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Abstract

This article reviews recent advances in multi-agent reinforcement learning algorithms for large-

scale control systems and communication networks, which learn to communicate and cooperate. We

provide an overview of this emerging field, with an emphasis on the decentralized setting under different

coordination protocols. We highlight the evolution of reinforcement learning algorithms from single-agent

to multi-agent systems, from a distributed optimization perspective, and conclude with future directions

and challenges, in the hope to catalyze the growing synergy among distributed optimization, signal

processing, and reinforcement learning communities.

I. INTRODUCTION

Fueled with recent advances in deep neural networks, reinforcement learning (RL) has been in the

limelight for many recent breakthroughs in artificial intelligence, including defeating humans in games

(e.g., chess, Go, StarCraft), self-driving cars, smart home automation, service robots, among many others.

Despite these remarkable achievements, many basic tasks can still elude a single RL agent. Examples

abound from multi-player games, multi-robots, cellular antenna tilt control, traffic control systems, smart

power grids to network management.

Often, cooperation among multiple RL agents is much more critical: multiple agents must collaborate

to complete a common goal, expedite learning, protect privacy, offer resiliency against failures and

adversarial attacks, and overcome the physical limitations of a single RL agent behaving alone. These tasks

are studied under the umbrella of cooperative multi-agent RL (MARL), where agents seek to learn optimal

policies to maximize a shared team reward, while interacting with an unknown stochastic environment

and with each other. Cooperative MARL is far more challenging than the single-agent case due to: i)

the exponentially growing search space, ii) the non-stationary and unpredictable environment caused by
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the agents’ concurrent yet heterogeneous behaviors, and iii) the lack of central coordinators in many

applications. These difficulties can be alleviated by appropriate coordination among agents.

The cooperative MARL can be further categorized into subclasses depending on the information

structure and types of coordination, such as how much information (e.g., state, action, reward, etc.)

is available for each agent, what kinds of information can be shared among the agents, and what kinds

of protocols (e.g., communication networks, etc.) are used for coordination. When only local partial

state observation is available for each agent, the corresponding multi-agent systems are often described

through decentralized partially observable Markov decision processes (MDP), or DEC-POMDP for short,

for which the decision problem is known to be extremely challenging. In fact, even the planning problem of

DEC-POMDPs (with known models) is known to be NEXT-complete [1]. Despite some recent empirical

successes [2]–[4], finding an exact solution of Dec-POMDPs using RLs with theoretical guarantees

remains an open question.

When full state information is available for each agent, we call agents joint action learners (JALs)

if they also know the joint actions of other agents, and independent learners (ILs) if agents only know

their own actions. Learning tasks for ILs are still very challenging, since each agent sees other agents

as parts of the environment, so without observing the internal states, including other agents actions, the

problem essentially becomes non-Markovian [5] and a partially observable MDP (POMDP). It turns out

that optimal policy can be found under restricted assumptions such as deterministic MDP [6], and for

general stochastic MDPs, several attempts have demonstrated empirical successes [7]–[9]. For a more

comprehensive survey on independent MARLs, the reader is referred to the survey [6].

The form of rewards, either centralized or decentralized, also makes a huge difference in multi-agent

systems. If every agent receives a common reward, the situation becomes relatively easy to deal with.

For instance, JALs can perfectly learn exact optimal policies of the underlying decision problem even

without coordination among agents [10]. The more interesting and practical scenario is when rewards

are decentralized, i.e., each agent receives its own local reward while the global reward to be maximized

is the sum of local rewards. This decentralization is especially important when taking into account the

privacy and resiliency of the system.

Clearly, learning without coordination among agents is impossible under decentralized rewards. This

article focuses on this important subclass of cooperative MARL with decentralized rewards, assuming

the full state and action information is available to each agent. In particular, we consider decentralized

coordination through network communications characterized by graphs, where each node in the graph

represents each agent and edges connecting nodes represent communication between them.

Distributed optimization rises to the challenge by achieving global consensus on the optimal policy
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through only local computation and communication with neighboring agents. Recently, several important

advances have been made in this direction such as the distributed TD-learning [11], distributed Q-

learning [12], distributed actor-critic algorithm [13], and other important results [14]–[17]. These works

largely benefit from the synergistic connection between RLs and the core idea of averaging consensus-

based distributed optimization [18], which leverages averaging consensus protocols for information prop-

agation over networks and rich theory established in this field during the last decade.

In this survey, we provide an overview of this emerging field with an emphasis on optimization within

the decentralized setting (decentralized rewards and decentralized communication protocols). For this

purpose, we highlight the evolution of RL algorithms from single-agent to multi-agent systems, from

a distributed optimization perspective, in the hope to catalyze the growing synergy among distributed

optimization, signal processing, and RL communities.

In the sequel, we first revisit the basics of single-agent RL in Section II and extend to multi-agent RL

in Section III. In Section IV, we provide preliminaries of distributed optimization as well as consensus

algorithms. In Section V, we discuss several important consensus-based MARL algorithms with decen-

tralized network communication protocols. Finally, in Section VI, we conclude with future directions and

open issues. Note that our review is not exhaustive given the magazine limits; we suggest the interested

reader to further read [6], [19], [20].

