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PERSPECTIVES
Ulisses M. Braga-Neto and Edward R. Dougherty

Machine Learning Requires Probability and Statistics

The contemporary practice of ma 
chine learning often involves the 
application of deterministic, compu

tationally intensive algorithms to itera
tively minimize a criterion of fit between 
a discriminant and sample data. There is 
often little interest in using probability to 
model the uncertainty in the problem 
and statistics to characterize the behavior 
of predictors derived from data, with the 
emphasis being on computation and 
coding. It follows that little can be stat   
ed about performance on future data, 
beyond perhaps a simple error count on 
a given test set. In this article, we argue  
that the knowledge imparted by deter
ministic computational methods is not 
rigorously related to the real world and, 
in particular, future events. This connec
tion requires rigorous probabilistic mod
eling and statistical inference as well as 
an understanding of the proper role of 
computation and an appreciation of epis
temological issues.

Gauss and the least-squares 
method
We illustrate the issue with a brief his
torical excursion into the development 
of the leastsquares method, which is 
usually credited to an 1809 paper by 
Gauss [1]—even though Legendre pub
lished it in 1805 [2]. Around 1795 (thus, 
before Legendre’s publication), Gauss 
became preoccupied with the inaccura

cy of the classical model of planetary 
motion (due to Kepler and refined by 
Newton) in predicting the orbit of the 
asteroid Ceres. The classical planetary 
model does not take into account the 
uncertainty introduced by noise in 
the observations and the presence of 
unmodeled variables. Namely, astro
nomical observations contain inaccura
cies, such as human error, atmospheric 
interference, and optical imperfections 
in telescopes, and the orbits of planets 
are determined not only by the sun but 
also by a superposition of the effects of 
all the other planets, which creates an 
intractable analytical problem (known 
as the nbody problem). To address these 
issues, Gauss introduced the leastsquares 
method, which can be summarized in 
the famous passage [1]: 

The most probable value of the 
unknown quantities will be that 
in which the sum of the squares 
of the differences between the 
actually observed and the com
puted values multiplied by num
bers that measure the degree of 
precision is a minimum.
Thus, the “most probable value” is the 

one that minimizes the sum of squared 
deviations between the observations 
and a candidate in a given family (for 
example, the family of all ellipses). The 
leastsquares approach has proven to 
be extremely influential in science and 
engineering. However, its basic formula
tion has a significant limitation—it can
not say anything about the performance 

of the method on future data. This is be 
cause no knowledge about the proper
ties of the noise in the model is assumed 
or sought. This makes the leastsquares 
approach essentially deterministic.

Gauss was not unaware of this issue. 
In a later work [3], he gave the condi
tions on the observation noise under 
which the approach is optimal: if the 
noise random variables are uncorrelated 
and have zero mean with constant vari
ance across all observations, then the 
leastsquares solution is unbiased and 
has minimum variance among all lin
ear estimators; i.e., it is the best linear 
unbiased estimator (BLUE)—a result 
known today as the Gauss−Markov the
orem. Even though Laplace also work 
ed on the theory of the leastsquares 
method around the same time as Gauss, 
and Markov later clarified many of 
its issues, R. Plackett credits Gauss’  
1821 paper fully for the Gauss− Markov 
theorem (which should perhaps then  
be called the Gauss theorem) [4]. 
Gauss’s 1821 approach is fully sto
chastic, where the unmeasurable and 
uncontrollable disturbances are mod
eled as random variables.

The contrast between the 1809 deter
ministic leastsquares method by Gauss 
and his 1821 fully stochastic approach 
represents a significant epistemologi
cal transition and illuminates the entire 
issue we discuss in this article. The 1809 
result appeared to be a useful computa
tional method that produced a “good
looking” result given the data. However, 
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its properties could not be established 
until the result in 1821, which required 
conditions on the probability distribu
tion of the noise to lead to the statistical 
optimality of the procedure on future 
data (and not optimality based merely 
on the minimization of a sum of squared 
errors on the current data). In a similar 
fashion, probability theory and statistics 
are indispensable components of statis
tical signal processing, stochastic con
trol, and information theory.

