems. This 
paradigm, referred to as distributed 
learning, corresponds to an intercon-
nected network of devices/nodes/sites 
in which each entity has its own set of 
training data, and the goal is to train a 
global model that is as accurate as if it 
had been trained on a single machine 
that has access to the entire collection 
of data samples. This paradigm, which 
is already being extensively explored 
by academic and industrial researchers, 
typically arises in applications either 
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streaming setting requires 
a rethinking of off-the-
shelf machine learning 
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where sharing of raw data between dif-
ferent entities cannot take place due to 
communications or privacy constraints 
or where the learning task necessarily 
must be broken across multiple entities 
due to computational, memory, and/
or storage constraints. The articles by 
Nassif et al., Chang et al., and Cui et al. 
introduce readers to various aspects of 
machine learning, which range from 
general convex and nonconvex learning 
to the training of specific large-scale 
models for automatic speech recognition, 
under this distributed-learning paradigm.

Federated learning
The federated-learning paradigm is 
somewhat similar to the distributed-
learning paradigm in that the data are 
still distributed across different entities. 
Unlike the distributed-learning para-
digm, however, these different entities 
(e.g., cell phones, wearable devices, 
and so on) do not communicate among 
themselves due to trust issues and/or 
communications challenges and do not 
transfer raw data to the cloud due to 
privacy concerns. Instead, in federated 
learning, each entity locally updates 
the global model using its local data 
and then shares the updated model 
with a centralized entity, which inter-
mittently passes that model to other 
entities for further updates and refine-
ments of the global model. The feder-
ated-learning paradigm is increasingly 
gaining popularity, especially within 
web 2.0 companies, due to privacy rea-
sons. The article by Li et al. provides 
an overview of the unique character-
istics and challenges associated with 
federated-learning systems.

Learning from streaming data
Streaming is another aspect of mod-
ern data sets that will occupy a central 
place in future machine learning sys-
tems. Indeed, many future applications 
of machine learning are expected to 
involve data sources that continuously 
generate data, either at a constant or at a 
variable rate. Streaming in conjunction 
with distributed data sets create addi-
tional unique challenges that require 
redesign of many machine learning 
algorithms. The articles by Koppel et al., 

Dall’Anese et al., and Xu and Zhao 
discuss myriad challenges and the cor-
responding solutions associated with 
learning from (distributed) data streams 
under scenarios that range from non-
parametric learning and learning in 
dynamic environments to distributed 
learning in repeated unknown games.

Distributed optimization  
for machine learning
Since optimization methods form the 
bedrock of most machine learning 
algorithms, distributed optimization is 
expected to play a major role in machine 
learning systems that involve distrib-
uted data sets. It is in this context that 
three articles are devoted to a survey of 
various aspects of distributed optimi-
zation that have implications for future 
machine learning systems. In particular, 
the article by Nedić provides an over-
view of distributed-gradient methods 
for convex learning problems, the article 
by Xin et al. discusses stochastic first-
order methods for distributed machine 
learning, and the article by Pu et al. 
explores the role of network topology in 
distributed stochastic optimization for 
machine learning.

Distributed reinforcement learning
Another subdomain of machine learning 
systems that will increasingly have to 
deal with streaming, distributed data sets 
is reinforcement learning. Roughly, the 
basic problem in reinforcement learn-
ing, which has a strong overlap with con-
trol theory, is to take “actions” based on 
observed data that maximize some notion 
of a “reward.” Unlike control theory, 
however, system dynamics are assumed 
to be unknown in reinforcement learn-
ing, and the actor/agent must rely solely 
on observations for implicit “learning” of 
the dynamics. Distributed reinforcement 
learning, in which the streaming obser-
vations are also distributed, is almost 
certain to take center stage in so-called 
multiagent systems that are abstractions 
of applications, such as autonomous 
vehicular networks, autonomous robot 
swarms, and so on. The article by Lee  
et al. provides readers with an overview 
of this emerging area of distributed rein-
forcement learning.

Coding theory for computations in 
distributed machine learning
Practical implementations of large- 
scale distributed machine learning frame-
works capable of handling massive data 
sets also require advances in coding 
theory for robustness against read/write 
(storage) errors, computation errors, 
component failures, communication 
bottlenecks, and so on. In much the 
same way as coding-theory techniques 
enabled the operation of communication 
systems closer to information theoretic 
limits, it is expected that a new genera-
tion of codes designed for distributed 
machine learning will enable operation 
of distributed processing systems closer 
to their theoretical limits. It is in this 
vein that the article by Ramamoorthy 
et al. acquaints the reader with the use 
of coding theory to mitigate the effects 
of stragglers, defined as slow or failed 
worker nodes in the system, in distrib-
uted matrix computations.

Distributed adversarial  
machine learning
Given that machine learning systems 
are expected to be used in critical 
applications (e.g., management of a 
nation’s power infrastructure and fleets 
of autonomous vehicles), their robust-
ness and security against adversarial 
actions and malicious actors become 
paramount. While the initial focus 
in this direction has mostly been on 
centralized problems, recent works 
have started to develop and analyze 
algorithms for distributed machine 
learning systems that can deal with 
unreliable data, malicious actors, and 
cyberattacks on individual entities in 
the network. The article by Yang et al. 
surveys recent developments pertain-
ing to distributed adversarial machine 
learning under the threat model of 
“Byzantine attacks.”
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