II. SINGLE-AGENT RL BASICS

To understand MARL, it is imperative that we briefly review the basics of single-agent RL setting,

where only a single agent interacts with an unknown stochastic environment. Such environments are

classically represented by a Markov decision process: M := (S,A, P, r, γ), where the state-space S :=

{1, 2, . . . , |S|} and action-space A := {1, 2, . . . , |A|}, upon selecting an action a ∈ A with the current

state s ∈ S , the state transits to s′ ∈ S according to the state transition probability P (s′|s, a), and the

transition incurs a random reward r(s, a). For simplicity, we consider the infinite-horizon (discounted)

Markov decision problem (MDP), where the agent sequentially takes actions to maximize cumulative

discounted rewards. The goal is to find a deterministic optimal policy, π∗ : S → A, such that

π∗ := arg maxπ∈Θ E

[ ∞∑
k=0

γkr(sk, π(sk))

]
, (1)

where γ ∈ [0, 1) is the discount factor, Θ is the set of all admissible deterministic policies, and

(s0, a0, s1, a1, . . .) is a state-action trajectory generated by the Markov chain under policy π. Solving

MDPs involves two key concepts associated with the expected return:
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1) V π(s) := E
[∑∞

k=0 γ
kr(sk, π(sk))|s0 = s

]
is called the (state) value function for a given policy π,

which encodes the expected cumulative reward when starting in the state s, and then, following the

policy π thereafter.

2) Qπ(s, a) := E
[∑∞

k=0 γ
kr(sk, π(sk))|s0 = s, a0 = a

]
is called the state-action value function or Q-

function for a given policy π, which measures the expected cumulative reward when starting from

state s, taking the action a, and then, following the policy π.

Their optima over all possible policies are defined by V ∗(s) := maxπ:S→A V
π(s) = maxaQ

∗(s, a)

and Q∗(s, a) := maxπ:S→AQ
π(s, a), respectively. Given the optimal value functions Q∗ or V ∗, the

optimal policy π∗ can be obtained by picking an action a that is greedy with respect to V ∗ or Q∗,

i.e., π∗(s) = arg maxa Es′∼P (·|s,a)[r(s, a) + γV ∗(s′)] or π∗(s) = arg maxaQ
∗(s, a), respectively. When

the MDP instance, M, is known, then it can be solved efficiently via dynamic programming (DP)

algorithms. Based on the Markov property, the value function V π for a given policy π, satisfies the

Bellman equation: V π(s) = Es′∼P (·|s,π(s)) [r(s, π(s)) + γV π(s′)]. The similar property holds for Qπ

as well. Moreover, the optimal Q-function Q∗, satisfies the Bellman optimality equation, Q∗(s, a) =

Es′∼P (·|s,a) [r(s, a) + maxa′ γQ∗(s′, a′)]. Various DP algorithms, such as the policy and value iterations,

are obtained by turning the Bellman equations into update rules.

A. Classical RL Algorithms

Many classical RL algorithms can be viewed as stochastic variants of DPs. This insight will be key

for scaling MARL in the sequel. The temporal-difference (TD) learning is a fundamental RL algorithm

to estimate the value function of a given policy π (called as policy evaluation method):

Vk+1(sk) = Vk(sk) + αk(r(sk, π(sk)) + γVk(sk+1)− Vk(sk)), (2)

where sk ∼ dπ, sk+1 ∼ P (·|sk, π(sk)), dπ denotes the stationary state distribution under policy π, and

αk is the learning rate (or step-size). For any fixed policy π, TD update converges to V π almost surely

(i.e., with probability 1) if the step-size satisfies the so-called Robbins-Monro rule,
∑∞

k=0 αk = ∞,∑∞
k=0 α

2
k < ∞ [21]. Although theoretically sound, the naive TD learning is only applicable to small-

scale problems as it needs to store and enumerate values of all states. However, most practical problems

we face in the real-world have large state-space. In such cases, enumerating all values in a table is

numerically inefficient or even intractable.

Using function approximations resolves this problem by encoding the value function with a param-

eterized function class, V (·) ∼= V (·; θ). The simplest example is the linear function approximation,
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V (·; θ) = Φθ, where Φ = [φ(1); · · · ;φ(|S|)]> ∈ R|S|×n is a feature matrix, and φ : S → R is a pre-

selected feature mapping. TD learning update with linear function approximation is written as follows

θk+1 = θk + αk(r(sk, π(sk)) + γφ(sk+1)T θk − φ(sk)
T θk)φ(sk). (3)

The above update is known to converge to θ∗ almost surely [22], where θ∗ is the solution to the projected

Bellman equation, provided that the Markov chain with transition matrix P π (state transition probability

matrix under policy π) is ergodic and the step-size satisfies the Robbins-Monro rule. Finite sample analysis

of the TD learning algorithm is only recently established in [23]–[25]. Besides the standard TD, there

also exits a wide spectrum of TD variants in the literature [26]–[29]. Note that when a nonlinear function

approximator, such as neural networks, is used, these algorithms are not guaranteed to converge.

The policy optimization methods aim to find the optimal policy π∗ and broadly fall under two camps,

with one focusing on value-based updates, and the other focusing on direct policy-based updates. There

is also a class of algorithms that belong to both camps, called actor-critic algorithms. Q-learning is one

of the most representative valued-based algorithms, which obeys the update rule

Qk+1(sk, ak) = Qk(sk, ak) + αk(r(sk, ak) + γmax
a∈A

Qk(sk+1, a)−Qk(sk, ak)), (4)

where sk ∼ dπ, sk+1 ∼ P (·|sk, πb(sk)), and πb is called the behavior policy, which refers to the policy

used to collect observations for learning. The algorithm converges to Q∗ almost surely [30] provided

that the step-size satisfies the Robbins-Monro rule, and every state is visited infinitely often. Unlike

value-based methods, direct policy search methods optimize a parameterized policy πθ from trajectories

of the state, action, reward, (s, a, r) without any value function evaluation steps, using the following

(stochastic) gradient steps:

θk+1 = θk + αk∇̂θJ(θk), where J(θ) := E

[ ∞∑
k=0

γkrπθ(sk)

]
, (5)

where ∇̂θJ(θk) is a stochastic estimate of the gradient evaluated at θk. The gradient of the value function

has the simple analytical form ∇J(θ) = Es∼dπθ ,a∼πθ [∇ log πθ(a|s)Qπθ(s, a)], which, however, needs an

estimate of the Q-function, Qπθ(s, a). The simple policy gradient method replaces Qπθ(s, a) with a Monte

Carlo estimate, which is called REINFORCE [31]. However, the high variance of the stochastic gradient

estimates due to the Monte Carlo procedure often leads to slow and sometimes unstable convergence.