Computers: Thinking the 
unthinkable or not thinking 
at all?
Computers are fascinating because of 
their superhuman speed and accuracy in 
executing rote tasks. This feeling about 
automation is old and precedes comput
ers. For example, Denis Diderot, who 
made the mechanical arts one of the 
central parts of the Encyclopedie, in 
cludes the following quote by a certain 
M. Perault in the famous article on the 
stocking machine [5], [6]:

When one sees stockings being 
knit, one marvels at the supple
ness and dexterity of the work
er’s hand, though he only makes 
one stitch at a time. What then 
when one sees a machine that 
makes hundreds of stitches at 
once, that is, makes in one 
moment all the diverse move
ments that the human hands 
would take many hours to make? 
[…] and all that without the 
worker who operates the ma 
chine understanding anything, 
knowing anything, or even dream
ing of it.
The impression that automation 

always produces results that are not just 
faster but superior to manual labor is 
very strong. The philosopher W. Barrett 
put it this way in his book The Illusion 
of Technique [7]:

In the popular imagination the 
faith in hardware expresses itself 
in the images of technological 
gigantism: just make the comput
er mammoth enough and it will 
solve all problems. But the intrin
sic logic of a problem remains 
what it is even if we had at our 

disposal a computer gigantic 
enough to cover a modern city. 
The absence of an intelligent idea 
in the grasp of a problem cannot 
be redeemed by the elaborate
ness of the machinery one subse
quently employs.
A purely datadriven approach is 

naturally computationally expensive, 
and this was a key reason why its use 
was not frequent before the advent of 
fast and cheap computers. Now compu
tation and storage are relatively cheap 
and widely available, which makes it 
very attractive to apply computation 
indiscriminately. B. Efron put the mat
ter thus in his paper, “Computers and 
the Theory of Statistics: Thinking the 
Unthinkable” [8]: “The  ‘unthinkable’ 
mentioned in the title is simply the 
thought that one might be willing to 
perform 500,000 numerical operations 
in the analysis of 16 data points. Or 
one might be willing to perform a bil
lion operations to analyze 500 numbers. 
Such statements would have seemed 
insane thirty years ago.”

The propensity of using computation 
indiscriminately was very much in the 
minds of the pioneers of the information 
age. The very first manual of the BASIC 
programming language, invented by J. 
Kemeny and T. Kurz at Dartmouth in 
1964, had a piece of advice from digi
tal signal processing pioneer Richard 
Hamming of Bell Labs: “Typing is no 
substitute for thinking” [9].

Our point is not that computation 
should be avoided but that an exagger
ated reliance on it can create an illu
sion of excellence and independence 
of human supervision. In the case of 
machine learning, it has created the 
expectation that vast amounts of com
putation can produce accurate predic
tions from data, without a specification 
of conditions that provide the possibility 
of this knowledge.

On prediction, validation, and 
experimental design
We arrive at the fundamental question: 
How does one know that one has a pre
dictive model that is strongly connected 
to the real world and future events? In 
classification, a model is predictive if 

the classification error rate is small. 
However, how do we know that we 
have a predictive classifier? This ques
tion can only be answered in practice 
by estimating the classification error 
using an errorestimation rule applied to 
the training data, a distinct set of test 
data, or a mixture of training and test 
data [10]. The accuracy of the error esti
mation rule must be measured by a 
validity criterion, the most common one 
being the rootmeansquare error 
between estimated and true error, which 
in turn depends on the feature–label 
distribution, i.e., the joint probability 
distribution between the feature vector 
and the label. Without an underlying 
probability model, classification validi
ty cannot be established. One could 
apply any existing error estimation rule, 
such as crossvalidation or testset error 
estimation, but this would simply pro
vide a number that relates to the sample 
training and testing data used and has 
no quantifiable relation with future per
formance of the classifier. One might 
claim to expect a proportion of errors 
on future applications that agree with 
the estimate, but this statement is not 
quantifiable in terms of prediction ver
sus observation and therefore lacks sci
entific content.