The actor-critic methods combine the advantages of value-based and direct policy search methods [32]

to reduce the variance. These algorithms parameterize both the policy and the value functions, and

simultaneously update both in training

Critic update : wk+1 = wk + αk(r(sk, ak) + γQ(sk+1, ak+1;wk)−Q(sk, ak;wk))∇wQ(sk, ak;wk)
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Actor update : θk+1 = θk + βkQ(sk, ak;wk)∇θ log π(ak|sk; θk),

where wk and θk are parameters of the value and policy, respectively. They often exhibit better empiri-

cal performance than value-based or direct policy-based methods alone. Nonetheless, when (nonlinear)

function approximation is used, the convergence guarantees of all these algorithms remain rather elusive.

B. Modern Optimization-based RL Algorithms

Leveraging the optimization perspectives of RLs, recent works (see, e.g., [26], [28], [29], [33]–

[35]) generate new principles for solving RL problems as we transition from linear towards nonlinear

function approximations as well as establish theoretical guarantees based on rich theory in mathematical

optimization literature.

To build up an understanding, we first recall the linear programming (LP) formulation of the planning

problem [36]

min
V

µTV subject to Ra + γPaV ≤ V, ∀a ∈ A, (6)

where µ is the initial state distribution, Ra ∈ R|S| is the expected reward vector, and Pa ∈ R|S|×|S| is

the state transition probability matrix given action a. The constraints in this LP naturally arise from the

Bellman equations. It is known that the solution to (6) is the optimal state-value function V ∗, and that

the solution to the dual of (6) yields the optimal policy. By exploiting the Lagrangian duality, the optimal

value function and optimal policy can be found through solving the min-max problem:

min
V ∈V

max
λ=(λa)a∈A∈Λ

L(V, λ) := µTV +
∑
a∈A

λTa (Ra + γPaV − V ), (7)

where sets V and Λ are properly chosen domains that restrict on the optimal value function and policy.

Building on this min-max formulation, several recent works introduce efficient RL algorithms for

finding the optimal policy. For instance, the stochastic primal-dual RL (SPD-RL) in [33] solves the

min-max problem (7) with the stochastic primal-dual algorithm

Vk+1 = ΠV(Vk − γk∇̂V L(Vk, λk)), λk+1 = ΠΛ(λk + γk∇̂λL(Vk, λk)),

where ∇̂V L and ∇̂λL are unbiased stochastic gradient estimations, which are obtained by using samples

of (s, a, r, s′), ΠV and ΠΛ stand for the projection operators onto the sets V and Λ. Since these gradients

are obtained based on the samples, the updates can be executed without the model knowledge. The

SPD Q-learning in [35] extends it to the Q-learning framework with off-policy learning, where the

sample observations are collected from some time-varying behavior policies. The dual actor-critic in [37]

generalizes the setup to continuous state-action MDP and exploits nonlinear function approximations

for both value function and the dual policy. These primal-dual type algorithms resemble the classical
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actor-critic methods by simultaneously updating the value function and policy, yet in a more efficient

and principled manner.

Apart from the LP formulation, alternative nonlinear optimization frameworks based on the fixed

point interpretation of Bellman equations have also been explored, both for policy evaluation and policy

optimization. To name a few, Baird’s residual gradient algorithm [38], designed for policy evaluation,

aims for minimizing the mean-squared Bellman error, i.e.,

min
θ

MSBE(θ) := Es[(Es′ [r(s, π(s)) + γφT (s′)θ]− φT (s)θ)2] = min
θ
‖Rπ + γPπΦθ − Φθ‖2D, (8)

where Rπ and Pπ are the expected reward vector and state transition probability matrix under policy π,

respectively, Φ is the feature matrix, D is a diagonal matrix with diagonal entries being the stationary

state distributions, and ‖x‖D :=
√
xTDx. The gradient TD (GTD) [26] solves the projected Bellman

equation, Φθ = Π(Rπ + αPπΦθ), by minimizing the mean-square projected Bellman error,

min
θ

MSPBE(θ) := ‖Π(Rπ + γPπΦθ)− Φθ‖2D , (9)

where Π is the projection onto the range of the feature matrix Φ. This is largely driven by the fact that

most temporal-difference learning algorithms converge to the minimum of MSPBE. However, directly

minimizing these optimization objectives (8) and (9) can be challenging due to the double sampling issue

and computational burden for the projections. Here, the double sampling issue means the requirement

of double samples of the next stats from the current state to obtain an unbiased stochastic estimate of

gradients of the objective mainly due to its quadratic nonlinearity. Alternatively, [28], [39] get around this

difficulty by resorting to min-max reformulations of the MSBE and MSBPE and introduce primal-dual

type methods for policy evaluation with finite sample analysis. Similar ideas have also been employed for

policy optimization based on the (softmax) Bellman optimality equation; see, e.g., [34] (called Smoothed

Bellman Error Embedding (SBEED) algorithm).

Compared to the classical RL approaches, the optimization-based RLs exhibit several key advantages.

First, in many applications such as robot control, the agents’ behaviors are required to mediate among

multiple different objectives. Sometimes, those objectives can be formulated as constraints, e.g., safety

constraints. In this respect, optimization-based approaches are more extensible than the traditional dynamic

programming-based approaches when dealing with policy constraints. Second, existing optimization

theory provides ample opportunities in developing convergence analysis for RLs with and without function

approximations; see, e.g., [33], [34]. More importantly, these methods are highly generalizable to the

multi-agent RL setup with decentralized rewards, when integrated with recent fruitful advances made in

distributed optimization. This last aspect is our main focus in this survey.
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III. FROM SINGLE-AGENT TO MULTI-AGENT RLS

Cooperative MARL extends the single-agent RL to N agents, V = {1, 2, . . . , N}, where the system’s

behavior is influenced by the whole team of simultaneously and independently acting agents in a common

environment. This can be further classified into MARLs with centralized rewards and decentralized

rewards.

A. MARL with Centralized Rewards

We start with MARLs with centralized rewards, where all agents have access to a central reward. In

this setting, a multi-agent MDP can be characterized by the tuple, (S, {Ai}Ni=1, P, r, γ). Each agent i

observes the common state s and executes action ai ∈ Ai inside its own action set Ai according to its

local policy πi : S → Ai. The joint action a := (a1, a2, . . . , aN ) ∈ A := A1× · · · ×AN causes the state

s ∈ S to transit to s′ ∈ S with probability P (s′|s, a), and the agent receives the common reward r(s, a).

The goal for each agent is to learn a local policy πi∗ : S → Ai, i ∈ V such that (π1
∗, π

2
∗, . . . , π

N
∗ ) =: π∗

is an optimal central policy.

Suppose each agent i ∈ V receives the central reward r and knows the joint state and action pair

(s, a) ∈ S × A (i.e., agents are JALs). Cooperative MARL, in this case, is straightforward because

all agents have full information to find an optimal solution. As an example, a naive application of the

Q-learning [40] to multi-agent settings is

Qik+1(sk, ak) = Qik(sk, ak) + αk

{
r(sk, ak) + γmax

a∈A
Qik(sk+1, a)−Qik(sk, ak)

}
,

where each agent keeps its local Q-function Qi : S ×A → R. In particular, it is equivalent to the single-

agent Q-learning executed by each agent in parallel, and Qik → Q∗ as k → ∞ almost surely for all

i ∈ V; thereby πik(·) = arg maxaQ
i
k(·, a)→ πi∗(·). Similarly, the policy search methods and actor-critic

methods can be easily generalized to MARL with JALs [41]. In such a case, coordination among agents

is unnecessary to learn the optimal policy. However, in practice, each agent may not have access to the

global rewards due to limitations of communication or privacy issues; as a result, coordination protocols

are essential for achieving the optimal policy corresponding to the global reward.

B. Networked MARL with Decentralized Reward

The main focus of this survey is on MARLs with decentralized rewards, where each agent only receives

a local reward, and the central reward function is characterized as the average of all local rewards. The

goal of each agent is to cooperatively find an optimal policy corresponding to the central reward by

sharing local learning parameters over a communication network.
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More formally, a coordinated multi-agent MDP with a communication network (i.e., networked MA-

MDP) is given as the tuple, (S, {Ai}Ni=1, P, {ri}Ni=1, γ,G), where ri(s, a) is the random reward of agent

i given action a and the current state s, and G = (V, E) is an undirected graph (possibly time-varying

or stochastic) characterizing the communication network. Each agent i observes the common state s,

executes action ai ∈ Ai according to its local policy πi : S → Ai, receives the local reward ri(s, a),

and the joint action a := (a1, a2, . . . , aN ) causes the state s ∈ S to transit to s′ ∈ S with probability

P (s′|s, a). The central reward is defined as r = 1
N

∑N
i=1 r

i. In the course of learning, each agent receives

learning parameters {θj}j∈Ni from its neighbors of the communication network. The overall model is

illustrated as in Figure 1.

Fig. 1. Coordinated multi-agent MDP with communication network

For an illustrative example, we consider a wireless sensor network (WSN) [42], where data packets are

routed to the destination node through multi-hop communications. The WSN is represented by a graph

with N nodes (routers), and edges connecting nodes whenever two nodes are within the communication

range of each other. The route’s QoS performance (quality of service) depends on the decisions of all

nodes. Below we formulate the WSN as a networked MA-MDP.

Example 1 (WSN as a networked MA-MDP). The WSN is a multi-agent system, where sensor nodes are

agents. Each agent takes action ai ∈ A, which consists of forwarding a packet to one of its neighboring

node j ∈ Ni, sending an acknowledgment message (ACK) to the predecessor, dropping the data packet,

where Ni is the set of neighbors of the node i. The global state s = (s1, s2, . . . , sN ) is a tuple of local

states si, which consists of the set of is neighboring nodes, and the set of packets encapsulated with QoS
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Fig. 2. Routing protocol for wireless sensor networks

requirement. A simple example of the reward is r(s, a) :=
∑N

i=1 r
i(si, ai), where

ri(si, ai) :=

1 if ACK received

0 otherwise

The reward measures the quality of local routing decisions in terms of meeting with QoS requirements.

Each agent only has access to its own reward, which measures the quality of its own routing decisions

based on the QoS requirements, while the efficiency of overall tasks depends on a sum of local rewards.

If each node knows the global state and action (s, a), then the overall system is a networked MA-MDP.

Finding the optimal policy for networked MA-MDPs naturally relates to one of the most fundamental

problems in decentralized coordination and control, called the consensus problem. In the sequel, we first

review the recent advances in distributed optimization and consensus algorithms, and then march forward

to the discussions of recent developments for cooperative MARL based on consensus algorithms.