The next logical question is: How 
can one know that the feature–label dis
tribution reflects the true relationship 
between feature vector and label? If one 
has the wrong feature–label distribu
tion, then the trained model will per
form poorly on future data. In practice, 
it is not possible to know completely the 
feature–label distribution at work in a 
specific problem. However, assump
tions about the feature–label distribution 
can be enforced by sound experimental 
design, i.e., the way the data gathering 
process is planned and executed. In a 
recent paper, F. Mazzocchi character
izes the issue as follows [11]:

Science does not collect data ran
domly. Experiments are designed 
and carried out within theoretical, 
methodological and instrumen
tal limitations. Instruments are 
designed based on prior theories 
and knowledge, which determine 
what these instruments indicate 
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with respect to the object under 
investigation. Research does not 
examine each possible manipula
tion that could occur, but selects 
what is relevant in light of a given 
perspective, sometimes in order 
to match theoretical predictions 
with experience.
For instance, for the Gauss–Markov 

theorem to hold and the BLUE to be valid, 
the data must be acquired and condi
tioned/transformed so that the disturbanc
es are, at least approximately, uncorrelated 
and zero mean with constant variance. 
Another often overlooked example of an 
important experimental design issue is 
the requirement by many machine learn
ing algorithms that the training data be 
independent and identically distributed. 
For example, crossvalidation is approxi
mately unbiased only under this assump
tion: if it is violated, crossvalidation can 
be grossly biased [12].

A last objection could be raised by 
a skeptic: How can we be sure that we 
can learn from the present data about 
events that will happen in the future? In 
other words, are we not always measur
ing performance on existing test data, 
as it becomes available? This is the 
radical empiricist challenge to science, 
also known as the problem of induction, 
which was first raised by David Hume 
in the 18th century [13]. Many attempts 
have been made to answer this question 
in the affirmative, but this principle can
not be proved logically. Instead, we must 
adopt it as a postulate. In the preface to 
“Scientific Inference,” Sir Harold Jef
freys puts it this way [14]: “Discussions 
from the philosophical and logical point 
of view have tended to the conclusion 
that this principle cannot be proved by 
logic alone, which is true, and have left it 
at that. […] In the present work the prin
ciple is frankly adopted as a primitive 
postulate and its consequences are devel
oped.” As is the case in science at large, 
Jeffreys’ “primitive postulate” must also 
be adopted in machine learning to avoid 
the radical empiricist perspective.

Deep neural networks
Like other machine learning methods 
based on optimization, neural networks 
learn from data by iteratively adjusting 

the parameters of a discriminant to fit a 
set of labeled data points. The justifica
tion often cited for such approaches is 
that the discriminant of a neural net
work with a sufficiently large number 
of parameters can produce results that 
are arbitrarily close to the optimal pre
dictor in a distributionfree manner; that 
is, neural networks are universal func
tion approximators. If the large num
ber of parameters is organized over a 
large number of layers, one has a deep 
neural network.

A classical theorem by G. Cybenko 
[15] shows that the classifiers produced 
by a neural network discriminant with 
continuous sigmoids are dense in the 
space of all classifiers, and therefore 
can be arbitrarily close to the optimal 
classifier. Cybenko’s theorem applies 
to depthbound (“shallow”) neural net
works, with a depth of 2 (one hidden 
layer and one output layer), but the num
ber of neurons k in the hidden layer, i.e., 
the width of the neural network, must be 
allowed to increase without bound for 
arbitrary approximation. A recent result 
by Z. Lu and collaborators [16] pro
vides a comparable denseness result for 
widthbound (“deep”) networks, where 
the maximum number of neurons per 
layer is fixed, but the number of layers 
must be allowed to increase freely.

However, these deterministic results 
do not address the performance of neu
ral networks trained from data. In par
ticular, they do not weigh directly on 
the issue of consistency, i.e., on the sto
chastic convergence of the error of the 
trained classifier to the optimal error 
as sample size increases to infinity. To 
bear out the promise of distribution
free classification, consistency has to 
be universal; i.e., it must hold under any 
feature–label distribution. The few uni
versal consistency results of which we 
are aware apply to shallow neural net
works and make unrealistic demands 
on training, such as the requirement of 
training error or L -1 error minimization 
(for which gradient descent cannot be 
applied); e.g., see Theorems 30.7 and 
30.9 in [17], respectively.