IV. DISTRIBUTED OPTIMIZATION AND CONSENSUS ALGORITHMS

In this section, we briefly introduce several fundamental concepts in distributed optimization, which

are the backbone of distributed MARL algorithms to be discussed.

A. Consensus

Consider a set of agents, V = {1, 2, . . . , N}, each with some initial values, xi(0) ∈ Rn. The agents are

interconnected over an underlying communication network characterized by a graph G = (V, E), where

E ⊂ V ×V is a set of undirected edges, and each agent has a local view of the network, i.e., each agent

i ∈ V is aware of its immediate neighbors, Ni, in the network, and communicates with them only.
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The goal of the consensus problem is to design a distributed algorithm that the agents can execute

locally to agree on a common value as they refine their estimates. The algorithm must be local in the

sense that each agent performs its own computations and communicates with its immediate neighbors

only. Formally speaking, the agents are said to reach a consensus if

lim
k→∞

xi(k) = c, ∀i ∈ V, (10)

for some c ∈ Rn and for every set of initial values xi(0) ∈ Rn. For ease of notation, we consider the

scalar case, n = 1, from now on.

A popular approach to the consensus problem is the distributed averaging consensus algorithm [43]

xi(k + 1) =
1

|Ni|+ 1

∑
j∈Ni∪{i}

xj(k), ∀k ≥ 0. (11)

The averaging update is executed by local agent i, as it only receives values of its neighbors, xj(k), j ∈ Ni,

and is known to ensure consensus provided that the graph is connected. Note that an undirected graph

G is connected if there is a path connecting every pair of two distinct nodes. Using matrix notations, we

can compactly represent (11) as follows

x(k + 1) = Wx(k), ∀k ≥ 0, (12)

where x(k) is a column vector with entries, xi(k), i = 1, 2, . . . , N , and W is the weight matrix associated

with (11) such that [W ]ij := 1
|Ni|+1 if j ∈ Ni ∪ {i} and zero otherwise. Here, [W ]ij means the element

in the i-th row and j-th column of the matrix W .

The matrix W is a stochastic matrix, i.e., it is nonnegative, and its row sums are one. Hence, W k

converges to a rank one stochastic matrix, i.e., limk→∞W
k = 1nv

T , where v is the unique (normalized)

left-eigenvector of W for eigenvalue 1 with ‖v‖1 = 1 and 1n is an n-dimensional vector with all

entries equal to one. Since x(k) = W kx(0), ∀k ≥ 0, we have limk→∞ x(k) = (vTx(0))1n, implying the

consensus.

B. Distributed optimization with averaging consensus

Consider a multi-agent system connected over a network, where each agent i has its own (convex) cost

function, fi : Rn → R. Let F (x) :=
∑

i∈V fi(x) be the system objective that the agents want to minimize

collectively. The distributed optimization problem is to solve the following optimization problem:

min
x∈Rn

F (x) :=

N∑
i=1

fi(x) subject to x ∈ X , (13)
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where X ⊆ Rn represents additional constraints on the variable x. By introducing local copies x1, x2, . . . , xN ,

it is equivalently expressed as

min
x1∈X ,··· ,xN∈X

F (x) :=

N∑
i=1

fi(x
i) subject to x1 = x2 = · · · = xN . (14)

The distributed averaging consensus algorithm can be generalized to solve the distributed optimization.

An example is the consensus-based distributed subgradient method [44], where each agent i updates its

local variable xi(k) according to

Consensus step : wik+1 =
1

|Ni|+ 1

∑
j∈Ni∪{i}

xjk,

Subgradient descent step : xik+1 = ΠX [wik+1 − αk∂fi(wik+1)],

where ∂fi is any subgradient of fi and ΠX is the Euclidean projection onto the constraint set X .

The algorithm is a simple combination of the averaging consensus and the classical subgradient method.

As in the averaging consensus, the update is executed by local agent i, and it only receives the values of

its neighbors, xjk, j ∈ Ni. When all cost functions are convex, it is known that local variables, xik, reach

a consensus and converge to a solution to (14), x∗ ∈ X , under properly chosen step-sizes.

Other distributed optimization algorithms include the EXTRA [45] (exact first-order algorithm for

decentralized consensus optimization), push-sum algorithm [46] for directed graph models, gossip-based

algorithm [47], and etc. A comprehensive and detailed summary of the distributed optimization can be

found in the monograph [18].

C. Distributed min-max optimization with averaging consensus

To put it one step further, distributed averaging consensus algorithm can also be generalized to solve

the min-max problem in a distributed fashion. The distributed min-max optimization problem deals with

the zero-sum game:

min
x∈X

max
λ∈Λ

L(x, λ) :=

N∑
i=1

Li(x, λ), (15)

where L : Rn × Rm → R is a convex-concave function and L is separable. By introducing local copies

x1, x2, . . . , xN , λ1, λ2, · · · , λN , the min-max problem is equivalently expressed as

min
x1,...,xN∈X

max
λ1,...,λN∈Λ

N∑
i=1

Li(xi, λi) s.t. x1 = x2 = · · · = xN , λ1 = λ2 = · · · = λN . (16)

Similar to the distributed subgradient method, the distributed primal-dual algorithm works by performing

averaging consensus and sugradient descent for the local variable xi(k) and λi(k) of each agent:

Consensus step : xik+1/2 =
1

|Ni|+ 1

∑
j∈Ni∪{i}

xjk, λik+1/2 =
1

|Ni|+ 1

∑
j∈Ni∪{i}

λjk,
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Primal-dual step : xik+1 = ΠX [xik+1/2 − αk∂xLi(x
i
k+1/2, λ

i
k+1/2)],

λik+1 = ΠΛ[λik+1/2 − βk∂λLi(x
i
k+1/2, λ

i
k+1/2)]

where αk and βk are step-sizes, ∂xLi and ∂λLi are any subgradients of Li(x, λ) with respect to x and λ,

respectively, and ΠX and ΠΛ are the Euclidean projection onto the constraint sets X and Λ, respectively.

The distributed primal-dual algorithm and other variants have been well studied in [48]–[50].

V. NETWORKED MARL WITH DECENTRALIZED REWARDS

In this section, we focus on networked MARL with decentralized rewards, where the corresponding

networked MA-MDP is described by the tuple, (S, {Ai}Ni=1, P, {ri}Ni=1, γ,G). The goal of each agent is

to cooperatively find an optimal policy corresponding to the central reward, r = (r1 + r2 + · · ·+ rN )/N ,

by sharing local learning parameters over a communication network characterized by graph G = (V, E).

Decentralized rewards are common in practice when multiple agents cooperate to learn under sensing

and physical limitations. Consider multiple robots navigating and executing multiple tasks in geometrically

separated regions. The robots receive different rewards based on the space they reside in. Decentralized

rewards are also particularly useful when MARL agents cooperate to learn an optimal policy securely

due to privacy considerations. For instance, if we do not want to reveal full information about the policy

design criterion to an RL agent to protect privacy, a plausible approach is to operate multiple RL agents,

and provide each agent with only partial information about the reward function. In this case, no single

agent alone can learn the optimal policy corresponding to the whole environment, without information

exchange among other agents. Most recent algorithms to be discussed in this section, including [11]–[17],

[51], [52], apply the distributed averaging consensus algorithm introduced in Section IV in one way or

another. We now discuss these algorithms in details below, with a brief summary provided in Table I.

A. Distributed Policy Evaluation

The goal of distributed policy evaluation is to evaluate the central value function

V π(s) = E

[ ∞∑
k=0

γk
1

N

N∑
i=1

riπ(sk)

∣∣∣∣∣ s0 = s

]
in a distributed manner. The information available to each agent is (s, ri, {θj}j∈Ni), where {θj}j∈Ni
represents the set of learning parameters agent i receives from its neighbors over the communication

network, and Ni is the set of all neighbors of node i over the graph G. Note that for policy evaluation

with state value function V , the information a or ai is not necessary, thereby it is not indicated in the

information set (s, ri, {θj}j∈Ni).
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TABLE I

COOPERATIVE MARL WITH DECENTRALIZED REWARDS AND COMMUNICATION NETWORKS (LFA: LINEAR FUNCTION

APPROXIMATION; NFA: NONLINEAR FUNCTION APPROXIMATION; N/A: NOT APPLICABLE

Papers Availability

of actions

Reward Function

Approx.

Convergence

Policy Evaluation

Doan et al. [11]

N/A Decentralized

LFA Yes

Wai et al. [16] LFA Yes

Lee [17] LFA Yes

Macua et al. [51]
N/A Centralized

LFA Yes

Stanković et al. [52] LFA Yes

Policy Optimization

Kar et al. [12] JAL

Decentralized

Tabular Yes

Zhang et al. [13] JAL LFA, NFA Yes

Zhang et al. [14] JAL LFA, NFA Local

Qu et al. [15] JAL NFA Local

The distributed TD-learning [11] executes the following local updates of agent i:

θi ← 1

|Ni|+ 1

∑
j∈Ni∪{i}

θj

︸ ︷︷ ︸
Mixing term

+ γ(ri(s, π(s)) + γφ(s′)T θi − φ(s)T θi)φ(s)︸ ︷︷ ︸
TD update

,

where each agent i keeps its local parameter θi. The algorithm resembles the consensus-based distributed

subgradient method in Section IV-B. The first term, dubbed as the mixing term, is an average of local

copies of the learning parameter of neighbors, Ni, received from communication over networks, and

controls local parameters to reach a consensus. The second term, referred to as the TD update, follows

the standard TD updates. Under suitable conditions such as the graph connectivity, each local copy, θi,

converges to θ∗ in expectation and almost surely [11], where θ∗ is the optimal solution found by the

single-agent TD learning acting on the central reward.

B. Distributed Policy Optimization

The goal of distributed policy optimization is to cooperatively find an optimal central policy corre-

sponding to the central reward, r. Note that the distributed TD-learning in the previous section only

finds the state value function under a given policy. The averaging consensus idea can also be extended

to Q-learning and actor-critic algorithms for finding the optimal policy for networked MARL.
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The distributed Q-learning in [12] locally updates the Q-function according to

Qi(s, a)←Qi(s, a)− η(s, a)
∑

j∈Ni∪{i}

(Qi(s, a)−Qj(s, a))

︸ ︷︷ ︸
Mixing term

+ α(s, a) (ri(s, a) + γmax
a′∈A

Qi(s′, a′)−Qi(s, a))︸ ︷︷ ︸
Q−learning update

,

where i is the agent index, η(s, a) and α(s, a) are learning rates (or step-sizes) depending on the number of

instances when (s, a) is encountered. The information available to each agent is (s, a, ri, {Qj}j∈Ni∪{i}).

The overall diagram of the distributed Q-learning algorithm is given in Figure 3. Each agent i keeps

the local Q-function, Qi, and the mixing term consists of Q-functions of neighbors received from

communication networks. It has been shown that each local Qi reaches a consensus and converges

to Q∗ almost surely [12] with suitable step-size rules and under assumptions such as the connectivity of

the graph and an infinite number of state-action visits.