It turns out that even universal con
sistency is not enough. It was shown by 
L. Devroye and collaborators [17, Th. 7.2]  

hat for any universally consistent clas
sification rule, a feature–label distribution 
exists such that convergence of the clas
sification error to the optimal error is as 
slow as desired. In other words, univer
sal consistency can say nothing about 
the problem of selecting a good clas
sifier using finite training data: under 
no assumptions about the feature–label 
distribution, any classification algorithm  
can be arbitrarily bad. The  situation 
changes if assumptions are made about 
the feature–label distribution. For exam
ple, it was shown by N. Glick [18, Th. A]  
that the difference between the ex  
pected and optimal classification error  
rates converges exponentially fast to 
zero in discrete histogram classification, 
with a rate that depends on the feature–
label distribution: the more separable 
the classes are under the feature–label  
distribution (in a precise sense), the 
faster the rate of convergence is guar
anteed to be.

Bayesian deep learning provides 
an alternative to deterministic neural 
networks and has attracted significant 
attention in recent years [19], [20]. The 
classical approach to Bayesian neural 
networks has been based on placing 
prior distributions on the weights of the 
network [21], [22]. In [23], an alternative 
approach to Bayesian deep learning was 
developed where dropout training of 
deep neural networks was formulated as 
approximate Bayesian inference in deep 
Gaussian processes. These are welcome 
developments. However, we point out 
that these approaches to Bayesian deep 
learning are not probabilistically related 
to the feature–label distribution, nor do 
they even require a feature–label distri
bution. The mechanism has a statistical 
dimension relative to the prior distribu
tion, but the output is not necessarily 
statistically related to nature, only to 
the actual data. If there is an underly
ing model distribution representing sci
entific knowledge, then the issue arises 
as to the connection between it and the 
prior distribution. In the classical Bayes
ian approach, there is none, the priors 
being chosen ad hoc, perhaps according 
to some general information–theoreti
cal criteria. This disconnect has been 
referred to as a “scientific gap” in [24]. 
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In that reference, an alternative approach 
was proposed, where the model distri
bution is treated as uncertain, with the 
uncertainty occurring in its parameters. 
This model uncertainty is propagated to 
uncertainty in the classifier or regressor, 
and so the latter uncertainty is directly 
related to the underlying model.

Conclusions
In this article, we have attempted to 
make the case that the success of machine 
learning in science and engineering 
depends essentially on the use of rigorous 
probabilistic modeling and statistics. We 
discussed the problem in the context of 
general machine learning and then looked 
more closely at the currently important 
topic of deep neural networks.

In our view, the issues discussed here 
concern not only the theoretician or sci
entist but also affect the practitioner, 
because practical application requires 
consistency with the demands of the 
theory. This view is expressed this way 
by Y. Gal and Z. Ghahramani in [23]: 
“Model uncertainty is indispensable for 
the deep learning practitioner as well,” 
whereas N. Wiener put it this way in the 
context of biology [25]: “The physiolo
gist need not be able to prove a certain 
mathematical theorem, but he must be 
able to grasp its physiological signifi
cance and tell the mathematician for 
what he should look for.”

In the last few decades, however, 
there has been open opposition to 
the use of probability and statistics in 
predictive modeling. For example, this 
can be observed in the wellknown 
polemic by L. Breiman [26], in which he 
writes: “The statistical community has 
been committed to the almost exclusive 
use of data models. This commitment 
has led to irrelevant theory, question
able conclusions, and has kept statisti
cians from working on a large range of 
interesting current problems.”

There is some evidence that this 
might be due to the lack of widespread 
mathematical literacy in the research 
community at large. For instance, J. 
Simon writes [27], “In the mid1960’s, I 
noticed that most graduate students—
among them many who had had several 
ad  vanced courses in statistics—were 

unable to apply statistical methods cor
rectly in their social science research. I 
sympathized with them. Even many 
experts are unable to understand intui
tively the formal mathematical approach 
to the subject. Clearly, we need a meth
od free of the formulas that bewilder 
almost everyone.”

The authors have pondered on such 
issues elsewhere [28]–[31]; others have 
done so as well [11], [32]–[35]. The crucial 
question is: Do we want knowledge about 
the real world in the sense of modern 
engineering and science, or do we merely 
want knowledge of specific events, the 
latter being more understandable and 
requiring simpler mathematics? Before 
answering the question, one should  
consider the enormous benefits that we, 
as modern engineers, have accrued from 
the probabilisticstatistical approach, 
beginning with the Wiener–Kolmogorov 
theory of linear systems in the 1930s and 
flowing forward in the development of 
optimal filtering, stochastic control, sta
tistical signal processing, and information 
theory. Deep thought should be given as 
to whether abandoning this epistemology 
is desirable.
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