Fig. 3. Diagram of distributed Q-learning algorithm in [12]. Here the joint-action ak is chosen by a behavior policy πb.

The distributed actor-critic algorithm in [13] generalizes the single-agent actor-critic to networked

MA-MDP settings where the averaging consensus steps are taken for the value function parameters

Critic update : θik+1/2 = θik + αk(r
i(sk, ak) + γQ(sk+1, ak+1; θik)−Q(sk, ak; θ

i
k))∇θQ(sk, ak; θ

i
k)

Actor update : wik+1 = wik + βkA(sk, ak; θ
i
k)∇wi log πiwik(sk, a

i
k)
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Mixing step : θik+1 =
1

|Ni|+ 1

∑
j∈Ni∪{i}

θjk+1/2

where wi and θi are parameters of nonlinear function approximations for the local actor and local critic,

respectively. Here A(sk, ak; θ
i
k) := Q(sk, ak; θ

i
k) −

∑
ai∈Ai π

i
wik

(sk, a
i)Q(sk, (a

1
k, . . . , a

i, . . . , aNk ); θik)

is the advantage function evaluated at (sk, ak). The overall diagram of the distributed actor-critic is

given in Figure 4. Each agent i keeps its local parameters {θi, wi}, and in the mixing step, it only

receives local parameters of the critic from neighbors. The actor and critic updates are similar to those

of typical actor-critic algorithms with local parameters. The information available to each agent is

(s, a, ri, wi, {θj}j∈Ni∪{i}). The results in [14] study a MARL generalization of the fitted Q-learning

with the information structure (s, a, ri, {θj}j∈Ni∪{i}). Compared to the tabular distributed Q-learning

in [12], the distributed actor-critic and fitted Q-learning may not converge to an exact optimal solution

mainly due to the use of function approximations.

Fig. 4. Diagram of distributed actor-critic algorithm in [13]. Here the joint-action ak is taken in on-policy manner.

C. Optimization Frameworks for Networked MA-MDP

Recall that in Section II-B, we discussed optimization frameworks of single-agent RL problem. By

integrating them with consensus-based distributed optimization, they can be naturally adapted to solve net-

worked MA-MDPs. In this subsection, we introduce some recent work in this direction, such as the value

propagation [15], primal-dual distributed incremental aggregated gradient [16], distributed GTD [17].
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The main idea of these algorithms is essentially rooted in formulating the overall MDP into a min-max

optimization problem, minx∈X maxλ∈Λ L(x, λ), with separable function L(x, λ) =
∑N

i=1 L
i(x, λ), and

solving the distributed min-max optimization problem (16). For MARL tasks, the distributed min-max

problem can be solved using stochastic variants of the distributed saddle-point algorithms in Section IV-C.

The multi-agent policy evaluation algorithms in [16] and [17] are multi-agent variants of the GTD [26]

based on the consensus-based distributed saddle-point framework for solving the mean-squared projected

Bellman error in (9), which can be equivalently converted into an optimization problem with separable

objectives:

min
θ

1

2

N∑
i=1

‖Π(Riπ + αP πΦθ)− Φθ‖2D. (17)

To alleviate the double sampling issues in GTD, the approach in [16] applies the Fenchel duality with

an additional proximal term to each objective, arriving at the reformulation:

min
{θi}Ni=1

N∑
i=1

di(θi) s.t. θ1 = θ2 = · · · = θN ,

where the local objectives are expressed as max-forms

di(θ) := max
wi
{Ji(θ, wi) := wTi (ΦTD((1/N)Riπ + αP πΦθ)− Φθ)− (1/2)wTi ΦTDΦwi + (ρ/2)‖θi‖22}.

The resulting problem can be solved by using stochastic variants of the consensus-based distributed

subgradient method akin to [53]. In particular, the algorithm introduces gradient surrogates of the objective

function with respect to the local primal and dual variables, and the mixing steps for consensus are applied

to both the local parameters and local gradient surrogates. The main idea of the primal-dual algorithm

used in [53] is briefly (with some simplifications) written by

Primal update : θik+1 =
1

|Ni|+ 1

∑
j∈Ni∪{i}

θjk︸ ︷︷ ︸
mixing term

−αĝik

Dual update : wik+1 = wik + βĥik

where α and β are step-sizes, ĝik and ĥik are surrogates of the gradients, ∇θiJi(θik, wik) and ∇wiJi(θik, wik),

respectively, from through some basic gradient tracking steps.

The multi-agent policy evaluation in [17] approaches in a different way to solve (17). Assuming each

parameter θi is scalar for simplicity, the distributed optimization (17) can be converted into

min
{θi}Ni=1

1

2

N∑
i=1

‖Π(Riπ + αP πΦθi)− Φθi‖2D + θ̄TLTLθ̄ s.t. Lθ̄ = 0,
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where θ̄ is the vector enumerating the local parameters, {θi}Ni=1, and L = LT ∈ RN is the graph

Laplacian matrix. Note that if the underlying graph is connected, then Lθ̄ = 0 if and only if θ1 = θ2 =

· · · = θN . By constructing the Lagrangian dual of the above constrained optimization, we obtain the

corresponding single min-max problem. Thanks to the Laplacian matrix, the corresponding stochastic

primal-dual algorithm is automatically decentralized. Compared to [53], it only needs to share local

parameters with neighbors rather than the gradient surrogates.

The MARL in [15] combines the averaging consensus and SBEED [34] (Smoothed Bellman Error

Embedding), which is called distributed SBEED here. In particular, the distributed SBEED aims to solve

the so-called smoothed Bellman equation

Vθ(s) =
1

N

N∑
i=1

Ria(s) + γEs′∼P (·|s,a)[Vθ(s
′)]− λ

N∑
i=1

ln(πiwi(s, a
i)),

by minimizing the corresponding mean squared smoothed Bellman error:

min
θ, {wi}Ni=1

Es,a

( 1

N

N∑
i=1

Ria(s) + γEs′∼P (·|s,a)[Vθ(s
′)]− λ

N∑
i=1

ln(πiwi(s, a
i))− Vθ(s)

)2
 ,

where λ is a positive real number capturing the smoothness level, θ and w are deep neural network

parameters for the value and policy, respectively. Directly applying the stochastic gradient to the above

objective using samples leads to biases due to the nonlinearity of the objective (or double sampling

issue). To alleviate this difficulty, the distributed SBEED introduces the primal-dual form as in [34],

which results in a distributed saddle-point problem similar to (16) and is processed with a stochastic

variants of the distributed proximal primal-dual algorithm in [49].

D. Special Case: Networked MARL with Centralized Rewards

Lastly, we remark that the algorithms in this section can be directly applied to MA-MDPs with central

rewards. As in Section III, we consider an MDP, (S,A, P, r, γ), with an additional network communication

model G, while each agent i receives the common reward r(s, a) instead of the local reward ri(s, a).

One may imagine reinforcement learning algorithms running in N identical and independent simulated

environments. Under this assumption, a distributed policy evaluation was studied in [52]. It combines

GTD [26] with the distributed averaging consensus algorithm as follows:

GTD update :

θ
i
k+1/2 = θik + αk(φ(s)− γφ(s′))(φ(s)Twik)

wik+1/2 = wik + αk(δ
i
k − φ(s)Twik)φ(s)

Mixing term :

θ
i
k+1 = 1

|Ni|+1

∑
j∈Ni∪{i} θ

j
k+1/2

wik+1 = 1
|Ni|+1

∑
j∈Ni∪{i}w

j
k+1/2
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where δik = r(s, π(s)) + γφ(s′)T θik − φ(s)T θik is the local TD-error. Each agent has access to the

information (s, a, r, {θj}j∈Ni), while the action a is not used in the updates. The first update is equivalent

to the GTD in [26] with a local parameter (θi, wi) and the second term is equivalent to the distributed

averaging consensus update in (11). Since the GTD update rule is equivalent to a stochastic primal-dual

algorithm, the above update rule is equivalent to a distributed algorithm for solving the distributed saddle-

point problem in (16). Note that [52] only proves the weak convergence of the algorithm. In the same

vein, the multi-agent policy evaluation [51] generalizes the GQ learning to distributed settings, which is

more general than GTD in the sense that it incorporates an importance weight of agent i that measures

the dissimilarity between the target and behavior policy for the off-policy learning.

VI. FUTURE DIRECTIONS

Until now, we mainly focused on networked MARL and recent advances which combine tools in

consensus-based distributed optimization with MARL under decentralized rewards. There remain much

more challenging agendas to be studied. By bridging two domains in a synergistic way, these research

topics are expected to generate new results and enrich both fields.

a) Robustness of networked MARL: Communication networks in real world, oftentimes, suffer

from communication delays, noises, link failures, or packet drops. Moreover, network topologies may

vary as time goes by and the information exchange over the networks may not be bidirectional in

general. Extensive results on distributed optimization algorithms over time-varying, directed graphs, w/o

communication delays have been actively studied in the distributed optimization community, yet mostly in

deterministic and convex settings. The study of networked MARLs under aforementioned communication

limitations is an open and challenging topic.

b) Resilience of networked MARL: Building resilient networked MARL under adversarial attacks is

another important topic. A resilient consensus-based distributed optimization algorithm under adversarial

attacks has been studied in [54], which considers scenarios where adversarial agents exist among net-

worked agents and send arbitrary parameters to their neighboring agents to disrupt the solution search.

In such cases, analysis of fundamental limitations on distributed optimization algorithms and protocols

resilient against such adversarial behaviors are available. For networked MARL, such issues remain

largely unexplored.

c) Development of deep networked MARL algorithms: Another interesting direction is the appli-

cation of consensus-based distributed optimizations to recent deep RL algorithms, such as deep Q-

learning [55], trust region policy optimization (TRPO) [56], proximal policy optimization (PPO) [57], deep

deterministic policy gradient (DDPG) [58], twin delayed DDPG (TD3) [59]. Most of these algorithms
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are variants of policy search algorithm and involve optimization procedures in certain stages. Ideas of

distributed optimizations can potentially be applied to these deep RL algorithms as well.

d) Theoretical understanding of networked MARL with deep neural nets: Fundamental analysis of

networked MARL with nonlinear function approximation is still an open question. For the optimization-

based MARLs, when the value function or policy are parameterized by deep neural networks, the resulting

distributed min-max problems discussed eventually become nonconvex-nonconcave. Solving this class of

distributed optimization problems in a principled manner remains an intriguing research topic.

e) MARL for parallel computing: Lastly, networked MARLs can be used to reduce memory and

computational cost, and accelerate the training by exploiting parallel computation. Most RL algorithms

require enormous experiences to find a reasonably good policy, which may not be easily collected by a

single agent. Instead, a large number of cooperative RL agents over networks can more effectively collect

experiences using their own sensors such as crowd sources. Moreover, these agents can learn different

parts of learning parameters and features with lower dimensions compared to the state-space, which could

greatly reduce the memory and computational cost. There exist several works in this direction, such as

the distributed gossiping TD-learning in [60],the distributed policy search algorithm [41], etc. In this

case, the design of network topology and infrastructures becomes quite critical in improving the learning

efficiency and balancing the tradeoff between communication and computation cost.
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